
CHA-Q
Change-centric quality Assurance

February 2015

WHY ?

CHa-Q Open Tool Demonstration — February 2015

Reliability vs. Agility

3

Software is vital to our society ⇒ Software must be reliable

Traditional Software Engineering
Reliable = Software without bugs

Today’s Software Engineering
Reliable = Easy to Adapt

Striving for
RELIABILITY

(Optimise for
perfection)

Striving for
AGILITY

(Optimise for 
development speed)

On the Origin 
of Species

CHa-Q Open Tool Demonstration — February 2015

Software Repositories & Archives
Version Control

• CVS, Subversion, …
• Rational ClearCase
• Perforce,
• Visual Source Safe
• …

Issue Tracking
• Bugzilla
• BugTracker.NET
• ClearQuest
• JIRA
• Mant
• Visual Studio Team Foundation

Server
• …

Automate the Build
• make
• Ant, Maven
• MSBuild
• OpenMake
• Build Forge
• …

Automated Testing
• HP QuickTest Professional
• IBM Rational Functional Tester
• Maveryx
• Selenium
• TestComplete
• Visual Studio Test Professional

 Microsoft 2010
• …

4

… mailing archives, newsgroups, chat-boxes, facebook, twitter, …

CHa-Q Open Tool Demonstration — February 2015

Software Repositories & Archives
Version Control

• CVS, Subversion, …
• Rational ClearCase
• Perforce,
• Visual Source Safe
• …

Issue Tracking
• Bugzilla
• BugTracker.NET
• ClearQuest
• JIRA
• Mant
• Visual Studio Team Foundation

Server
• …

Automate the Build
• make
• Ant, Maven
• MSBuild
• OpenMake
• Build Forge
• …

Automated Testing
• HP QuickTest Professional
• IBM Rational Functional Tester
• Maveryx
• Selenium
• TestComplete
• Visual Studio Test Professional

 Microsoft 2010
• …

4

… mailing archives, newsgroups, chat-boxes, facebook, twitter, …

All of a sudden empirical research has
what any empirical science needs: a
large corpus of objects to analyze.

[Bertrand Meyer's technology blog]

CHa-Q Open Tool Demonstration — February 2015

Mining Software Repositories

5

Conferences
• 2015—12th edition, Florence, Italy

• 2014—11th edition, Hyderabad, India
• 2013—10th edition, San Francisco, CA, USA
• 2012—9th edition, Zürich, CH
• 2011—8th edition, Honolulu, HI, USA
• 2010—7th edition, Cape Town, ZAF
• 2009—6th edition, Vancouver, CAN
• 2008—5th edition, Leipzig, DEU
• 2007—4th edition, Minneapolis, MN, USA
• 2006—3rd edition, Shanghai, CHN
• 2005—2nd edition, Saint Luis, MO, USA
• 2004—1st edition, Edinburgh, UK

The Mining Software Repositories (MSR) field analyzes the rich
data available in software repositories to uncover interesting and
actionable information about software systems and projects.

Hall of Fame—Mining Challenge Winners
• 2015 — StackOverflow

• 2014—Sentiment Analysis of Commit
Messages in GitHub: An Empirical Study

• 2013—Encouraging User Behaviour with
Achievements: An Empirical Study
[StackOverflow]

• 2012—Do the Stars Align? Multidimensional
Analysis of Android's Layered Architecture

• 2011—Apples Vs. Oranges? An exploration of
the challenges of comparing the source code
of two software systems [Netbeans+Eclipse]

• 2010—Cloning and Copying between GNOME
Projects

• 2009—On the use of Internet Relay Chat
(IRC) meeting by developers of the GNOME
GTK+ project

• 2008—A newbie's guide to Eclipse APIs
• 2007—Mining Eclipse Developer Contributions

via Author-Topic Models
• 2006—A study of the contributors of

PostgreSQL

Space

P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces. Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW'92).

