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CRDTs: not a silver bullet

CRDT: 
• Extend sequential data type (commutative or not) 
• Merge concurrent updates: commutative, 

associative, idempotent 
• Guarantee availability + convergence 

Designing distributed applications remains challenging 
• Multiple CRDTs 
• Correct interactions? 

Experiments: calendar, student registration, game 
tournaments, auction, ticket reservations, file 
system, etc. 

Real applications: LWW, Bet365, text editor, ???
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CAP trade-offs

Strong consistency 
• High system cost 
◦ One-off 

• Low programmer cost 
• Sequential bottleneck 
• partition ⟹ ¬available 

Too strong: slow
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“Weak” consistency 
• Responsive 
• High programmer cost 
◦ Recurring 

• Asynchronous 
• Available 

Too weak: buggy

“As fast as possible, as strong as necessary” 
Strong enough; no stronger

Consistent ≜ maintains invariant

Invariant ≜ predicate over the state of the system 
• Credit cards: hash(n) = 0 
• Seat reservations: remaining_seats ≥ 0 

• Social network: friend (A,B) ⟺ friend (B,A) 

• Bank: Σ accounts = constant 

• File system: tree ∧ … 

• Student registration:  
attends (student, course) ⟹ registered (student) 

• Storage backend: journal.low ≤ checkpoint.high 

Safe system ≜ invariant is true in every observable state 
System guarantee vs. application-level effort
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Sequential safety
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Precondition, postcondition

Update U 

Transitions the state from σ to σ’ 

Assuming Pre(σ)=true 

then U ensures Post(σ’)
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Pre(σ) Post(σ’)
σ  ⎯ U ⟶ σ’

x=0 x’=1
x’ = x+1

??? x’ > x
x’ = x+t

t > 1024 x’ > x
x’ = x+t

t > 0 x’ > x
x’ = x+t

true e ∈ S’
S’ = S ∪ {e}

x ≥ t ≥ 0 x’ ≥ 0
x’ = x–t

weakest 
precondition

Precondition, postcondition

Update U 

Transitions the state from σ to σ’ 

To ensure Post(σ’), 

it must be that Pre(σ)=true
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Pre(σ) Post(σ’)
σ  ⎯ U ⟶ σ’

x=0 x’=1
x’ = x+1

??? x’ > x
x’ = x+t

t > 1024 x’ > x
x’ = x+t

t > 0 x’ > x
x’ = x+t

true e ∈ S’
S’ = S ∪ {e}

x ≥ t ≥ 0 x’ ≥ 0
x’ = x–t

Ex.: Generate unique identifier

8[ A principled approach to programming distributed systems — DARE — 14 Sept. 2023 ]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

time 
⟶ 

Inv() = { IDs = [0, last] } 

static last = –1; 

new_uid() = { 

precondition Inv();  // multiset is a set, max=last 
last++;   // ∉ IDs  
return last;  // is unique 
postcondition Inv(); 

}



∀ update safe ⟹ seq. system safe
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[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

Safe state ≜ satisfies invariant 
In a sequential system, if: 
• The initial state satisfies Inv 
• Every update U has 

precondition wp(U, Inv) 
Then the system is safe

∀ U Inv(σ) wp(U,Inv) Inv(σ’) ⟹ safeσ  ⎯ U ⟶ σ’

Individually 
Safe 
“C”

time 
⟶ 

Examples

Issue credit card 

Deliver medication 
• Inv(r) { r ≥ 0}	 // r = remaining number of boxes 
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hash (n) = 0
S’ = S ∪ {n}

Increase 
allocation:

Inv(r) Inv(r’)
r’ = r+1

Deliver a box: Inv(r) r ≥ 1 Inv(r’)
r’ = r–1

Ex.: maintain checkpoint

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap
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Advance 
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

hccheckpoint

lj journal

Advance 
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d

Ex.: maintain checkpoint
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hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Advance 
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

