
Fault-tolerance in
Message-Passing Distributed
Systems
Annette Bieniusa

In the morning before I go to university

I communicate

A. with just myself
B. with my plants and/or pets
C. by talking to at least one other human being
D. by sending messages to some selected other human being
E. by broadcasting information to “the world” using social media

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 1 / 66

Broadcasting Information

Student 1

Student 2

Student 3Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 2 / 66

The Need for Distributed Algorithms

Distributed algorithms are at the core of any distributed systems
Implemented as middleware between network and application
Services beyond network protocols (e.g. TCP, UDP)

Group communication
Shared memory abstractions
State machine replication

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 3 / 66

Overview
Formal models for specifying and analyzing distributed algorithms
Composability of distributed algorithms
The Broadcast Problem

Best-e�ort broadcast
Reliable broadcast
FIFO broadcast
Causal broadcast
Total-Order broadcast

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 4 / 66

Goals of this Lecture
In this lecture, you will learn

to formally specify safety and liveness properties of several broadcast problem ([1])
to define fault-tolerant algorithms for Best-e�ort, Reliable, FIFO and Causal
Broadcast in an asynchronous system with reliable channels
to prove the correctness of some algorithms
to use space-time diagrams to visualize executions
to implement these algorithms in Elixir

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 5 / 66

Relation to this Summer School
Practical: Implementing a chat application in Elixir with di�erent broadcast variants
Testing Distributed System Implementations
Verification with TLA+ [9]
Foundations and mind-set for all the other lectures

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 6 / 66

The Broadcast Problem
Informally: A process needs to transmit a message to other processes.
broadcast(m) ≈ forall j ∈ {1, . . . , n} : send m to pj

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 7 / 66

System model
Asynchronous system
Static set of processes Π = {p1, . . . , pn}

crash-stop fault model
Sending and receiving messages through reliable channels (perfect point-to-point
links)

no message loss / creation / modification / duplication
bidirectional
infinite capacity

Messages are uniquely identifiable
e.g. tagged with <sender, seq_number>

Only a subset Π′ ⊆ Π receives messages in arbitrary order at distinct, independent time instants.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 8 / 66

What is the simplest solution that you can think of?

Just go ahead and send the message to everyone, one at a time.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 9 / 66

What is the simplest solution that you can think of?
Just go ahead and send the message to everyone, one at a time.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 9 / 66

Specifying Distributed Algorithms

Deterministic I/O automaton with send/receive operations

Event-driven programming model
Events triggered by messages, timers, conditions, . . .

Upon Event(arg1, arg2, ...) do:
// local computation
trigger Event(arg1', arg2',...)

Correctness properties
Safety: Nothing bad ever happens
Liveness: Something good eventually happens

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 10 / 66

The Anatomy of a Broadcast Algorithm

For the broadcast algorithms:
Upon Init do: ...
Upon Broadcast(m) do: ...
Upon Receive(pk, m) do: ...

You can trigger an event on another component, e.g.:
trigger Send(pj, m)
trigger Deliver(pk, m)

There is a special event called Init for initializing the local state.
pj denotes the target process when sending a message
pk denotes the process where the message originated from

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 11 / 66

At Process pi

Network layer

Middleware

Application layer

broacast(m) deliver(pk, m)

send(pj , m) receive(pk, m)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 12 / 66

Best-e�ort Broadcast (BEB): Specification
BEB-Validity: If a correct process pj beb-delivers a message m, then m has previously
been beb-broadcast to pj by some process pi.

No creation, no alteration of messages
BEB-Integrity: A process beb-delivers a message m at most once.

No duplication of messages
BEB-Termination: For any two correct processes pi and pj , every message that has
been beb-broadcast by pi is eventually beb-delivered by pj .