 © Margaret-Anne (Peggy) Storey; Keynote for MSR 2012, Zurich, Switzerland

http://www.dourish.com/publications/1992/cscw92-awareness.pdf

Space

P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces. Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW'92).

 © Margaret-Anne (Peggy) Storey; Keynote for MSR 2012, Zurich, Switzerland

http://www.dourish.com/publications/1992/cscw92-awareness.pdf

Space

P. Dourish and V. Bellotti. Awareness and Coordination in Shared Workspaces. Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW'92).

 © Margaret-Anne (Peggy) Storey; Keynote for MSR 2012, Zurich, Switzerland

Place

http://www.dourish.com/publications/1992/cscw92-awareness.pdf

CHa-Q Open Tool Demonstration — February 2015

Hype Cycle

7

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Peak of
Inflated  

Expectations

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

CHa-Q Open Tool Demonstration — February 2015

The Future ?

8

Personal O
pinion

Peak of
Inflated  

Expectations

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

CHa-Q Open Tool Demonstration — February 2015

The Future ?

8

Personal O
pinion

Peak of
Inflated  

Expectations

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

IBM (Patents) ⇒ Eclipse

Microsoft Research 
⇒ Team Foundation Server

HOW ?

CHa-Q Open Tool Demonstration — February 2015

Project Overview

10

Past Changes
[UC1] monitor test process
[UC2] misclassified
 bug reports

Present Changes
 [UC3] API evolution
 [UC4] recurring bug-fixes

Future Changes
[UC5] who should fix ?
 how long to fix ?
[UC6] what to (re)test ?

[RT1] Analysing Changes
 • meta model
 • distilling & logging

[RT2] Repeating Changes
 • program transformations
 • change-aware
 transformations

[RT3] Tracing Changes
 • mining traceability links
 • active meta-data
 (annotations)

C
h

a
n

g
e
-C

e
n

tric
S

o
ftw

a
re

 D
e
ve

lo
p

m
e
n

t

CHa-Q Open Tool Demonstration — February 2015

Deliverables

11

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
WP0: Management
steering board 0.1.a 0.1.b 0.1.c 0.1.d 0.1.e 0.1.f 0.1.g 0.1.h
IWT reporting 0.2.a 0.2.b 0.2.c 0.2.d 0.2.e
WP1: State of the praxis versus state of the art
site visits 1.1.a 1.1.b
tools comparison 1.2.a 1.2.b
WP2: Analysing Change
meta-model 2.1.a 2.1.b [P] 2.1.c 2.2.c
distilling & logging 2.2.a [P] 2.2.b [P] 2.2.c
WP3: Repeating Changes
transformations 3.1.a 3.1.b [P]
change-aware 3.2.a [P] 3.2.b [P] 3.2.c
WP4: Tracing Changes
traceability links 4.1.a [P] 4.1.b
annotation 4.2.a [P] 4.2.b
WP5: Valorisation activities
pilot cases 5.1.a 5.1.b 5.1.c 5.1.d 5.1.e
dissemination evt. 5.2.a 5.2.b

m.n.x Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number
m.n.x [P] Deliverable m.n.x includes a prototype tool

Year 4Year 1 Year 2 Year 3

CHa-Q Open Tool Demonstration — February 2015

Deliverables

11

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
WP0: Management
steering board 0.1.a 0.1.b 0.1.c 0.1.d 0.1.e 0.1.f 0.1.g 0.1.h
IWT reporting 0.2.a 0.2.b 0.2.c 0.2.d 0.2.e
WP1: State of the praxis versus state of the art
site visits 1.1.a 1.1.b
tools comparison 1.2.a 1.2.b
WP2: Analysing Change
meta-model 2.1.a 2.1.b [P] 2.1.c 2.2.c
distilling & logging 2.2.a [P] 2.2.b [P] 2.2.c
WP3: Repeating Changes
transformations 3.1.a 3.1.b [P]
change-aware 3.2.a [P] 3.2.b [P] 3.2.c
WP4: Tracing Changes
traceability links 4.1.a [P] 4.1.b
annotation 4.2.a [P] 4.2.b
WP5: Valorisation activities
pilot cases 5.1.a 5.1.b 5.1.c 5.1.d 5.1.e
dissemination evt. 5.2.a 5.2.b

m.n.x Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number
m.n.x [P] Deliverable m.n.x includes a prototype tool

