
Testing Distributed System Implementations

b.ozkan@tudelft.nl
https://burcuku.github.io/home/

Burcu Kulahcioglu Ozkan

DARE’23 – First Summer School on Distributed and Replicated Environments
STV’23 – Second Summer School on Security Testing and Verification

VUB, Brussels, 11 September 2023,

https://burcuku.github.io/home/

Ubiquitous concurrency and distribution

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

How familiar are you to concurrency?

§ What kind of concurrent programs have you worked with?

§ Have you encountered any heisenbugs?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Many bugs in distributed systems …

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

§ Identify concurrency bugs in distributed systems

§ Explain controlled concurrency testing for distributed systems
§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

What is a distributed system?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

§ The processes/nodes in the system:
§ Are connected over network
§ Communicate by asynchronous messages

§ Processes operate on their local memory and
communicate by exchanging messages:
§ A process performs some local computation
§ A process sends a message
§ A process receives a message

What can go wrong?

§ Many components, many sources of nondeterminism

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

An example execution

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Handler Logger Terminator

Request
Log

Terminate

Flush

Flushed

A simplified version of a bug found in a performance testing tool Gatling [2018]
(modified example from ASE’13, OOPSLA’18)

Model of distributed systems

§ 𝑁𝑜𝑑𝑒𝑠:the set of nodes/processes

§ 𝑀𝑠𝑔𝑠: the set of all messages

§ 𝐸𝑣𝑒𝑛𝑡𝑠: 𝑟𝑒𝑐𝑣, 𝑠𝑒𝑛𝑑,𝑚𝑠𝑔
For simplicity, assume unique messages

 and events as message delivery 𝐸𝑣𝑒𝑛𝑡𝑠: 𝑚𝑠𝑔

§ A state of the system is a map: c: 𝑁𝑜𝑑𝑒𝑠 → 2!,

 from nodes to sets of enabled events

§ A transition: e = 𝑚𝑠𝑔 ∈ 𝑠(𝑛𝑜𝑑𝑒)
§ The new state s′ is obtained by removing e from 𝑠(𝑛𝑜𝑑𝑒)

and adding e" to 𝑠(𝑛𝑜𝑑𝑒#) for each 𝑖: 𝑠
$%&':'

𝑠′

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

......

...... s0 s1

s2

s3

e1
e2

e3

Model of distributed systems

§ An execution is a sequence:

𝑠)
$%&'!:'! 𝑠*

$%&'":'" . . .
$%&'#:'# 𝑠$+*

§ The sequence 𝑛𝑜𝑑𝑒): 𝑒) , . . . 𝑛𝑜𝑑𝑒): 𝑒)
is called a schedule

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

An example schedule:
[𝐻𝑎𝑛𝑑𝑙𝑒𝑟: 𝑒$ = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ,

𝐿𝑜𝑔𝑔𝑒𝑟: 𝑒% = 𝐿𝑜𝑔 ,
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟: 𝑒& = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ,

𝐿𝑜𝑔𝑔𝑒𝑟: 𝑒' = 𝐿𝑜𝑔𝑔𝑒𝑟, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟, 𝐹𝑙𝑢𝑠ℎ ,
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟: 𝑒(= 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟, 𝐿𝑜𝑔𝑔𝑒𝑟, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑]

Simply: [𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠h, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑]
System behavior depends

on the schedule

Revisit the example execution

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

. . .
log(*p)
. . .

p=null

Is it possible to hit NPE?

What is the buggy schedule?

Revisit the example execution – Order violation

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

. . .
log(*p)
. . .

p=null

Correct: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠h, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑
Buggy: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠h, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑, 𝐿𝑜𝑔

Concurrency and fault-tolerance bugs

A Taxonomy of Non-Deterministic Concurrency Bugs [Leesatapornwongsa et. Al., ASPLOS’16]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Message order violation

A B C

A B C

Atomicity violation

A B C A B C

A B C

Process crash/recovery

A B

A B A B

A B

Concurrency bugs in large-scale systems are difficult to detect

Subtle execution scenarios with interleavings of many events, node crashes, network partitions

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Large-scale distributed system bugs in the wild

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Your bug report here J

It is hard to implement distributed systems correctly

The developers needs to reason about:

§ Concurrency
§ Asynchrony
§ Network failures
§ Partial (node) failures

Testing is practical method for discovering bugs

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

§ Identify concurrency bugs in distributed systems

§ Explain controlled concurrency testing for distributed systems
§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenges for testing distributed systems

(C0) Test oracle
§ What is the correctness specification?