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 13 / 66

Best-e�ort Broadcast: Algorithm

Idea:

Just go ahead and send the message to every other process.
When you get one of these messages, you deliver it to the upper layer.
Intuition: No guarantees if sender crashes

State: --
Upon Init do: --

Upon beb-broadcast(m) do:
forall pj ∈ Π:
trigger send(pj, m)

Upon receive(pk, m) do:
trigger beb-deliver(pk, m) Network layer

BEB

Application layer

beb-broacast(m) beb-deliver(pk, m)

send(pj , m) receive(pk, m)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 14 / 66

Best-e�ort Broadcast: Correctness
Why does it work?

BEB-Validity holds because Perfect-Link model guarantees no creation and there is no other
way for messages to appear, only through beb-broadcast
BEB-Integrity holds because Perfect-Link model guarantees no duplication
BEB-Termination holds because Perfect-Link model guarantees reliable delivery

Perfect-Link Model
Reliable Delivery: Considering two correct processes i and j; if i sends a message m to j, then j

eventually delivers m.
No Duplication: No message is delivered by a process more than once.
No Creation: If a correct process j delivers a message m, then m was sent to j by some process i.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 15 / 66

Visualizing Executions with Space-Time Diagrams

p3

p2

p1
↓ m

m ↑

m ↑

m ↑

↓ m = broadcast message m

↑ m = deliver message m

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 16 / 66

Best-e�ort Broadcast: Sender crashes

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 17 / 66

Limitations of Best-e�ort Broadcast
What happens if a process fails while sending a message?

If the sender crashes before being able to send the message to all processes, some
process will not deliver the message.
Even in the absence of communication failures!

Let’s try for a reliable version of broadcast!

Guarantees that all or none of the correct nodes gets the message
Even if sender crashes!

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 18 / 66

Limitations of Best-e�ort Broadcast
What happens if a process fails while sending a message?

If the sender crashes before being able to send the message to all processes, some
process will not deliver the message.
Even in the absence of communication failures!

Let’s try for a reliable version of broadcast!

Guarantees that all or none of the correct nodes gets the message
Even if sender crashes!

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 18 / 66

Reliable Broadcast (RB): Specification
RB-Validity: If a correct process pi rb-delivers a message m, then m has been
previously rb-broadcast.
RB-Integrity: A process rb-delivers a message m at most once.
RB-Termination-1: If a correct process pi rb-broadcasts message m, then pi

rb-delivers the message m.
RB-Termination-2: If a correct process pi rb-delivers a message m, then each correct
process rb-delivers m.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 19 / 66

Reliable Broadcast: Scenario 1

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

Not possible under Reliable Broadcast: RB-Termination-2 is violated!

If correct process p2 delivers m, then correct process p3 must also rb-deliver m.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 20 / 66

Reliable Broadcast: Scenario 1

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

Not possible under Reliable Broadcast: RB-Termination-2 is violated!

If correct process p2 delivers m, then correct process p3 must also rb-deliver m.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 20 / 66

Reliable Broadcast: Scenario 2

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

The fact that process p1 does not deliver m2 is not a problem, because only correct
processes are required to deliver their own messages.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 21 / 66

Reliable Broadcast: Scenario 2

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

The fact that process p1 does not deliver m2 is not a problem, because only correct
processes are required to deliver their own messages.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 21 / 66

Reliable Broadcast: Scenario 3

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

The fact that no process delivers m2 is not a problem (even though p2 received it),
because process p1 has crashed and no process delivers m2.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 22 / 66

Reliable Broadcast: Scenario 3

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

The fact that no process delivers m2 is not a problem (even though p2 received it),
because process p1 has crashed and no process delivers m2.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 22 / 66

Reliable Broadcast: Idea!