Year 4Year 1 Year 2 Year 3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
WP0: Management
steering board 0.1.a 0.1.b 0.1.c 0.1.d 0.1.e 0.1.f 0.1.g 0.1.h
IWT reporting 0.2.a 0.2.b 0.2.c 0.2.d 0.2.e
WP1: State of the praxis versus state of the art
site visits 1.1.a 1.1.b
tools comparison 1.2.a 1.2.b
WP2: Analysing Change
meta-model 2.1.a 2.1.b [P] 2.1.c 2.2.c
distilling & logging 2.2.a [P] 2.2.b [P] 2.2.c
WP3: Repeating Changes
transformations 3.1.a 3.1.b [P]
change-aware 3.2.a [P] 3.2.b [P] 3.2.c
WP4: Tracing Changes
traceability links 4.1.a [P] 4.1.b
annotation 4.2.a [P] 4.2.b
WP5: Valorisation activities
pilot cases 5.1.a 5.1.b 5.1.c 5.1.d 5.1.e
dissemination evt. 5.2.a 5.2.b

m.n.x Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number
m.n.x [P] Deliverable m.n.x includes a prototype tool

Year 4Year 1 Year 2 Year 3

CHa-Q Open Tool Demonstration — February 2015

[UC1] Monitor Test Process

12

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

http://swerl.tudelft.nl/bin/view/Main/TestHistory

CHa-Q Open Tool Demonstration — February 2015

[UC1] Monitor Test Process

12

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

Single Test

http://swerl.tudelft.nl/bin/view/Main/TestHistory

CHa-Q Open Tool Demonstration — February 2015

[UC1] Monitor Test Process

12

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

Single Test Unit Testing

http://swerl.tudelft.nl/bin/view/Main/TestHistory

CHa-Q Open Tool Demonstration — February 2015

[UC1] Monitor Test Process

12

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

Single Test Unit Testing

Integration tests

http://swerl.tudelft.nl/bin/view/Main/TestHistory

CHa-Q Open Tool Demonstration — February 2015

[UC1] Monitor Test Process

12

http://swerl.tudelft.nl/bin/view/Main/TestHistory Case = Checkstyle

Single Test Unit Testing

Integration tests

Phased Testing

http://swerl.tudelft.nl/bin/view/Main/TestHistory

CHa-Q Open Tool Demonstration — February 2015

[UC3] API evolution

13

How do APIs evolve? A story of refactoring
Danny Dig, and Ralph Johnson (JSME 2006)

REFACTORINGS IN API EVOLUTION 11

Type of change E E* M S S* L JHD

Moved Method 16 13 - 11 28 9 -
Moved Field - 45 - 18 2 5 -

Deleted Method 2 2 - 24 32 - 2
ChangedArgumentType 5 - 4 18 4 11 -
Changed Return Type 2 - 1 2 - 2 31
Replaced Method Call 1 20 - 8 4 - 1

Renamed Method 4 - - 16 5 8 -
New Hook Method 4 2 2 7 - - 5
Extra Argument 3 2 2 1 1 - 2
Deleted Class - - - 9 - - 1

Extracted Interface - - - - - - 7
Renamed Field - - - 6 1 - -
Renamed Class - 1 - 2 - 2 2
Method Object 3 - - - - - -

Pushed Down Method 3 - - - - - -
Moved Class - 2 - - - - 1

Pulled Up Method - - - 1 - - -
Renamed Package - - - - - - 1

Split Package - - - - - - 1
Split Class - - - - - - 1

New Method Contract 3 12 1 8 - 1 -
Implement New Interface 1 - 1 5 - - 3

Changed Event Order 3 - - - - - -
New Enum Constant 1 - - - - - -

Table II. Types of Breaking API changes and the number of these
changes in Eclipse (E), Mortgage (M), Struts (S), log4j (L), and
JHotDraw (JHD). Eclipse* (E*) and Struts* (S*) denote recommended
changes, that is changes that will become breaking changes in future
releases. Those changes in italic font (upper half of the table) are

refactorings.