Advance 
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d



Ex.: maintain checkpoint
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hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Advance 
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

Advance 
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d

root

A

B C

mv(B,C)

Inv(σ) =	 // Tree invariant 

• Every node is reachable from root 
• A node has a single parent (but root has none) 
• Names unique per directory  
• Acyclic graph

File system: tree invariant + mv
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root

A

B C

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ  ⎯ mv (c, np) ⟶ σ’

must 
not move 
under self!

root

A

B C

mv(A,B)mv(A,B)

Sequential safety: summary
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Safe state ≜ satisfies invariant Inv 

In a sequential system, if: 
• The initial state is safe  
• Every update U is individually safe 
◦ i.e., has a precondition Pre(U) such that Inv remains true after U 
◦ i.e., Pre(U) ⟹ wp(U, Inv) 

then every state of the system is safe

Concurrency anomalies

16[ A principled approach to programming distributed systems — DARE — 14 Sept. 2023 ]



Concurrent generate UID
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[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

Anomaly!What went 
wrong?TOCTTOU

time 
⟶ 

Inv() = { IDs = [0, last] } 

static last = –1; 

new_uid() = { 

precondition Inv();  // multiset is a set, max=last 
last++;   // ∉ IDs  
return last;  // is unique 
postcondition Inv(); 

}

Concurrent delivery of medications (1)
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add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time 
⟶ 

r = 2 add-med(6) r’ = 8

r = 2 del-med(2) r’ = 0

r’’ = 6merge

r’’ = 6

merge

harmless 
TOCTTOU

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

Concurrent delivery of medications (2)
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del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time 
⟶ 

r = 2 del-med(1) r’ = 1

r = 2 del-med(2) r’ = 0

r’’ = –1merge

r’’ = –1

merge

Anomaly!
harmful 

TOCTTOU

FS: Concurrent move anomaly
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root

A

B C

root

A

B C

mv(C,B)root

A

B C

mv(B,C)

root

A

B C

||

root

A

B C

root

A

B C

Concurrent moves 
Converges 
But violates invariant! 
What went wrong?

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ  ⎯ mv (c, np) ⟶ σ’

TOCTTOU
tim

e
 

⟶
 



File system: the DFS-R bug

2003: DFS-R: Windows NTFS replication layer 
• large industrial customers 
• unexplained data loss 

2007: model checking exposes move anomaly: 
completely unexpected 

2021: continues to bite developers 
• Google Drive diverges 
• Dropbox duplicates 

Reasoning about concurrency is hard!
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Concurrent anomalies: summary

Concurrency allows anomalies 
• Incorrect behavior ≜ violates invariant 
• Violation does not occur in a sequential execution 

Anomalies seem to be caused by TOCTTOU race on precondition 

Design objectives:  
• Minimise remote coordination  
• Allow benign TOCTTOUs 
• Avoid harmful TOCTTOUs 

But concurrency reasoning is too hard!
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CISE: a sound 
approach to safe 
distributed systems
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’Cause I’m Strong Enough (CISE)

Distributed system with CRDTs 
Systematic method to prove whether two updates may execute 

concurrently without harm  
• Concurrency not provably harmless is assumed harmful 

Fully formalized, proven sound 
• Generalises sequential correctness 
• An application of the rely-guarantee logic 

My presentation is informal 

Gotsman et al., ‘Cause I'm strong enough: Reasoning about consistency choices in 
distributed systems, POPL 2016, DOI 10.1145/2837614.2837625
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CISE conditions
For all updates U, U': 
(1) Sequentially safe: 
• Initial state satisfies invariant Inv 
• Precondition of U satisfies the weakest-

precondition of the invariant wp(U,Inv) 
(2) Convergent:  
• When U concurrent to U' 

• replace U || U’ with merge(U,U’) 

• merge(U,U’) commutative, associative, idempotent 
• merge(U,U') preserves Inv 

(3) Stable precondition: 
• When U concurrent to U' 
• the precondition of U is not made false by U'
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harmless 
TOCTTOU