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 23 / 66

Reliable Broadcast: Algorithm

State:
delivered

Upon Init do:
delivered <- ∅

Upon rb-broadcast(m) do
mid <- generateUniqueID(m)
trigger beb-broadcast([mid, m])

Upon beb-deliver(pk, [mid, m]) do
if (mid /∈ delivered) then

delivered <- delivered ∪ {mid}
trigger rb-deliver(pk, m)
trigger beb-broadcast([mid, m])

Network layer

BEB

RB

Application layer

rb-broacast(m) rb-deliver(pk, m)

beb-broacast(m)
beb-deliver(pk, m)

send(pj , m) receive(pk, m)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 24 / 66

Reliable Broadcast: Correctness
RB-Validity: If a correct process pi rb-delivers a message m, then m has previously
been rb-broadcast.

By BEB-Validity.
RB-Integrity: A process rb-delivers a message m at most once.

By BEB-Integrity and handling the set of delivered messages.
RB-Termination-1: If a correct process pi broadcasts message m, then pi eventually
rb-delivers m.

By BEB-Termination and handling of the set of delivered messages.
RB-Termination-2: If a correct process pi rb-delivers a message m, then each correct
process rb-delivers m.

A�er rb-delivering m, a correct process forwards m to all processes. By
BEB-Termination and pi being correct, all correct processes will eventually beb-deliver
m and hence rb-deliver it.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 25 / 66

Reliable Broadcast: Scenario 4

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

The fact that m2 has been delivered by faulty p1 and p2 does not imply that m2 has to be
delivered by p3 as well under rb-broadcast. Yet, this situation is not desirable, because
two processes deliver something and another one does not.

⇒ Interaction with external world!

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 26 / 66

Reliable Broadcast: Scenario 4

p3

p2

p1
↓ m1

m1 ↑

m1 ↑

m1 ↑

↓ m2

m2 ↑

m2 ↑

The fact that m2 has been delivered by faulty p1 and p2 does not imply that m2 has to be
delivered by p3 as well under rb-broadcast. Yet, this situation is not desirable, because
two processes deliver something and another one does not.

⇒ Interaction with external world!

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 26 / 66

Uniform Reliable Broadcast (URB): Specification
URB-Validity: If a correct process pi urb-delivers a message m, then m was
urb-broadcast to pi by some process pj .
URB-Integrity: A process pi urb-delivers a message m at most once.
URB-Termination-1: If a correct process pi urb-broadcasts a message m, then pi

eventually urb-delivers m.
URB-Termination-2: If a process pi urb-delivers a message m, then each correct
process pj eventually urb-delivers m.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 27 / 66

An Impossibility Result
n: total number of processes
t: upper bound on the number of processes that can fail
Fail-silent system model: crash-stop + perfect point-to-point links

Theorem
There is no algorithm implementing URB under the fail-silent system model if a majority
of processes can fail, i.e. if t ≥ n/2.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 28 / 66

Proof sketch
By contradiction.

Assume there exists algorithm A that implements URB under the fail-silent model
for t ≥ n/2.
Partition Π = P1 ∪ P2 such that

P1 ∩ P2 = ∅
|P1| = dn/2e and |P2| = bn/2c (|P1| ≥ |P2|)

Consider two executions E1 and E2

Execution E1:
All pi ∈ P2 crash initially, all processes in P1 are correct.
If px ∈ P1 issues urb-broacast(m) using algorithm A, then every process in P1 must
eventually urb-deliver m (assuming A correctly implements URB)
Under fail-silent model, the decision to deliver must be independent of the status of
the processes in P2

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 29 / 66

Proof sketch (2)
Execution E2:

All pi ∈ P2 are correct, and initially all processes in P1 are well-behaving
If px ∈ P1 issues urb-broacast(m) using algorithm A, then every process in P1 must
eventually urb-deliver m (assuming A correctly implements URB)
The decision to urb-deliver m is made by the same algorithm A as before, i.e. it is
independent of the status of the processes in P2

Assume that a�er the delivery, all processes in P1 crash
If m has not reached any process in P2, yet, it cannot be urb-delivered by processes in
P2 anymore, because the perfect-link model requires sender and receiver to be correct
for reliable delivery.

