\ DARE’23 — First Summer School on Distributed and Replicated Environments
STV’23 — Second Summer School on Security Testing and Verification

Testing Distributed System Implementations

Burcu Kulahcioglu Ozkan

b.ozkan@tudelft.nl

5
TUDelft https://burcuku.github.io/home/

VUB, Brussels, 11 September 2023,

https://burcuku.github.io/home/

Ubiquitous concurrency and distribution

e

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

How familiar are you to concurrency?
= What kind of concurrent programs have you worked with?

= Have you encountered any heisenbugs?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

i

o
5

Many bugs in distributed systems ...

Solr / SOLR-1144
Cassandra / CASSANDRA-9794 "’{)‘

Linearizable consistency for lightweight transactions is not achieved = replication hang

F

Kafka / KAFKA-382 R ActiveMQ / AMQ-6911
Write ordering guarantee violated K88 Constraint violation on failover (Postgresql)
Pl ActiveMQ / AMQ-2780 Core Server / SERVER-37948

9 ActiveMQ not preserving Messa ge Order Linearizable read concern is not satisfied by getMores on a

cursor

HBase / HBASE-2849

Core Sorver | SERVER.38084 ease HBase clients cannot recover

MongoDB hangs when a part of a replica set

"8 ZooKeeper / ZOOKEEPER-4003

K8 Zookeeper server breakdown Frequently

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:
= |dentify concurrency bugs in distributed systems

= Explain controlled concurrency testing for distributed systems
= Systematic testing
= Naive random testing
= Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

What is a distributed system?

= The processes/nodes in the system:
= Are connected over network
= Communicate by asynchronous messages

= Processes operate on their local memory and
communicate by exchanging messages:

= A process performs some local computation
= A process sends a message

= A process receives a message

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

What can go wrong?

= Many components, many sources of nondeterminism

P1 P1 1]

P2 P2 \

o3 A-\.- b3 \-]
P1 1]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

An example execution

2} 2 2 R A
Handler Logger Terminator
Request
- Log
ITerminate ‘
Flush
I Flushed

A simplified version of a bug found in a performance testing tool Gatling [2018]
(modified example from ASE’13, OOPSLA’18)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Model of distributed systems
A AR AA

= Nodes:the set of nodes/processes - B -
Handler Logger Terminator
" Msgs: the set of all messages Request L
cqnes og
= Fvents: (recv,send, msg) |Terminate
For simplicity, assume unique messages Flush
and events as message delivery Events: (msg) | Fushed
= A state of the system is a map: c: Nodes — 27,
from nodes to sets of enabled events ® ...
e2
el / 52
= Atransition: e = (msg) € s(node) ¢ ¢
sO sl 3@ ...

= The new state s’ is obtained by removing e from s(node)
node:e s3

and adding e; to s(node;) for each i: s —— s’

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Model of distributed systems
A AR AA

= An execution is a sequence: ;:dler Lo"gfer T::;mator
nodeg:ep nodej:eq nodey:en Re
0 1 quest
So > S1 > T Sn+1 S Log
I Terminate
= The sequence (nodey: ey), ...{nodey: ey) lush
is called a schedule I Flushed
An example schedule:

[(Handler: ey = (Request)),
(Logger: e, = (Log)),
(Terminator: e, = (Terminate)),
(Logger: e5 = (Logger, Terminator, Flush)),
(Terminator: e, = (Terminator, Logger, F lushed))]

System behavior depends

Simply: [Request, Log, Terminate, Flush, Flushed] on the schedule

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Revisit the example execution

2 R 2 R 2
Handler Logger Terminator

Request
— Log

log(*p)

Terminate
Flush
DT Flushed

s it possible to hit NPE?
What is the buggy schedule?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

i

o
5

Revisit the example execution — Order violation

2 R 2 R 2
Handler Logger Terminator
Request
\ Terminate
Flush '
=L Flushed
Log —

log (*p '®

Correct: Request, Log, Terminate, Flush, Flushed
Buggy: Request, Terminate, Flush, Flushed, Log

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Concurrency and fault-tolerance bugs

\ 4

\ 4
\ 4 \ 4
v
A

\ 4

<
<
N

&“ v

oK

~® K X

L 2 4 \ 4

\ 4

4

5

Message order violation Atomicity violation Process crash/recovery

A Taxonomy of Non-Deterministic Concurrency Bugs [Leesatapornwongsa et. Al., ASPLOS 16]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Concurrency bugs in large-scale systems are difficult to detect

Subtle execution scenarios with interleavings of many events, node crashes, network partitions

MAFREDU el — —
Race condition in MR App Master P ion cai . — o [Cassandra)/ CASSANDRA-6023
ZooKeeper / ZOOKEEPER-2832 e g .
. Data Inconsistency occurs if follower has uncommitted tr CAS should distinguish promised and accepted ballots
e the leader that has the lower last processed zxid
e TAAL enct sppears o hav b pred
Freoes v Details
~ Detail

Activity S = Type: D Bug Status:
e v A Tpe Bug status: e R) on: !

