
A principled approach
to programming

distributed systems
Marc Shapiro

Summer School on Distributed and Replicated Environments
DARE 2023

CRDTs: not a silver bullet

CRDT:
• Extend sequential data type (commutative or not)
• Merge concurrent updates: commutative,

associative, idempotent
• Guarantee availability + convergence

Designing distributed applications remains challenging
• Multiple CRDTs
• Correct interactions?

Experiments: calendar, student registration, game
tournaments, auction, ticket reservations, file
system, etc.

Real applications: LWW, Bet365, text editor, ???

2[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

CAP trade-offs

Strong consistency
• High system cost
◦ One-off

• Low programmer cost
• Sequential bottleneck
• partition ⟹ ¬available

Too strong: slow

3[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

“Weak” consistency
• Responsive
• High programmer cost
◦ Recurring

• Asynchronous
• Available

Too weak: buggy

“As fast as possible, as strong as necessary”
Strong enough; no stronger

Consistent ≜ maintains invariant

Invariant ≜ predicate over the state of the system
• Credit cards: hash(n) = 0
• Seat reservations: remaining_seats ≥ 0

• Social network: friend (A,B) ⟺ friend (B,A)

• Bank: Σ accounts = constant

• File system: tree ∧ …

• Student registration:
attends (student, course) ⟹ registered (student)

• Storage backend: journal.low ≤ checkpoint.high

Safe system ≜ invariant is true in every observable state
System guarantee vs. application-level effort

4[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sequential safety

5[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Precondition, postcondition

Update U

Transitions the state from σ to σ’

Assuming Pre(σ)=true

then U ensures Post(σ’)

6[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Pre(σ) Post(σ’)
σ ⎯ U ⟶ σ’

x=0 x’=1
x’ = x+1

??? x’ > x
x’ = x+t

t > 1024 x’ > x
x’ = x+t

t > 0 x’ > x
x’ = x+t

true e ∈ S’
S’ = S ∪ {e}

x ≥ t ≥ 0 x’ ≥ 0
x’ = x–t

weakest
precondition

Precondition, postcondition

Update U

Transitions the state from σ to σ’

To ensure Post(σ’),

it must be that Pre(σ)=true

7[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Pre(σ) Post(σ’)
σ ⎯ U ⟶ σ’

x=0 x’=1
x’ = x+1

??? x’ > x
x’ = x+t

t > 1024 x’ > x
x’ = x+t

t > 0 x’ > x
x’ = x+t

true e ∈ S’
S’ = S ∪ {e}

x ≥ t ≥ 0 x’ ≥ 0
x’ = x–t

Ex.: Generate unique identifier

8[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

time
⟶

Inv() = { IDs = [0, last] }

static last = –1;

new_uid() = {

precondition Inv(); // multiset is a set, max=last
last++; // ∉ IDs
return last; // is unique
postcondition Inv();

}

∀ update safe ⟹ seq. system safe

9[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

Safe state ≜ satisfies invariant
In a sequential system, if:
• The initial state satisfies Inv
• Every update U has

precondition wp(U, Inv)
Then the system is safe

∀ U Inv(σ) wp(U,Inv) Inv(σ’) ⟹ safeσ ⎯ U ⟶ σ’

Individually
Safe
“C”

time
⟶

Examples

Issue credit card

Deliver medication
• Inv(r) { r ≥ 0}	 // r = remaining number of boxes

10[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hash (n) = 0
S’ = S ∪ {n}

Increase
allocation:

Inv(r) Inv(r’)
r’ = r+1

Deliver a box: Inv(r) r ≥ 1 Inv(r’)
r’ = r–1

Ex.: maintain checkpoint

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

11[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Advance
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

hccheckpoint

lj journal

Advance
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d

Ex.: maintain checkpoint

12[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Advance
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

Advance
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d

Ex.: maintain checkpoint

13[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Advance
checkpoint:

Inv(σ)∧d ≥ 0 Inv(σ’)
σ’.hc = σ.hc + d

Advance
journal:

Inv(σ)∧d ≥ 0 σ.lj + d ≤ σ.hc Inv(σ’)
σ’.lj = σ.lj + d

Advance both: Inv(σ)∧d ≥ 0 Inv(σ’’)
σ’.hc = σ.hc + d; σ’’.lj = σ’.lj + d

root

A

B C

mv(B,C)