Individually 
Safe

CISE Concurrent generate UID
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[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

not 
stable

time 
⟶ 

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

Solution: serialise ⟹ consensus

new_uid()

[0,1]

1

CISE Concurrent generate UID
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[]

new_uid()

[0,0]

new_uid()

[0,1]

1

new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

not 
stable

time 
⟶ 

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

Solution: serialise ⟹ consensus

synch synch synch synch

CISE Concurrent delivery of medications (1)
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add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time 
⟶ 

r = 2 add-med(6) r’ = 8

r = 2 del-med(2) r’ = 0

r’’ = 6merge

r’’ = 6

merge

Stable w.r.t. 
add, deliver

• add-med || add-med OK 
• del-med || add-med OK



CISE Concurrent delivery of medications (2)
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add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time 
⟶ 

Not stable 
w.r.t. deliver

r = 2 del-med(1) r’ = 1

r = 2 del-med(2) r’ = 0

r’’ = –1merge

r’’ = –1

merge

del-med design alternatives: 
• Allow over-delivery ⟶ possibly punish after the fact  
• Synchronise del-med; del-med  ⟶ lose availability

weaken 
invariant, 

compensate

synch

CISE Concurrent delivery of medications (3)
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add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time 
⟶ 

r’ = 0

r = 2 del-med(2) r’ = 0

r’ = 0del-med(2)

del-med design alternatives: 
• Allow over-delivery ⟶ possibly punish after the fact  
• Synchronise del-med; del-med  ⟶ lose availability

Not stable 
w.r.t. deliver

CISE Tree: serialise move
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root

A

B C

root

A

B C

mv(C,B)

root

A

B C

mv(B,C)

root

A

B C

Impossible to satisfy both moves 
without violating the invariant! 
• serialise conc. moves

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ  ⎯ mv (c, np) ⟶ σ’

Not stable 
w.r.t. concurrent 

mv

tim
e
 

⟶
 

synch

Dropbox: mv as cut & paste
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root

A

B C

root

A

B

C

mv(C,B)root

A

B

C

mv(B,C)

||

root

A

B C
tim

e
 

⟶
 

root

A

B C

C B

root

A

B C

C B

Impossible to satisfy both moves 
without violating the invariant! 
• implement move as cut & 

paste



Tree + mv: Kleppmann’s approach
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root

A

B C

root

A

B C

mv(C,B)root

A

B C

mv(B,C)

||

root

A

B C

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ  ⎯ mv (c, np) ⟶ σ’

tim
e
 

⟶
 

root

A

B C

mv(B,C); mv(C,B)
root

A

B C

mv(B,C); mv(C,B)
Impossible to satisfy both moves 
without violating the invariant! 
If concurrent moves cause cycle: 
• roll back 
• serialise 

Not “monotonic reads”

Summary: Tree + mv

Sequentially correct: sequential moves are OK 
• Weakest precondition: not mv under self 

CISE: precondition not stable under concurrent mv 
Known design options: 
• no mv op (XML) 
• no mv op, copy-paste ⟹ duplicates (Dropbox) 
• up-mv vs. down-mv [Nair 2021] 
◦ up-mv || up-mv stable 
◦ up-mv || down-mv stable 
◦ down-mv || down-mv not stable 

• serialise a priori: lock [Najafzadeh 2018] 
• serialise a posteriori: non-monotonic [Kleppmann 2022]
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CISE conditions (again!)