S e Priority: 2 Major Resolution: Unresolved Priority: < Normal Resolution: Fixed
—on AT T TR) attectsversions: 349 Fix Version/s 3410 Component]s: Feature/Lightweight Transactions Fix Version/s: 2,01
T epa—— R, A iabaiss LWT
O Robest Joseph Evans added a comment - 26/0cT 2145 Labels: None Severity: Normal

Since Version: 2.0.0

v Description
Synchronization code may fail to truncate an uncommitted transaction in the follower’s transaction log. Here is a scenari ’v
Initial condition: Description

Start the ensemble with three nodes A, B and C with C being the leader Currently, we only keep 1) the most recent promise we've made and 2) the last update we've accepted. But we don't keep the ballot at which
The current epoch is 1 .) ‘ o that last update was accepted. And because a node always promise to newer ballot, this means an already committed update can be replayed
For simplicity of the example, let's say zxid is a two digit number, with epoch being the first digit 2 pae e ,

P~ e e . . even after another update has been committed. Re-committing a value is fine, but only as long as we've not start a new round yet.
50 even though attempn_1318242394842_0065_r_DOOC0S_O was kiled, s container when 1t Create two znodes ‘key0’ and ‘key1’ whose value is ‘0’ and ‘1) respectively
VM R o 115242384842, :::;:“:;Z;;;s';" creating key0 and 12 for creating key1. (For simplicity of the example, the zxid gets increased only f} - oo oretely, we can have the following case (with 3 nodes A, B and C) with the current implementation:
») Robert Josenh Evans added 3 comment - 27105411 13:24 You e corect, | got conuseanl Al the nodes have seen the change 12 and have persistently logged it

» © sharad Agarwal added 3 comiment - 270011 07.58

A proposer P1 prepare and propose a value X at ballot t1. It is accepted by all nodes.

. - Shut down all
18 OFEN1 AP PV 20005 Coman = TSI 1628 Y08 1 v Wikg e rad « A proposer P2 propose at t2 (wanting to commit a new value Y). If say A and B receive the commit of P1 before the propose of P2 but C
v | 4 . Step1 : : .
> € Vinca Kumar Vaviapal added a comment - 27/0c/T1 1458 But cn the N they were proc)) i I r we' r I s
Start Node A and B. Epoch becomes 2. Then, a request, setData(key0, 1000), with zxid 21 is issued. The leader B writes receives those in the reverse order, we'll current have the fol Iowmg states
& © Robet Josaph Evers added » comment - Z7/004M 1 shutdown before writing it to the log. Then, the leader B is also shut down. The change 21 is applied only to B but not to
Of Course. A: in-progress = (t2, _), mrc = (tl, X)
From the AM Logs Step 2 B: in-progress = (t2, _), mrc = (tl, X)
Start Node A and C. Epoch becomes 3. Node A has the higher zxid than Node C (i.e. 20 > 12). So, Node A becomes the l¢ C: in-progress = (t2, X), mrc = (tl, X)
is 12 for both Node A and C. So, they are in sync already. Node A sends an empty DIFF to Node C. Node C takes a snapsh
Then, A and C are shut down. Now, C has the higher zxid than Node B. ¥ = pico 3 2 x 2 "
9 Because C has received the t1 commit after promising t2, it won't have removed X during t1 commit (but note that the problem is not N

Step 3 during commit, that example still stand if C never receive any commit message).