Contradiction to the assumption that the algorithm implements URB

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 30 / 66

Uniform Reliable Broadcast for t < n/2: Algorithm
State:

delivered //set of message ids that have been delivered
pending // set of messages to be delivered
ack // map mid to received acknowledgments

Upon Init do:
delivered <- ∅
pending <- ∅
∀mid: ack[mid] <- ∅

Upon urb-broadcast(m) do
mid <- generateUniqueID(m)
pending <- pending ∪ {[self, mid, m]}
trigger beb-broadcast([self, mid, m])

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 31 / 66

Uniform Reliable Broadcast for t < n/2: Algorithm (2)
Upon beb-deliver(pk, [pj, mid, m]) do

ack[mid] <- ack[mid] ∪ {k}
if ((pj, mid, m) /∈ pending) then

pending <- pending ∪ (pj, mid, m)
trigger beb-broadcast([pj, mid, m])

Upon exists (pj, mid, m) ∈ pending
with |ack[mid]| > n/2 and mid /∈ delivered

delivered <- delivered ∪ mid

trigger urb-deliver(pj, m)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 32 / 66

Uniform Reliable Broadcast: Correctness (Sketch)
Assume majority of correct processes (t < n/2)
If a process urb-delivers a message, it has received acknowledgement from majority
In this majority, at least one process p must be correct
p ensures that all correct processes beb-deliver m by forwarding the message

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 33 / 66

Resilience
Defined by maximum number of faulty processes that an algorithm can handle
Algorithm for URB under fail-silent model has resilience < n/2

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 34 / 66

Problem: Message ordering

Given the asynchronous nature of distributed systems, messages may be delivered
in any order.
Some services, such as replication, need messages to be delivered in a consistent
manner, otherwise replicas may diverge.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 35 / 66

Breakout: I know what you have seen
Think about email threads between multiple persons exchanging information
How can you determine when two answers are given concurrently?
How can you reconstruct what information a person who answers in the thread has
seen?

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 36 / 66

FIFO Order

Bob

Alice
delete(photo) friend(Bob)

↑ ↑Information leak

FIFO Property
If a process p broadcasts a message m before the same process broadcasts another message m′,
then no correct process q delivers m′ unless it has previously delivered m.

broadcastp(m)→ broadcastp(m′)⇒ deliverq(m)→ deliverq(m′)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 37 / 66

Causal Order

Carol

Bob

Alice
I split with Mike :(We reunited!

Oh no!

Causality Property
If the broadcast of a message m happens-before the broadcast of some message m′, then no
correct process delivers m′ unless it has previously delivered m.

broadcastp(m)→ broadcastq(m′)⇒ deliverr(m)→ deliverr(m′)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 38 / 66

Total Order
Total Order Property
If correct processes p and q both deliver messages m, m′, then p delivers m before m′ if
and only if q delivers m before m′.

deliverp(m)→ deliverp(m′)⇒ deliverq(m)→ deliverq(m′)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 39 / 66

Message ordering: Quizzzzz

p3

p2

p1
↓ m1 m1 ↑

m1 ↑

m1 ↑↓ m2

m2 ↑

m2 ↑

m2 ↑

Is this allowed under FIFO Order, Causal Order, Total Order?

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 40 / 66

(Reliable) FIFO Broadcast (FIFO): Specification
All properties from reliable broadcast
FIFO delivery: If a process fifo-broadcasts m and later m′, then no process
fifo-delivers m′ unless it already delivered m.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 41 / 66

FIFO-Broadcast: Algorithm
State:

next // array mapping process id to seq numer
seq // sequence numbers for broadcast messages
pending // messages to be delivered

Upon Init do:
next <- [0, ..., 0]; seq <- 0; pending <- ∅

Upon fifo-broadcast(m) do
mid <- seq++ // generate next seq number
trigger rb-broadcast([mid , m])

Upon rb-deliver(pk, [mid, m]) do
if mid = next[pk] then

trigger fifo-deliver(pk, m)
next[pk]++
while exists (pk, nid, n) ∈ pending with nid = next[pk] do
trigger fifo-deliver(pk, n)
next[pk]++
pending <- pending \ {(pk, nid, n)}

else pending <- pending ∪ {(pk, mid, m)}

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 42 / 66

(Reliable) Causal Broadcast (RCO): Specification
All properties from reliable broadcast
Causal delivery: No process pi delivers a message m′ unless pi has already delivered
every message m such that m→ m′.