(C1) Test harness discovery
§ What are the requests/transactions to submit?

(C2) Enumerating executions
§ What interleavings of events to exercise?

(C3) Improving interpretability
§ Is the buggy trace easy to understand?

à We assume it is provided
(e.g. unexpected exceptions, assertion violations,

serializability of transactions, agreement of replicas)

à We randomly generate a few transactions
(small-scope hypothesis)

à How to explore possible executions efficiently?
Combinatorial complexity!

à How to produce understandable traces?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Combinatorial complexity of possible interleavings

Concurrency Network faults Process/Node faults

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

What executions to test?

§ Random fault-injection testing
§ Jepsen: Effective at finding fault-tolerance bugs
§ Theoretical explanation of the effectiveness [Majumdar & Niksic, POPL’18]

Run cluster

Example:

Partition the network Recover the network Partition the network Recover the network
+ Check properties

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenge: Mutual dependency between the schedule and system events

Request

Log Terminate

Flush

Flushed

Upgrowing Poset:

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Handler Logger Terminator

Request
Log

Terminate

Flush

Flushed

What orderings of messages to schedule?
What faults to inject?
When to inject faults?

Controlled concurrency + fault injection testing

§ Control the non-determinism in the delivery order of messages and faults

§ Reproduce a buggy execution for easier debugging

§ Design testing strategies to explore different program executions
§ Delayed, reordered, lost messages
§ Process isolation, process crashes

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Learning objectives

At the end of this lecture, you will be able to:

§ Identify concurrency bugs in distributed systems

§ Explain controlled concurrency testing for distributed systems
§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Enumerating executions: What interleavings of events to exercise?

§ Systematic testing
§ Explore the state space systematically
§ Run time scheduler to exercise all possible sequences of events
§ Suffers from state space explosion problem

.
.

.

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Systematic Testing

Combining Model Checking and Testing

Modeling languages

Programming languages

Model checking

Systematic testing

state space exploration

state space exploration

abstraction adaptation

(applicable to real-word size software)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Systematic Testing

§ Partial order reduction (POR) to reduce the execution space
§ Exploits the commutativity of concurrent transitions
§ Based on the dependency relation between system transitions
§ Dependence relation: 𝑒*, 𝑒, ∈ 𝐷 iff:

• They’re causally dependent
• 𝑟𝑒𝑐𝑣(𝑒*) = 𝑟𝑒𝑐𝑣(𝑒,)

§ Dynamic POR (DPOR) dynamically tracks interactions between transactions [Flanagan & Godefroid, POPL'05]

s1 s2

t1 t2

t2 t1

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

.
.

.

Partial Order Reduction in Distributed Systems

§ Classical DPOR (e.g., MODIST [Yang et.al, NSDI’09])
§ Black box, exploits general properties of distributed systems

§ Semantic-aware DPOR (e.g., SAMC [Leesatapornwongsa et. al., OSDI’14], FlyMC [Lukman et. al., EuroSys’19]):
§ White-box, exploits system specific semantic information

Black-box systematic testing is not scalable to large systems

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

D partitions the state space
into equivalence classes w.r.t ≡ 𝐷

Equivalence w.r.t white box ≡ 𝑊𝐷

Learning objectives

At the end of this lecture, you will be able to:

§ Identify concurrency bugs in distributed systems

§ Explain controlled concurrency testing for distributed systems
§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Naïve random testing

§ Select the next event uniformly at random (random walk)

§ What is the probability of naïve random testing to detect the bug?

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Buggy if:
Flush
executes
before Log!

Request

Log Terminate

Flush

Flushed

Upgrowing Poset:

Probability of detecting the bug: 1/4

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Naïve random testing

§ What is the probability of naïve random testing to detect the bug?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

The bug is detected with probability : 1/2$+*

Node 1 Node 2

msg A
msg 1

msg B

msg 2

msg 3
...

msg n

Buggy if: … msg B … msg A

Learning objectives

At the end of this lecture, you will be able to:

§ Identify concurrency bugs in distributed systems

§ Explain controlled concurrency testing for distributed systems
§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

PCT for distributed systems is called “PCT with Chain Partitioning (PCTCP)”.
The lecture refers to the algorithm as “PCT”, as they are similar in essense.