Start Node B and C. Epoch becomes 4. Node C has the higher zxid than Node B (i.e. 30 > 21). So, Node C becomes the | N b d h P f A and B, P2 will v 2 (C don" hi % icul bef h & 3 bel
2 ey different last processed zxid (i.e. 21 vs 12), and the LinkedList object ‘proposals’ is empty. Thus, Node C sends SNAP to ow, based on the promise o ar ¥ will propose Y at t2 on't see this propose in particular, not before he promise on t glow

£ TATMGR CLIAGUP -» FAILED TAGK CLENKUD snapshot and creates snapshot.12 as the zxid 12 is the last processed zxid of the leader C. (Note the newly created snap| at least). A and B accepts, P2 will send a commit for Y.
=40 i pa.cuaaaup o> Pt N ol b
e Z:‘d ‘“e“:‘e ;";’:‘99 21;" the '°‘-|4)- Then, the ’:quzs‘:r:e‘oa;‘kzyg 1°°1r’1r W"j"‘ 2zxid 411s issued. Both B and C apply the In the meantime a proposer P3 submit a prepare at t3 (for some other irrelevant value) which reaches C before it receives P2
that now B an ave the same last processed zxi en, an are shut down. " . . o
B) : propose&commit. That prepare reaches A and B too, but after the P2 commit. At that point the state will be:

Step 4
Start Node B and C. Epoch becomes 5. Node B and C use their local log and snapshot files to restore their in-memory da A: in-progress = (t3, _), mrc = (t2, Y)
3 5 value of key0, because it's latest valid snapshot is snapshot.12 and there was a later transaction with zxid 21 in its log. Ye B: in-progress = (t3, _), mrc = (t2, Y)
g o m ey ol PRI g oy o e . key0, because the change 21 was never written on C. Node C is the leader. Node B and C have the same last processed C: in-progress = (t3, X), mrc = (t2, Y)
A Logs for cont_1_11 (Serusbed a bk}

considered to be in sync already, and Node C sends an empty DIFF to Node B. So, the synchronization completes with th
data tree on B and C.

In particular, C still has X as update because each time it got a commit, it has promised to a more recent ballot and thus skipped the

= - Problem delete. The value is still X because it has received the P2 propose after having promised t3 and has thus refused it.

= The value of keyO on B is 1000, while the value of the key0 on Node C is 0. The LearnerHandler.run on C at Step 3, never : : e

- the change 21 was never truncated on B. Also, at step 4, since B uses the snapshot of the lower zxid to restore its in-mel « P3 gets back the promise of say C and A. Both response has t3 as in-progress ballot (and it is more recent than any mrc) but C comes
could get into the data tree. Then, the leader C at the step 4 did not send SNAP, because the change 41 made to both B with value X. So P3 will replay X. Assuming no more contention this replay will succeed and X will be committed at t3.

At the end of that example, we've comitted X, Y and then X again, even though only P1 has ever proposed X.

B K | h . | O k | believe the correct fix is to keep the ballot of when an update is accepted (instead of using the most recent promised ballot). That way, in the
urcu Kulanclogiu UZKan,§ - example above, P3 would receive from C a promise on t3, but would know that X was accepted at t1. And so P3 would be able to ignore X since
the mrc of A will tell him it's an obsolete value.

Large-scale distributed system bugs in the wild

@ Hadoop HDFS / HDFS-4404
Create file failure when the machine of first atter

"',) Solr / SOLR-1144

@ Cassandra / CASSANDRA-9794 ‘ 4 rep"cation hang
Linearizable consistency for lightweight transactions is not achieved e Qo s -
Kafka / KAFKA-382 R ActiveMQ / AMQ-6911
Write ordering guarantee violated K Constraint violation on failover (Postgresql)
=l ActiveMQ / AMQ-2780 Core Server / SERVER-37948

Linearizable read concern is not satisfied by getMores on a

ActiveMQ not preserving Message Order cursor

HBase / HBASE-2849 Your bug report here ©

Core Sorver | SERVER.38084 emse HBase clients cannot recover

MongoDB hangs when a part of a replica set
P 'l ZooKeeper / ZOOKEEPER-4003

K8 Zookeeper server breakdown Frequently

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

It is hard to implement distributed systems correctly

The developers needs to reason about:

= Concurrency A @7 i A bk
= Asynchrony @/ # P
_ B 2
= Network failures \ P
= Partial (node) failures A 2 _é_ E
8 a2 86
a7

Testing is practical method for discovering bugs

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

= Explain controlled concurrency testing for distributed systems
= Systematic testing
= Naive random testing
= Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenges for testing distributed systems

(CO) Test oracle > We assume it is provided

= What is the correctness specification? (e.g. unexpected exceptions, assertion violations,
serializability of transactions, agreement of replicas)

(C1) Test harness discovery - We randomly generate a few transactions
= What are the requests/transactions to submit? (small-scope hypothesis)

(C2) Enumerating executions - How to explore possible executions efficiently?
= What interleavings of events to exercise? Combinatorial complexity!