Idea
Each messages carries pastm, an ordered list of messages that causally precede m

When a process rb-delivers m,
it co-delivers first all causally preceding messages in pastm

it co-delivers m

avoiding duplicates using delivered

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 43 / 66

Causal Broadcast (RCO): Algorithm 1 (No-waiting)
State:

delivered //set of msg ids that have been rco-delivered
past // ordered list

Upon Init do:
delivered <- ∅
past <- []

Upon rco-broadcast(m) do
mid <- generateUniqueID(m)
trigger rb-broadcast([mid , past, m])
past <- past ++ [(self, mid, m)] // append at the end

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 44 / 66

Causal Broadcast (RCO): Algorithm 1 (No-waiting) -
Continued
Upon rb-deliver(pk, [mid, pastm, m]) do

if (mid /∈ delivered) then
for (pj, nid, n) : pastm do // from old to recent
if (nid /∈ delivered) then
trigger rco-deliver(pj, n)
delivered <- delivered ∪ {nid}
if (pj, nid, n) /∈ past then

past <- past ++ [(pj, nid, n)]
trigger rco-deliver(pk, m)
delivered <- delivered ∪ {mid}
if (pk, mid, m) /∈ past then

past <- past ++ [(pk, mid, m)]

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 45 / 66

Causal Broadcast: Scenario 1

p3

p2

p1
m1 ↑

m1 ↑

m1 ↑ m2 ↑

m2 ↑

m2 ↑

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 46 / 66

Causal Broadcast - Algorithm 1: Correctness

Validity follows directly from rb-broadcast
Integrity follows from rb-broadcast and the check before rco-delivering messages
from past_m

Termination follows directly from rb-broadcast and the fact that no waiting occurs
Every message is rco-delivered once rb-delivered

Causal delivery
Each message m carries its causal past
Causal past is in order delivered before m

Proof by induction on trace prefix
Initial state
For every delivery

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 47 / 66

Remarks
Message from causal past of m are delivered before message m (causal delivery)
Message id’s could be reused for rb-broadcast
Size of messages grows linearly with every message that is broadcast since it
includes the complete causal past

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 48 / 66

Idea: Garbage collect the causal past

If we know when a process fails (i.e., under the fail-stop model), we can remove
messages from the causal past.
When a process rb-delivers a message m, it rb-broadcasts an acknowledgement
message to all other processes.
When an acknowledgement for message m has been rb-delivered by all correct
processes, m is removed from past

N2 additional ack messages for each application message
Typically, acknowledgements are grouped and processed in batch mode

⇒ Requires still unbounded messages sizes

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 49 / 66

E�icient representation of causal past: Vector clocks
A vector clock [6] is a mapping from processes to natural numbers pi 7→ N.

Example: [p1 7→ 3, p2 7→ 4, p3 7→ 1]
If processes are numbered 1, . . . , n, this mapping can be represented as a vector, e.g.,
[3, 4, 1]
Intuitively: p1 7→ 3 means “observed 3 events (here: messages broadcast) from process
p1”

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 50 / 66

Vector time
Each process pi stores current causal past as a vector clock V C.