Inv(σ) =	 // Tree invariant

• Every node is reachable from root
• A node has a single parent (but root has none)
• Names unique per directory
• Acyclic graph

File system: tree invariant + mv

14[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

root

A

B C

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ ⎯ mv (c, np) ⟶ σ’

must
not move
under self!

root

A

B C

mv(A,B)mv(A,B)

Sequential safety: summary

15[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Safe state ≜ satisfies invariant Inv

In a sequential system, if:
• The initial state is safe
• Every update U is individually safe
◦ i.e., has a precondition Pre(U) such that Inv remains true after U
◦ i.e., Pre(U) ⟹ wp(U, Inv)

then every state of the system is safe

Concurrency anomalies

16[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Concurrent generate UID

17[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

new_uid()
1

[0,0]

Anomaly!What went
wrong?TOCTTOU

time
⟶

Inv() = { IDs = [0, last] }

static last = –1;

new_uid() = {

precondition Inv(); // multiset is a set, max=last
last++; // ∉ IDs
return last; // is unique
postcondition Inv();

}

Concurrent delivery of medications (1)

18[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time
⟶

r = 2 add-med(6) r’ = 8

r = 2 del-med(2) r’ = 0

r’’ = 6merge

r’’ = 6

merge

harmless
TOCTTOU

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

Concurrent delivery of medications (2)

19[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time
⟶

r = 2 del-med(1) r’ = 1

r = 2 del-med(2) r’ = 0

r’’ = –1merge

r’’ = –1

merge

Anomaly!
harmful

TOCTTOU

FS: Concurrent move anomaly

20[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

root

A

B C

root

A

B C

mv(C,B)root

A

B C

mv(B,C)

root

A

B C

||

root

A

B C

root

A

B C

Concurrent moves
Converges
But violates invariant!
What went wrong?

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ ⎯ mv (c, np) ⟶ σ’

TOCTTOU
tim

e

⟶

File system: the DFS-R bug

2003: DFS-R: Windows NTFS replication layer
• large industrial customers
• unexplained data loss

2007: model checking exposes move anomaly:
completely unexpected

2021: continues to bite developers
• Google Drive diverges
• Dropbox duplicates

Reasoning about concurrency is hard!

21[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Concurrent anomalies: summary

Concurrency allows anomalies
• Incorrect behavior ≜ violates invariant
• Violation does not occur in a sequential execution

Anomalies seem to be caused by TOCTTOU race on precondition

Design objectives:
• Minimise remote coordination
• Allow benign TOCTTOUs
• Avoid harmful TOCTTOUs

But concurrency reasoning is too hard!

22[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

CISE: a sound
approach to safe
distributed systems

23[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

’Cause I’m Strong Enough (CISE)

Distributed system with CRDTs
Systematic method to prove whether two updates may execute

concurrently without harm
• Concurrency not provably harmless is assumed harmful

Fully formalized, proven sound
• Generalises sequential correctness
• An application of the rely-guarantee logic

My presentation is informal

Gotsman et al., ‘Cause I'm strong enough: Reasoning about consistency choices in
distributed systems, POPL 2016, DOI 10.1145/2837614.2837625

24[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

CISE conditions
For all updates U, U':
(1) Sequentially safe:
• Initial state satisfies invariant Inv
• Precondition of U satisfies the weakest-

precondition of the invariant wp(U,Inv)
(2) Convergent:
• When U concurrent to U'

• replace U || U’ with merge(U,U’)

• merge(U,U’) commutative, associative, idempotent
• merge(U,U') preserves Inv

(3) Stable precondition:
• When U concurrent to U'
• the precondition of U is not made false by U'

25[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

harmless
TOCTTOU

Individually
Safe

CISE Concurrent generate UID

26[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1
new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

not
stable

time
⟶

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

Solution: serialise ⟹ consensus

new_uid()

[0,1]

1

CISE Concurrent generate UID

27[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

[]

new_uid()

[0,0]

new_uid()

[0,1]

1

new_uid()

[0,2]

2
new_uid()

[0,3]

3

UIDs

0

not
stable

time
⟶

M is a set n ∉ M M’ is a set
M’ = M ∪ {n}

Solution: serialise ⟹ consensus

synch synch synch synch

CISE Concurrent delivery of medications (1)