Probabilistic Concurrency Testing (PCT)

Can we provide a good probabilistic guarantee for detecting a bug?

§ Observation: The example bug occurs in a single ordering requirement

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Buggy if:
Flush executes
before Log

Key idea: Characterization
of concurrency bugs

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Node 1 Node 2

msg A

msg 1

msg B

msg 2

msg 3
...

msg n

Buggy if:
msg B
executes before
msg A

Bug depth: Number of minimum ordering requirements between events

§ ⟨𝑒;, ⟩𝑒< e.g. order violation

§ ⟨𝑒;, ⟩𝑒<, 𝑒= e.g. atomicity violation

. . .

§ ⟨𝑒;, ⟩… , 𝑒> more complicated bugs

Bug in Cassandra 2.0.0 (img. from Leesatapornwongsa et. al. ASPLOS’16)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Strong hitting an event tuple

§ A schedule 𝛼 strongly hits ⟨𝑒7, ⟩… , 𝑒89: if for all 𝑒 ∈ 𝑃:
𝑒 ≥; 𝑒< implies 𝑒 is causally dependent on 𝑒= for some 𝑗 ≥ 𝑖

𝛼1 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑒, 𝑔
strongly hits 1−tuple 𝑔 , 2−tuple 𝑒, 𝑔

𝛼2 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑔, 𝑒
strongly hits 1−tuple 𝑒 , 2−tuple 𝑔, 𝑒 , 3-tuple 𝑑, 𝑔, 𝑒

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

For each d-tuple, a strong 𝒅-hitting family has a schedule which strongly hits it.

Strong d-
hitting family

Challenge: How to sample
uniformly from this set?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Challenge: How to sample uniformly at random
from strong 𝑑-hitting family for distributed systems?

§ Events form an upgrowing poset, revealed during execution

§ Mutual dependency to the schedule

Schedule:

Use combinatorial results for posets!

𝑎 𝑒𝑑 𝑏 𝑓𝑐𝑔

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

- Build a schedule online
- For an arbitrary ordering

Details J

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Realizer and dimension of a poset

Realizer of P is a set of linear orders:
𝐹𝑅 = {𝐿1 , 𝐿2 , … , 𝐿𝑛}

such that: 𝐿1⋂𝐿2 … ⋂𝐿𝑛 = 𝑃

Dimension of P is the minimum size of a realizer

Realizer of size dim (𝑃)
- Covers all pairwise orderings!

𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

𝐿% = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

𝐿& = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿' = 𝑐 𝑏 𝑔 𝑓 𝑎 𝑑 𝑒

dim (𝑃) = 3

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Details J

Adaptive chain covering ~ Online dimension algorithm

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Decompose P into chains Compute linear extensions of P
𝑎

𝑑

𝑒

𝑏

𝑓

𝑐

𝑔

C1

𝑎

𝑑

C2

𝑏

𝑒

C3

𝑐

𝑓 𝑔
This is a strong 1-hitting family!

𝐿2 = 𝑐 𝑎 𝑑 𝑒 𝑏 𝑔 𝑓

𝐿1 = 𝑐 𝑏 𝑔 𝑎 𝑑 𝑓𝑒

𝐿3 = 𝑎 𝑑 𝑒 𝑏 𝑓 𝑐 𝑔

Adaptive chain covering ~ Strong 1-hitting family ~ Online dimension algorithm
[Felsner’97, Kloch’07]

Details J

Strong 𝑑-hitting family ~ Adaptive chain covering

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

[Felsner, Kloch] Strong 1-hitting family ~ Adaptive chain covering

ℎ𝑖𝑡(𝑤) = 𝑎𝑑𝑎𝑝𝑡(𝑤)
[Our main result] Strong 𝒅-hitting family ~ Adaptive chain covering

ℎ𝑖𝑡& 𝑤, 𝑛 ≤ 𝑎𝑑𝑎𝑝𝑡 𝑤 $
&-* 𝑑 − 1 !