Initially, V C[k] := 0 for all k

On each local event, process pi increments its own entry as follows:
V C[i] := V C[i] + 1
On sending a message m, pi attaches V C to m and increments V C for itself
a�erwards
On receiving message m with vector time V Cm, the messages are processed in
causal order, potentially waiting for missing updates, and increment the local vector
accordingly

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 51 / 66

Relating vector times

Let u, v denote time vectors.

u ≤ v i� u[k] ≤ uv[k] for k = 1, . . . , n

u < v i� u ≤ v and u 6= v

u ‖ v i� u 6≤ v and v 6≤ u

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 52 / 66

Causal Broadcast (RCO): Algorithm 2 [8]
State:

pending //set of messages that cannot be delivered yet
VC // vector clock

Upon Init do:
pending <- ∅
forall pi ∈ Π do: VC[pi] <- 0

Upon rco-broadcast(m) do
trigger rco-deliver(self, m)
trigger rb-broadcast(VC, m)
VC[self] <- VC[self] + 1

Upon rb-deliver(pk, VCm, m) do
if (pk 6= self) then

pending <- pending ∪ {(pk, VCm, m)}
while exists (q, VCmq, mq) ∈ pending with VC ≥ VCmq do

pending <- pending \ {(q, VCmq, mq)}
trigger rco-Deliver(q, mq)
VC[q] <- VC[q] + 1

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 53 / 66

Limitations of Causal Broadcast
Example: Replicated database handling bank accounts

Initially, account A holds 1000 Euro.
User deposits 150 Euro, triggers broadcast of message
m1 = 'add 150 Euro to A'

Concurrently, bank initiates broadcast of message
m2 = 'add 2% interest to A'

Diverging state because processes can observe messages in di�erent order

Bob

Alice
add(150)

interest(0.02)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 54 / 66

Total-order broadcast (aka Atomic Broadcast)
All processes deliver their messages in the same order
Typical use case: for Replicated State Machines (RSM) to implement

Figure: [7]

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 55 / 66

The FLP Theorem [2]
There is no deterministic protocol that solves consensus in an asynchronous system in
which a single process may fail by crashing.

2001 Dijkstra prize for the most influential paper in distributed computing
Proof Strategy

Assume that there is a (deterministic) protocol to solve the problem
Reason about the properties of any such protocol
Derive a contradiction⇒ Done :)

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 56 / 66

Core Ideas
Replicated log⇒ State-machine replication

Each server stores a log containing a sequence of state-machine commands.
All servers execute the same commands in the same order.
Once one of the state machines finishes execution, the result is returned to the client.

Consensus module ensures correct log replication
Receives commands from clients and adds them to the log
Communicates with consensus modules on other servers such that every log
eventually contains same commands in same order

Failure model: Nodes may crash, recover and rejoin, delayed/lost messages

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 57 / 66

Classification
Leader-less (symmetric)

All servers are operating equally
Clients can contact any server

Leader-based (asymmetric)
One server (called leader) is in charge
Other server follow the leader’s decisions
Clients interact with the leader, i.e. all requests are forwarded to the leader
If leader crashes, a new leader needs to be (s)elected
Quorum for choosing leader in next epoch (i.e. until the leader is suspected to have
crashed)
Then, overlapping quorum decides on proposed value⇒ Only accepted if no node has
knowledge about higher epoch number

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 58 / 66

Classic approaches I
Paxos[4]

The original consensus algorithm for reaching agreement on a single value
Leader-based
Two-phase process: Promise and Commit

Clients have to wait 2 RTTs
Majority agreement: The system works as long as a majority of nodes are up
Monotonically increasing version numbers
Guarantees safety, but not liveness

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 59 / 66

Classic approaches II
Multi-Paxos

Extends Paxos for a stream of agreement problems (i.e. total-order broadcast)
The promise (Phase 1) is not specific to the request and can be done before the request
arrives and can be reused
Client only has to wait 1 RTT

View-stamped replication (revisited)[5]
Variant of SMR + Multi-Paxos
Round-robin leader election
Dynamic membership

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 60 / 66

The Problem with Paxos
[. . .] I got tired of everyone saying how di�icult it was to understand the Paxos
algorithm.[. . .] The current version is 13 pages long, and contains no formula more
complicated than n1 > n2. [3]