An API class can have two types of clients: instantiators and extenders. As for API methods,
due to extensive usage of callbacks (hook methods) in frameworks, there are two types of clients
of API methods: callers and implementors. Some changes affect both types of clients while
other changes affect only one type of clients.

JHotDraw illustrates some of the subtleties of API changes upon client code.
AbstractFigure provides default implementation for the figure classes. We encapsulate
commonalities among different class figures, by using the Template Method design pattern
[20]. Thus method moveBy (referred as template method) contains the fixed algorithm for
moving a figure (see Fig 1): first it announces that a figure is about to change something that

Copyright c⃝ 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–26
Prepared using smrauth.cls

REFACTORINGS IN API EVOLUTION 21

Component # Breaking Changes % Refactorings

Eclipse 51 84%
Eclipse* 99 87%
Mortgage 11 81%

Struts 136 90%
Struts* 77 100%
Log4J 38 97%

JHotDraw 58 94%
Table IV. Ratio of refactorings to all breaking API changes. Eclipse*

and Struts* denote recommended changes.

Struts Log4J
Refactorings 123 37

All Other API Changes 325 920
Percentage of Refactorings 27.4% 3.8%

Impact of Refactorings 90% 97%
Table V. The impact of refactorings upon backwards compatibility

component to stay alive, it should change through a series of rather small steps, mostly
refactorings.

For Struts and log4j we analyzed what percentage of all API changes (including addition of
new API) are represented by refactorings (see Table V).

We used Van [16] to learn the number of addition and deletion of API classes and methods.
The second row sums the API methods that were added or deleted from classes that exist
in both versions, the number of API classes that were added or deleted in between the two
versions, and the number of breaking API changes that are not refactorings. Row ‘Percentage
of Refactorings’ depicts how many of all API changes (including non-breaking changes like
addition of new APIs) are refactorings. Row ‘Impact of Refactorings’ depicts how many of
all changes that break existing customers are refactorings. Table V shows that even though
refactorings are a small percentage of all API changes (including addition of API), they have a
large impact upon backwards compatibility. Therefore, migration tools should focus on carrying
out these types of changes.

5. On Migrating Component-Based Applications

We found out that between the two versions we studied for each of the five systems, more than
80% of the breaking changes were refactorings. If all the breaking changes were refactorings,
it would make sense to use a refactoring tool to incorporate these changes in the applications.

Copyright c⃝ 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 00:1–26
Prepared using smrauth.cls

CHa-Q Open Tool Demonstration — February 2015

[UC5] Recurring Bug Fixes

14

Recurring Bug Fixes in Object-Oriented Programs, 
Tung Thanh Nguyen, et. al. (ICSE2010)

would be similar. Assume that the drawing procedure of
the shapes in the editor is required to record the drawing
operations and parameters into a log file. Then, the drawing
functions of all shapes will be added with similar code for
the logging task, resulting in recurring changes.

Using knowledge of code peers and recurring bug fixes
learnt from the empirical study, we developed several tech-
niques to 1) identify code peers in object-oriented programs;
2) recognize recurring bug fixes; and 3) recommend fixing
changes to code units from the fixes of their peers. Those
techniques are realized in a prototype tool, FixWizard.