For all updates U, U': 
(1) Sequentially safe: 
• Initial state satisfies invariant Inv 
• Precondition of U satisfies the weakest-

precondition of the invariant wp(U,Inv) 
(2) Convergent:  
• When U concurrent to U' 

• U || U’ convergent 
◦ merge(U,U') preserves Inv 

(3) Stable precondition: 
• When U concurrent to U' 
• the precondition of U is not made false by U'
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Using CISE in practice

Manual: 
1. Individually correct: manual, testing 
2. Convergence: CRDT library 
3. Stability: consider all pairs of possibly concurrent updates 

Tools 
• Library: Bounded Counter [Balegas SRDS 2015] 
• Stand-alone: specification language + SMT solver 
◦ CISE Tool [Najafzadeh 2015] 
◦ Soteria [Nair ESOP 2020] 
◦ BLOOM [Alvaro CIDR 2011] 

• Integrated language/compiler 
◦ Conflict-Aware Replicated Data Types [arXiv 1802.08733] 
◦ LoRe [Haas ECOOP 2023]
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Summary: As fast as possible

U, U' individually safe ∧ convergent ∧ mutually stable 
• May execute concurrently 
• Availability 
• Perfect scalability
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Summary: As strong as necessary
U, U' must not execute concurrently if: 

not commutative ∧ not convergent 
∨ not mutually stable 

Design options: 
• Refine invariant (e.g., bank account number) 
• Downgrade invariant 
◦ from “require x≥0” to “prefer x≥0” 

• Compensate: Weaken invariant, repair  
• Serialise: U; U' or U'; U 
◦ Lock, single server, social convention, etc. 
◦ Monotonic, a priori: consensus 
◦ A posteriori: rollback.  Finality? 

Analyse again!
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Classifying invariants 
by their coordination 
protocol
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Byrum

FMKe Fælles Medicinkort
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RX
Dr Alice 
Aalborg Hospital 
Patient: Mr Bob 
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1 
Transactol: 1 box

Dr 
Alice

Patient 
Bob

Byrum 
pharma

create (…)

add-med (…)

del-med (…)

Causatin: 2 boxes 
Transactol: 1 box
Causatin: 2 boxes ⟶ 1



Byrum

FMKe invariants
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RX
Dr Alice 
Aalborg Hospital 
Patient: Mr Bob 
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1 
Transactol: 1 box

Dr 
Alice

Patient 
Bob

Byrum 
pharma

referential 

integrity

equivalence

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

create (…)

add-med (…)

del-med (…)

don't 
over-deliver

Byrum

Replicated FMKe: invariants?

42[ A principled approach to programming distributed systems — DARE — 14 Sept. 2023 ]

RX
Dr Alice 
Aalborg Hospital 
Patient: Mr Bob 
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1 
Transactol: 1 box

Dr 
Alice

Patient 
Bob

Byrum 
pharma

referential 

integrity

equivalence

don't 
over-deliver

Sing
le o

p

Gapless total order

What protocols for what invariants?
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Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC, 
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

  

sna
ps

ho
t

LIN

CISE

Gua
ran

tee
s

Perf
orm

an
ce

Fully commutative updates

Some examples: 
• Non-shared state 
• Local blind: e.g., credit card number hash(n) = 0 

• Empty invariant + fully-commuting CRDTs 
◦ LWW 
◦ Grow-only set 
◦ PN counter 
◦ Vector clock 

Convergent 
Asynchronous propagation 
• Perfect scalability 
• Perfect availability under partition
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What protocols for fully commutative?
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Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC, 
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

  

sna
ps

ho
t

LIN

CISE

h(n)=0

Byrum

A ⟺ B: transactions
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RX
Dr Alice 
Aalborg Hospital 
Patient: Mr Bob 
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1 
Transactol: 1 box

Dr 
Alice

Patient 
Bob

Byrum 
pharma

create (…)

all-or-nothing

Transaction: Atomic writes 
+ snapshot reads

create-p updates doctor, patient & pharmacy 
record 

Atomic: 
• = All-or-Nothing (A of ACID) 
• Transmit joint updates together 
• asynchronous 

Snapshot: single database state 
• multi-version concurrency control 
• asynchronous 

Asynch: Available under partition
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patient?

pharma?

P
pharma!

patient! 

pharm
a!

patient?

pharma?

patient!