(C3) Improving interpretability - How to produce understandable traces?

= |sthe buggy trace easy to understand?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Combinatorial complexity of possible interleavings

Concurrency Network faults Process/Node faults

N
N\

P1 P1

P2 \-\‘- P2 \- \ P2 S
\
P3 P3 N \ O "

P3

(C2) Enumerating executions - How to explore possible executions efficiently?
= What interleavings of events to exercise? Combinatorial complexity!

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

What executions to test?

= Random fault-injection testing
= Jepsen: Effective at finding fault-tolerance bugs
= Theoretical explanation of the effectiveness [Majumdar & Niksic, POPL'18]

Example:

2 @ @ o @ 2 2 @ 2 o @ 2 2 B2

N I e L I g% 8 g\@@&/ &\@.@
@ Q/E% , B S = EW B 82 g% Re g -
$ $,/, $ A . [© a

& @,\\’ % @\ A
; @ E% # #
Run cluster Partition the network Recover the network Partition the network Recover the network

+ Check properties

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenge: Mutual dependency between the schedule and system events

Upgrowing Poset:

Handler Logger Terminator
Request Request
— log l\‘
I , Log Terminate
Terminate
Flush Flush
I Flushed \
Flushed

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Controlled concurrency + fault injection testing

= Control the non-determinism in the delivery order of messages and faults
= Reproduce a buggy execution for easier debugging

= Design testing strategies to explore different program executions
= Delayed, reordered, lost messages

= Process isolation, process crashes What orderings of messages to schedule?

What faults to inject?
When to inject faults?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

= Systematic testing
= Naive random testing
= Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Enumerating executions: What interleavings of events to exercise?

= Systematic testing
= Explore the state space systematically
= Run time scheduler to exercise all possible sequences of events
= Suffers from state space explosion problem

o
‘/v ® o o o 0 00 oo ‘\
e o e o 0 s 8 o ‘\ /
\‘o/—v> ® ®

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Systematic Testing
Combining Model Checking and Testing

state space exploration

v

Modeling languages Model checking

A

abstraction adaptation

v

Programming languages state space exploration Systematic testing

»

(applicable to real-word size software)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Systematic Testing

= Partial order reduction (POR) to reduce the execution space
= Exploits the commutativity of concurrent transitions
= Based on the dependency relation between system transitions
= Dependence relation: (e, e;) € D iff:
* They’re causally dependent
* recv(ey) = recv(e,)

= Dynamic POR (DPOR) dynamically tracks interactions between transactions [Flanagan & Godefroid, POPL'0O5]

y \tzA /v‘/v ° e o o .O
51‘ g 52 e —e e o ° o‘\ /,
b./t]‘f \O—>‘ e o e o o o‘

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Partial Order Reduction in Distributed Systems

= Classical DPOR (e.g., MODIST [Yang et.al, NSDI'09])
= Black box, exploits general properties of distributed systems

= Semantic-aware DPOR (e.g., SAMC [Leesatapornwongsa et. al., OSDI"14], FlyMC [Lukman et. al., EuroSys’19]):
= White-box, exploits system specific semantic information

%{f Py

D partitions the state space
into equivalence classes w.rt =,

Equivalence w.r.t white box = yp

Black-box systematic testing is not scalable to large systems

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

= Naive random testing
= Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Naive random testing

= Select the next event uniformly at random (random walk)

Handler

Request
—_—

Buggy if:
Flush

executes
before Log!

Log

—_—

Terminate

U

Logger Terminator

Flush
e

Flushed

A 4

What is the probability of naive random testing to detect the bug?

Upgrowing Poset:

Request

T

Log Terminate

l

Flush

l

Flushed

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

i

O
O
@)

3
)

i

o
5

Naive random testing

= What is the probability of naive random testing to detect the bug?
Node 1 Node 2
‘ msg A %
msg 1

D msg 2
D msg 3

) msg n

msg B

i

Buggy if: ... msgB .. msg A

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:
= |dentify concurrency bugs in distributed systems

= Explain controlled concurrency testing for distributed systems
m Systematic testing

= Probabilistic Concurrency Testing (PCT)

PCT for distributed systems is called “PCT with Chain Partitioning (PCTCP)”.
The lecture refers to the algorithm as “PCT”, as they are similar in essense.