28[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time
⟶

r = 2 add-med(6) r’ = 8

r = 2 del-med(2) r’ = 0

r’’ = 6merge

r’’ = 6

merge

Stable w.r.t.
add, deliver

• add-med || add-med OK
• del-med || add-med OK

CISE Concurrent delivery of medications (2)

29[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time
⟶

Not stable
w.r.t. deliver

r = 2 del-med(1) r’ = 1

r = 2 del-med(2) r’ = 0

r’’ = –1merge

r’’ = –1

merge

del-med design alternatives:
• Allow over-delivery ⟶ possibly punish after the fact
• Synchronise del-med; del-med ⟶ lose availability

weaken
invariant,

compensate

synch

CISE Concurrent delivery of medications (3)

30[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

time
⟶

r’ = 0

r = 2 del-med(2) r’ = 0

r’ = 0del-med(2)

del-med design alternatives:
• Allow over-delivery ⟶ possibly punish after the fact
• Synchronise del-med; del-med ⟶ lose availability

Not stable
w.r.t. deliver

CISE Tree: serialise move

31[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

root

A

B C

root

A

B C

mv(C,B)

root

A

B C

mv(B,C)

root

A

B C

Impossible to satisfy both moves
without violating the invariant!
• serialise conc. moves

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ ⎯ mv (c, np) ⟶ σ’

Not stable
w.r.t. concurrent

mv

tim
e

⟶

synch

Dropbox: mv as cut & paste

32[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

root

A

B C

root

A

B

C

mv(C,B)root

A

B

C

mv(B,C)

||

root

A

B C
tim

e

⟶

root

A

B C

C B

root

A

B C

C B

Impossible to satisfy both moves
without violating the invariant!
• implement move as cut &

paste

Tree + mv: Kleppmann’s approach

33[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

root

A

B C

root

A

B C

mv(C,B)root

A

B C

mv(B,C)

||

root

A

B C

Inv(σ) ¬ σ.path(c, np) Inv(σ’)
σ ⎯ mv (c, np) ⟶ σ’

tim
e

⟶

root

A

B C

mv(B,C); mv(C,B)
root

A

B C

mv(B,C); mv(C,B)
Impossible to satisfy both moves
without violating the invariant!
If concurrent moves cause cycle:
• roll back
• serialise

Not “monotonic reads”

Summary: Tree + mv

Sequentially correct: sequential moves are OK
• Weakest precondition: not mv under self

CISE: precondition not stable under concurrent mv
Known design options:
• no mv op (XML)
• no mv op, copy-paste ⟹ duplicates (Dropbox)
• up-mv vs. down-mv [Nair 2021]
◦ up-mv || up-mv stable
◦ up-mv || down-mv stable
◦ down-mv || down-mv not stable

• serialise a priori: lock [Najafzadeh 2018]
• serialise a posteriori: non-monotonic [Kleppmann 2022]

34[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

CISE conditions (again!)

For all updates U, U':
(1) Sequentially safe:
• Initial state satisfies invariant Inv
• Precondition of U satisfies the weakest-

precondition of the invariant wp(U,Inv)
(2) Convergent:
• When U concurrent to U'

• U || U’ convergent
◦ merge(U,U') preserves Inv

(3) Stable precondition:
• When U concurrent to U'
• the precondition of U is not made false by U'

35[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Using CISE in practice

Manual:
1. Individually correct: manual, testing
2. Convergence: CRDT library
3. Stability: consider all pairs of possibly concurrent updates

Tools
• Library: Bounded Counter [Balegas SRDS 2015]
• Stand-alone: specification language + SMT solver
◦ CISE Tool [Najafzadeh 2015]
◦ Soteria [Nair ESOP 2020]
◦ BLOOM [Alvaro CIDR 2011]

• Integrated language/compiler
◦ Conflict-Aware Replicated Data Types [arXiv 1802.08733]
◦ LoRe [Haas ECOOP 2023]

36[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Summary: As fast as possible

U, U' individually safe ∧ convergent ∧ mutually stable
• May execute concurrently
• Availability
• Perfect scalability

37[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Summary: As strong as necessary
U, U' must not execute concurrently if:

not commutative ∧ not convergent
∨ not mutually stable

Design options:
• Refine invariant (e.g., bank account number)
• Downgrade invariant
◦ from “require x≥0” to “prefer x≥0”

• Compensate: Weaken invariant, repair
• Serialise: U; U' or U'; U
◦ Lock, single server, social convention, etc.
◦ Monotonic, a priori: consensus
◦ A posteriori: rollback. Finality?