Still significant gaps between the description of the Paxos algorithm and the needs or a
real-world system

Disk failure and corruption
Limited storage capacity
E�ective handling of read-only requests
Dynamic membership and reconfiguration

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 61 / 66

In Search of an Understandable Consensus Algorithm:
Ra�[7]

Yet another variant of SMR with Multi-Paxos
Became very popular because of its understandable description

In a nutshell
Strong leadership with all other nodes being passive
Dynamic membership and log compaction

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 62 / 66

Summary
Di�erent variants of solution to the Broadcast Problem

Best-e�ort broadcast: Reliable only if sender is correct
Reliable broadcast: Reliable independent of whether sender is correct
Uniform reliable broadcast: Considers also behavior of failed nodes
FIFO broadcast: Reliable broadcast with FIFO delivery order
Causal broadcast: Reliable broadcast with causal delivery order
Total-order broadcast: Reliable and same order of delivery at all nodes

Correctness proofs based on properties of underlying level + algorithmic properties

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 63 / 66

Further reading I

[1] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.) Springer, 2011. ISBN: 978-3-642-15259-7. DOI:
10.1007/978-3-642-15260-3. URL: https://doi.org/10.1007/978-3-642-15260-3.

[2] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. “Impossibility of Distributed
Consensus with One Faulty Process”. In: J. ACM 32.2 (1985), pp. 374–382. DOI:
10.1145/3149.214121. URL: http://doi.acm.org/10.1145/3149.214121.

[3] Leslie Lamport. “Paxos Made Simple”. In: SIGACT News 32.4 (Dec. 2001), pp. 51–58.
ISSN: 0163-5700. DOI: 10.1145/568425.568433. URL:
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 64 / 66

https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121
https://doi.org/10.1145/568425.568433
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf

Further reading II
[4] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst. 16.2 (1998),

pp. 133–169. DOI: 10.1145/279227.279229. URL:
http://doi.acm.org/10.1145/279227.279229.

[5] Barbara Liskov and James Cowling. Viewstamped Replication Revisited (Technical
Report). MIT-CSAIL-TR-2012-021. MIT, July 2012.

[6] Friedemann Mattern. “Virtual Time and Global States of Distributed Systems”. In:
Parallel and Distributed Algorithms. North-Holland, 1988, pp. 215–226.

[7] Diego Ongaro and John K. Ousterhout. “In Search of an Understandable Consensus
Algorithm”. In: 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014. Ed. by Garth Gibson and Nickolai Zeldovich.
USENIX Association, 2014, pp. 305–319. URL: https://www.usenix.org/conference/at
c14/technical-sessions/presentation/ongaro.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 65 / 66

https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

Further reading III
[8] Michel Raynal, André Schiper, and Sam Toueg. “The Causal Ordering Abstraction and

a Simple Way to Implement it”. In: Inf. Process. Lett. 39.6 (1991), pp. 343–350. DOI:
10.1016/0020-0190(91)90008-6. URL: https://doi.org/10.1016/0020-0190(91)90008-6.

[9] Peter Zeller, Annette Bieniusa, and Carla Ferreira. “Teaching practical realistic
verification of distributed algorithms in Erlang with TLA+”. In: Proceedings of the
19th ACM SIGPLAN International Workshop on Erlang, Erlang@ICFP 2020, Virtual
Event, USA, August 23, 2020. Ed. by Annette Bieniusa and Viktória Fördós. ACM, 2020,
pp. 14–23. DOI: 10.1145/3406085.3409009. URL:
https://doi.org/10.1145/3406085.3409009.

Annette Bieniusa Fault-tolerance in Message-Passing Distributed Systems 66 / 66

https://doi.org/10.1016/0020-0190(91)90008-6
https://doi.org/10.1016/0020-0190(91)90008-6
https://doi.org/10.1145/3406085.3409009
https://doi.org/10.1145/3406085.3409009