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Probabilistic Concurrency Testing (PCT)

Can we provide a good probabilistic guarantee for detecting a bug?
= Observation: The example bug occurs in a single ordering requirement

Key idea: Characterization

Node 1 Node 2
Handler Logger Terminator ‘ of concurrency bugs
A
Request msg :“
msg 1
Log —o
D msg 2
. Terminate
Buggy if: > Buggy if: D msg 3
Flush executes msg B
before Lo Flush
© & D executes before
A msg n
Flushed Mg D msg B
B .

i

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Bug depth: Number of minimum ordering requirements between events

= (eq, e5) e.g. order violation

e - 0
= (eq, €, e3) e.g. atomicity violation

-0 - 0

" (eq, ..., e,) more complicated bugs
A

B ~—T -\I\ \ “-
: X /Wg\fﬁ/\é\;négé\\)\ i Nl

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS'16)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Strong hitting an event tuple

= A schedule a strongly hits {eg, ..., eq—1) if for alle € P:

e =, e; implies e is causally dependent on e; for some j = i

@ ®

al = a,b,c,d,f,e, g } \
strongly hits 1-tuple (g) , 2-tuple {e, g) (d) @
a2 = a,b,c,d,f,g,e /\

strongly hits 1-tuple (e), 2-tuple (g, e), 3-tuple {(d, g, e)
For each d-tuple, a strong d-hitting family has a schedule which strongly hits it.

Challenge: How to sample
Strong d- uniformly from this set?
hitting family

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Details ©
Challenge: How to sample uniformly at random

from strong d-hitting family for distributed systems?

= Events form an upgrowing poset, revealed during execution

= Mutual dependency to the schedule

@ @ - Build a schedule online
1 \ - For an arbitrary ordering

(@ @
/\

Use combinatorial results for posets!

Schedule: adeb fcg

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Details ©

Realizer and dimension of a poset

Realizer of P is a set of linear orders: @ @ @
/

FR - {LIJLZI""LTI} l \
suchthat: L;NL, ... NL, =P @ @
/ \
Dimension of P is the minimum size of a realizer @ @

Li=adebfcyg
Realizer of size dim (P) L,=cadebgf

- Covers all pairwise orderings! Lo=cbgfade

dim (P) = 3

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Adaptive chain covering ~ Online dimension algorithm

Decompose P into chains C? @\ 9 Compute linear extensions of P
0 6
c3 © O®

L2 =cadebgf

@ @ @ L3 =adebfcg
l

This is a strong 1-hitting family!

Adaptive chain covering ~ Strong 1-hitting family ~ Online dimension algorithm
[Felsner’97, Kloch’07]

C1 C2
@ @ @ L1 =cbgadfe
l |~

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Details ©

Details ©

Strong d-hitting family ~ Adaptive chain covering

[Felsner, Kloch] Strong 1-hitting family ~ Adaptive chain covering
hit(w) = adapt(w)

[Our main result] Strong d-hitting family ~ Adaptive chain covering

hit;(w,n) < adapt(w) (dﬁl)(d —1)! n: number of events
d: bug depth
Index the s.,chedules.in the (/1, ny, Ny, ..., nd—l) strongly hits e, € Chain(1)
strong d-hitting family by: / \ | and e,y ..., 641
|
Sample from this set of chain id steps in which eq, ey, ..., e4_1
were added

schedules!

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

PCT(CP) - The Algorithm

Generates randomly a schedule index (4, nq,n,, ..., Ng_1):

= Randomly generate a (d — 1)-tuple: (n{,n,, ..., N4_1)
strongly hits e, € Chain(A4)

= Partition P into chains online and e. e e
1,€2) ===, Cd-1

= Assign random distinct initial priorities > d

= Reduce priority at: {(e4, €5, ...,e4q_1) to (d —i — 1) for e;

0 0, O ° °
® o ° ® . ° °
° ° ° ° 0 o
’ “e e 0. o
Cl?l Ql @ C=41 Cia G, C1

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Probabilistic Concurrency Testing (PCT) — Example 1

Handler Logger Terminator Upgrowing Poset:

Request

g Request
Log /\
—_—

: Terminate Log Terminate
Buggy if: > l
Flush executes Flush o
before Log ousn Flus

Flushed Flushed
—_—

Online chain partitioning:
The program is decomposed into

C1 = [Request,Log]
causally dependent chains of events: 9 — [Terminate, Flush, Flushed]

priority(C1l) > priority (C2)