Atomic 
writes

Snapshot 
reads

“A ⟺ B” style invariants

Some example cases: 
• A=B 

• A = ¬B 

• friend(x,y) ⟺ friend(y,x) 

• x≤y: <x++;y++> (one actor)

48[ A principled approach to programming distributed systems — DARE — 14 Sept. 2023 ]



What protocols for A ⟺ B?
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Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC, 
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

  

sna
ps

ho
t

LIN

CISE

A⟺B

Byrum

A ⟹ B: demarcation
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RX
Dr Alice 
Aalborg Hospital 
Patient: Mr Bob 
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1 
Transactol: 1 box

Dr 
Alice

Patient 
Bob

Byrum 
pharma

create (…)

relative 

order 2

1

51[ A principled approach to programming distributed systems — DARE — 14 Sept. 2023 ]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap 

Demarcation protocol 
• Journal dæmon: lower bound += d 
• Journal: Send message to Checkpoint advance(d) 
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation
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hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap 

Demarcation protocol 
• Journal dæmon: lower bound += d 
• Journal: Send message to Checkpoint advance(d) 
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation

advance(d)
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hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap 

Demarcation protocol 
• Journal dæmon: lower bound += d 
• Journal: Send message to Checkpoint advance(d) 
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation Non-commuting, demarcation
Non-commuting CRDTs 
• Empty invariant 
◦ Set 
◦ Map 
◦ MVR 

• Universally-stable operations 
◦ Acyclic graph: add-parallel, remove 
◦ Sequence: insert-at, remove 

2-actor implication invariants 
• A ⟹ B 
• Referential integrity 
• Chicken/fox/grain: grain ⟹ ¬chicken 

• x≤y 
Preserve order across processes 

⟶ Causal Consistency
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Causal Consistency

create-p before add-med 

• “Bob points to Rx ⟹ Rx valid” 
◦ Referential integrity 

• General case: LHS ⟹ RHS 
• pattern: RHS!; LHS! 

Deliver in the right order: Causal 
Consistency 

Local decision:  
• requires metadata 
• available
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What protocols for demarcation?
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x≥0 x––: total/mutual order

u(), v() not mutually stable 
• “Conflicting” 
• Either u() before v(), or v() before u() 

Protocols: 
• General case: total order, consensus 
• 1 lock / set of mutually-conflicting operations 
◦ Coarser locks OK 

• Single server / conflict set (flat combining) 
• Social
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Bounded Counter
Specific, common case 
Shared counter: 
• x ≥ 0 

• increment (n) 
• decrement (n)	 	 // precondition x ≥ n 

Escrow: 
• Local share, decrement share –= n 
• decrement disallowed if share < n 
• Donate share 

Mostly AP  
Encapsulated, proven correct (CISE) 
Causal ordering essential
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What protocols for x≥0 x––?
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Mutual order: a posteriori vs. a priori
A posteriori, Capricious, Monotonic-Prefix: 
• Execute 
• Pick a number 
• Propagate 
• Sort 
• Roll back; roll forward 
• Iterate 

A priori, Gapless, Monotonic Reads: 
• Consensus on a number 
• Wait for my turn 
• Execute & propagate 

Capricious + finality ⟹ consensus
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What protocols for arbitrary invariants?
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Sweet spot: Transactional Causal 
Consistency + optional consensus

TCC = 
• Causal consistency 
◦ x≤y, demarcation 

• Snapshot reads + Atomic writes 
◦ A⟺B 

• System: AntidoteDB 
Available: not x≥0 

• Strengthen when necessary 
• System: Colony
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Strongest AP protocol(s)
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“strongest 
available”

“strongest 
available”

Total order 
Any sequential data type, x≥0 
Non Monotonic Reads ⟹ 
rollbacks 
No finality

Partial order ⟶ demarcation 
Requires Merge / CRDTs 
Monotonic Reads; finality

What protocols for what invariants?
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