In FixWizard, code peers are formulated as the code units
(e.g. methods, classes) involving similar object interactions.
Such interactions are represented by groum, a graph-based
representation for object usages in our previous work [21].
To avoid pairwise checking for all pairs of code units, we
use several heuristics to find the peer candidates. Generally,
peer candidates are code units that 1) are similar in im-
plementation code or naming scheme, or 2) share the same
ancestor method/class or implement the same interface(s),
i.e. promising the same set of functions, or 3) belong to the
classes that have other code peers or recurring fixes. Can-
didates with sufficient similarity in functions/interactions
measured based on the object usage models extracted from
their implementation code and client code are considered as
peers and used for later recommendation of bug fixing.

To characterize fixing changes and recognize recurring ones,
FixWizard represents the change to a code unit as the changes
of the corresponding object usage models (i.e. groums). Us-
ing our previous tree edit scripting algorithm in [20], FixWiz-
ard derives the changed nodes in the abstract syntax tree
(AST) representing the code fragment. Then, it maps such
changed AST nodes to the corresponding nodes of the groum,
connects such nodes into sub-groum(s), and considers them
belonging to the impact usage of the change. Eventually,
two changes are considered as recurring if their correspond-
ing impact usages are sufficiently similar.

Fixing recommendation is useful in two cases: 1) when
a fragment is fixed, the tool recommends similar fixes to
its not-yet fixed peers; and 2) while a developer is fixing a
buggy code fragment, it recommends the fix derived from the
similar fixes of its peers in the past. To derive such recom-
mended fixes, FixWizard first determines the code elements
(e.g. methods, statements, expressions, variables) involved
in the change of the source peer X. Then, it maps them to
the corresponding code elements of the target peer Y based
on their similarity in structure and object usages. Even-
tually, for each changed element of X, the tool derives and
recommends the relevant editing operations and parameters
for its mapped elements in Y.

We have conducted an empirical experiment to evaluate
the correctness and usefulness of our approach. The results
show that, in the recognition of recurring bug fixes, FixWiz-
ard achieves a high accuracy level with average precision of
81% and recall of 74%. In fixing recommendation, FixWiz-
ard suggests correct locations and necessary coarse-grained
operations such as adding/deleting/modifying methods and
statements with 49% precision and 71% recall on average.

The key contributions of this paper include
1. An empirical study on recurring bug fixes that provide

insight observations on such changes. It provides the evi-
dence confirming that a large percentage of recurring bug
fixes occurs at code peers, i.e. methods/classes having sim-

Project App. Type Revision Range Fixes
ArgoUML Graphic Modeling 2 - 1130 2318
Columba Mail Client 4 - 370 829
ZK Ajax Framework 2400 - 6200 490
FlashRecruit Job Listings 100 - 600 1007
gEclipse Dev Environment 400 - 10300 1126

Table 1: Subject Systems

Project RBF Percentage In Space In Time Both
ArgoUML 390 16.8% 96.9% 17.2% 14.1%
Columba 377 45.4% 88.8% 17.7% 6.5%
ZK 188 38.4% 91.5% 13.3% 4.8%
FlashRecruit 244 24.2% 85.3% 22.1% 7.4%
gEclipse 215 19.1% 89.1% 27.7% 16.8%

Table 2: Manually Identified Recurring Fixes

ilar functions and interactions in the system.
2. New concepts, formulations, and algorithms to identify

code peers, to characterize and recognize recurring fixes, and
to recommend such changes to the code peers.

3. An empirical evaluation shows the correctness and use-
fulness of our approach.

Section 2 describes our empirical study on recurring fixes.
Sections 3, 4 present our approach. Evaluation is in Section
5. Related work is in Section 6. Conclusions appear last.

2. EMPIRICAL STUDY

2.1 Hypotheses
In object-oriented programming, a software system is mod-

eled via objects and their interactions, which are realized in
the classes/methods providing the abstraction to the objects
and their behaviors. The interactions of an object O toward
other objects are expressed in the implementation code of its
class/methods, in which it uses the other objects (internal
usage). In contrast, the interactions of other objects toward
O are expressed in its client code within other classes/meth-
ods in which it is used by other objects (external usage). In
either case, the interactions of the objects could be realized
via object usages, i.e. method invocations, field accesses,
their usage orders, and the relevant control structures.