Schedule = [Request, Log, Terminate, Flush, Flushed]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Probabilistic Concurrency Testing (PCT) — Example 1

Handler Logger Terminator Upgrowing Poset:
Request
EE— Request
, %minate Log Terminate
Buggy if: > l
Flush executes ush lush
before Log L Flus
L
°e Flushed Flushed
—_—
O‘ Online chain partitioning:
The program is decomposed into C1 = [Request, Log]
causally dependent chains of events: €2 = [Terminate, Flush, Flushed]
: riority(C2) > priority (C1
Naive random: 1/4 PCT:1/2 P y(€2) > p y (1)

Schedule = [Request, Terminate, Flush, Flushed, Log]|

K

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Probabilistic Concurrency Testing (PCT) — Example 2 208

= What is the probability of PCT to detect the bug?

Node 1 Node 2 Online chain partitioning
{ msg A :“
msa 1 Chainl =msg A
) msg 2 Chain2=msg1l - msg2 — ... > msgn —> msgB
D msg 3 PCT assigns random priorities to chains:
priority(Chainl) > priority(Chain2)

) msg n msg B msg A msgl msg2 ... msgn msgB v

:! priority(Chain2) > priority(Chain1)

Buggy if: ... msg B ... msg A msg1l msg2 ... msgn msgB msgA X

Naive random: 1/2"*1 PCT:1/2

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

PCT: Random testing with nontrivial probabilistic guarantees

PCT result for multithreaded programs (linear orders) [Burckhardt et. al., ASPLOS'2010]

PCT(CP): Generalizes the guarantees to distributed systems (posets) [K.O. et. al, OOPSLA’18]
“Randomized testing of distributed systems with probabilistic guarantees” Covered in this lecture

1
adapt(w)nd-1

PCTCP hits a bug with a prob. adapt(w): online width

k: number of threads

Generalizes the PCT result - d-1

Trace-aware PCT (taPCT): Partial order reduction + PCT [K.O. et. al, OOPSLA’19]

PCT for Weak Memory (PCTWM): Extends the results for SC to weak memory [Gao et. al, ASPLOS’ 23]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenges for testing distributed systems

(CO) Test oracle - We assume it is provided

= What is the correctness specification? (e.g. exceptions, assertion violations, serializability of
transactions, agreement of replicas)

(C1) Test harness discovery - We randomly generate a few transactions
= What are the requests/transactions to submit? (small-scope hypothesis)

(C2) Enumerating executions - How to explore possible executions efficiently?
= What interleavings of events to exercise? Combinatorial complexity!

(C3) Improving interpretability - How to produce understandable traces?

= |sthe buggy trace easy to understand?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Ssummary:

Concurrency and fault-tolerance bugs What executions to test? Controlled concurrency + fault injection testing
A B c A B c A B c A B A 8 = Random fault-injection testing = Control the non-determinism in the delivery order of messages and faults
= Jepsen: Effective at finding fault-tolerance bugs = Design testing strategies to explore different program executions
)E = Theoretical explanation of the effectiveness [Majumdar & Niksic, POPL'18] * Delayed, reordered, lost messages
<J)‘ E | = Process isolation, process crashes
—V] xample: i - _
D (: * Reproduce a buggy execution for easier debugging What orderings of messages to schedule?
s @ 2 2 [2 R 2 [@ s 2 2 8@ What faults to inject?
—a A v —_ @ ~_ @ —_ @ - e When to inject faults?
a - & / a / 8 / =

A B C A B A B ':/_Y P E-ve g %§a 2 m %Ga 2wt 2w o [@ B Lé

A B C a B B — T, R " W TR a8 = 2] iﬁ ~

5N / i / A~ — i < o8 \
. C SN sl '/ ™~ va Perti NN 4 ~_9% &) = -2 o
i) ° z’ x "N s]] L] o — N & - <L
I S J . = 7
b ® N i " E Y .
Run cluster Partition the network Recover the network Partition the network Recover the network \2 | // ‘?é & S
) \ 7= \\, &
Message order violation Atomicity violation Process crash/recovery + Check properties e [i - N [i) \&

In this lecture, we covered:

= Concurrency and fault-tolerance bugs in distributed systems

= Controlled concurrency testing for detecting such bugs:

a8
= Systematic testing Q

09
) . N
= Naive random testing
= Probabilistic Concurrency Testing (PCT)

Questions?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