Sample from this set of
schedules!

steps in which 𝑒%, 𝑒&, … , 𝑒+,%
were added

chain id

Index the schedules in the
strong d-hitting family by:

𝜆, 𝑛:, 𝑛A, … , 𝑛89: strongly hits e) ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒*, 𝑒2, … , 𝑒+,*

𝑛: number of events
𝑑: bug depth

Details J

PCT(CP) - The Algorithm

§ Randomly generate a (𝑑 − 1)-tuple: 𝑛*, 𝑛-, … , 𝑛+,*
§ Partition P into chains online

§ Assign random distinct initial priorities > 𝑑

§ Reduce priority at: 𝑒*, 𝑒-, … , 𝑒+,* to (𝑑 − 𝑖 − 1) for 𝑒.

C1C2Ck-1

𝑒*

𝑒-

𝑒/

? ? ?C1

𝑒-

C2

𝑒*
….

Ck-1

𝑒/

Generates randomly a schedule index 𝜆, 𝑛*, 𝑛-, … , 𝑛+,* :

𝑒)

Ck = 𝜆

strongly hits e) ∈ 𝐶ℎ𝑎𝑖𝑛(𝜆)
and 𝑒*, 𝑒2, … , 𝑒+,*

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Probabilistic Concurrency Testing (PCT) – Example 1

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Request

Log Terminate

Flush

Flushed

Online chain partitioning:

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶1) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶2)

Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Buggy if:
Flush executes
before Log

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

The program is decomposed into
causally dependent chains of events:

Probabilistic Concurrency Testing (PCT) – Example 1

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Request

Log Terminate

Flush

Flushed

Online chain partitioning:

𝐶1 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐿𝑜𝑔
𝐶2 = 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑

Upgrowing Poset:Handler Logger Terminator
Request

Log

Terminate

Flush

Flushed

Buggy if:
Flush executes
before Log

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶2) > 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝐶1)Naive random: 1/4 PCT: 1/2
𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐹𝑙𝑢𝑠ℎ, 𝐹𝑙𝑢𝑠ℎ𝑒𝑑, 𝐿𝑜𝑔

The program is decomposed into
causally dependent chains of events:

Probabilistic Concurrency Testing (PCT) – Example 2

§ What is the probability of PCT to detect the bug?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Naive random: 1/2$+*

Node 1 Node 2

msg A
msg 1

msg B

msg 2

msg 3
...

msg n

Buggy if: … msg B … msg A

PCT: 1/2PCT: ?

PCT assigns random priorities to chains:

priority(Chain1) > priority(Chain2)

Online chain partitioning

priority(Chain2) > priority(Chain1)

Chain1 = msg A

Chain2 = msg 1 → msg 2 → … → msg n → msg B

msg A msg 1 msg 2 … msg n msg B

msg 1 msg 2 … msg n msg B msg A

PCT: Random testing with nontrivial probabilistic guarantees

§ PCT result for multithreaded programs (linear orders) [Burckhardt et. al., ASPLOS’2010]

§ PCT(CP): Generalizes the guarantees to distributed systems (posets) [K.O. et. al, OOPSLA’18]

“Randomized testing of distributed systems with probabilistic guarantees”

§ Trace-aware PCT (taPCT): Partial order reduction + PCT [K.O. et. al, OOPSLA’19]

§ PCT for Weak Memory (PCTWM): Extends the results for SC to weak memory [Gao et. al, ASPLOS’23]

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

PCTCP hits a bug with a prob.
;

IJIKL(M)>%&'

Generalizes the PCT result
;

N >%&'

𝑎𝑑𝑎𝑝𝑡(𝑤): online width

𝑘: number of threads

Covered in this lecture

Challenges for testing distributed systems

(C0) Test oracle
§ What is the correctness specification?

(C1) Test harness discovery
§ What are the requests/transactions to submit?

(C2) Enumerating executions
§ What interleavings of events to exercise?

(C3) Improving interpretability
§ Is the buggy trace easy to understand?

à We assume it is provided
(e.g. exceptions, assertion violations, serializability of

transactions, agreement of replicas)

à We randomly generate a few transactions
(small-scope hypothesis)

à How to explore possible executions efficiently?
Combinatorial complexity!

à How to produce understandable traces?

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Summary:

In this lecture, we covered:
§ Concurrency and fault-tolerance bugs in distributed systems
§ Controlled concurrency testing for detecting such bugs:

§ Systematic testing
§ Naïve random testing
§ Probabilistic Concurrency Testing (PCT)

Burcu Kulahcioglu Ozkan, DARE'23 & STV’23 @ VUB, Brussels

Questions?