In a large-scale system, there tends to exist several objects
having similar functions and/or interactions with other ob-
jects. Thus, in the program, such similar functions/interac-
tions are implemented by classes and methods having sim-
ilar object usages, which we call code peers. Bug fixing is
to change the functions and/or interactions of objects. Be-
cause similar functions and/or interactions usually need to
be changed in the similar ways, we hypothesize that similar
fixing changes would often occur on code peers (H1).

As conventional in object-oriented programming, the ob-
jects with similar functions will often be abstracted into par-
ent classes. The specific behaviors are implemented in the
children classes. In other cases, the methods/classes might
not be implemented in the similar ways, but they implement
the same interface, i.e., promise the similar functions. The
other objects could interact in the same way with the ob-
jects in such classes via their promised methods. The class-
es/methods having similar functions and/or being related
via inheritance/interface will often be named similarly by
the developers to help themselves in better understanding
the roles of such classes/methods. In other cases, to im-
plement the methods/classes having similar functions, de-

316

same
revision

different
revision

Parallel
Branches

[UC2] Misclassified Bug Reports

Stack Traces ⇒ Link to source code

[UC2] Misclassified Bug Reports

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

[UC2] Misclassified Bug Reports

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

[UC2] Misclassified Bug Reports

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

[UC2] Misclassified Bug Reports ?

[UC2] Misclassified Bug Reports

Description ⇒ text Mining

Stack Traces ⇒ Link to source code

Product/Component
Specific vocabulary

[UC5] Who to fix ?
How long to fix ?

[UC2] Misclassified Bug Reports ?

[UC2] Misclassified Bug Reports

CHa-Q Open Tool Demonstration — February 2015

[UC5] Who should fix ? How long to fix ?

16

Question Cases Precision Recall

Who should fix this
bug ? Eclipse, Firefox, gcc

eclipse: 57%
firefox: 64%

gcc: 6%

—

How long will it take to
fix this bug ? JBoss

depends on the component
many similar reports: off by one hour

few similar reports: off by 7 hours

Promising results but …
•how much training is needed ?
•how reliable is the data ?  

(estimates, severity, assigned-to)
•does this generalize ? (on industrial scale ?)

⇒ replication is needed

CHa-Q Open Tool Demonstration — February 2015

[UC6] What to Retest ?

17

Most respondents said that running all unit tests took just
seconds or minutes, but some respondents had unit test suites
that took hours to execute.

A survey of unit testing practices. Per Runeson, IEEE
Software, vol.23, no.4, pp.22,29, July-Aug. 2006

CHa-Q Open Tool Demonstration — February 2015

[UC6] What to Retest ?

17

Tests Relevant?

For selected Changes

Most respondents said that running all unit tests took just
seconds or minutes, but some respondents had unit test suites
that took hours to execute.

A survey of unit testing practices. Per Runeson, IEEE
Software, vol.23, no.4, pp.22,29, July-Aug. 2006

CHa-Q Open Tool Demonstration — February 2015

Program

13:30 — 14:00 — [Serge] Welcome & Introduction of the project

14:00 — 10 minutes — [Tim] CHAQ tooling infrastructure
14:10 — 10 minutes — [Angela] Traceability
14:20 — 10 minutes — [Coen] Program Transformation
14:30 — 10 minutes — [Alessandro] How long to fix

14:40 — 10 minutes — Biological break

14:50 — 10 minutes — [Ali] Mutation Testing
15:00 — 10 minutes — [Quinten] What to retest
15:10 — 10 minutes — [Laurent] Maintenance of Selenium Tests
15:20 — 10 minutes — [Serge] Invitation to the steering board

15:30 — 1 hour — [Jurgen] International Guest Speaker

18