Analyse again!

38[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Classifying invariants
by their coordination
protocol

39[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Byrum

FMKe Fælles Medicinkort

40[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

RX
Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1
Transactol: 1 box

Dr
Alice

Patient
Bob

Byrum
pharma

create (…)

add-med (…)

del-med (…)

Causatin: 2 boxes
Transactol: 1 box
Causatin: 2 boxes ⟶ 1

Byrum

FMKe invariants

41[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

RX
Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1
Transactol: 1 box

Dr
Alice

Patient
Bob

Byrum
pharma

referential

integrity

equivalence

add-med(n) r ≥ 0 n ≥ 0 r’ ≥ 0
r’ = r+n

del-med(n) r ≥ 0 r ≥ n ≥ 0 r’ ≥ 0
r’ = r–n

create (…)

add-med (…)

del-med (…)

don't
over-deliver

Byrum

Replicated FMKe: invariants?

42[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

RX
Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1
Transactol: 1 box

Dr
Alice

Patient
Bob

Byrum
pharma

referential

integrity

equivalence

don't
over-deliver

Sing
le o

p

Gapless total order

What protocols for what invariants?

43[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

Gua
ran

tee
s

Perf
orm

an
ce

Fully commutative updates

Some examples:
• Non-shared state
• Local blind: e.g., credit card number hash(n) = 0

• Empty invariant + fully-commuting CRDTs
◦ LWW
◦ Grow-only set
◦ PN counter
◦ Vector clock

Convergent
Asynchronous propagation
• Perfect scalability
• Perfect availability under partition

44[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

What protocols for fully commutative?

45[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

h(n)=0

Byrum

A ⟺ B: transactions

46[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

RX
Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1
Transactol: 1 box

Dr
Alice

Patient
Bob

Byrum
pharma

create (…)

all-or-nothing

Transaction: Atomic writes
+ snapshot reads

create-p updates doctor, patient & pharmacy
record

Atomic:
• = All-or-Nothing (A of ACID)
• Transmit joint updates together
• asynchronous

Snapshot: single database state
• multi-version concurrency control
• asynchronous

Asynch: Available under partition

47[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

patient?

pharma?

P
pharma!

patient!

pharm
a!

patient?

pharma?

patient!

Atomic
writes

Snapshot
reads

“A ⟺ B” style invariants

Some example cases:
• A=B

• A = ¬B

• friend(x,y) ⟺ friend(y,x)

• x≤y: <x++;y++> (one actor)

48[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

What protocols for A ⟺ B?

49[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

A⟺B

Byrum

A ⟹ B: demarcation

50[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

RX
Dr Alice
Aalborg Hospital
Patient: Mr Bob
Pharmacy: Byrum

Causatin: 2 boxes ⟶ 1
Transactol: 1 box

Dr
Alice

Patient
Bob

Byrum
pharma

create (…)

relative

order 2

1

51[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Demarcation protocol
• Journal dæmon: lower bound += d
• Journal: Send message to Checkpoint advance(d)
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation

52[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Demarcation protocol
• Journal dæmon: lower bound += d
• Journal: Send message to Checkpoint advance(d)
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation

advance(d)

53[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

hccheckpoint

lj journal

Inv(σ) = { σ.lj ≤ σ.hc}	 // no gap

Demarcation protocol
• Journal dæmon: lower bound += d
• Journal: Send message to Checkpoint advance(d)
• Checkpoint dæmon: upper bound += d

Distributed checkpoint: demarcation Non-commuting, demarcation
Non-commuting CRDTs
• Empty invariant
◦ Set
◦ Map
◦ MVR

• Universally-stable operations
◦ Acyclic graph: add-parallel, remove
◦ Sequence: insert-at, remove

2-actor implication invariants
• A ⟹ B
• Referential integrity
• Chicken/fox/grain: grain ⟹ ¬chicken

• x≤y
Preserve order across processes

⟶ Causal Consistency
54[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Causal Consistency

create-p before add-med

• “Bob points to Rx ⟹ Rx valid”
◦ Referential integrity

• General case: LHS ⟹ RHS
• pattern: RHS!; LHS!

Deliver in the right order: Causal
Consistency

Local decision:
• requires metadata
• available

55[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

P

RHS!1

>1

LHS!
2

LHS!
>1

2

P

RHS! 1

What protocols for demarcation?

56[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

x≤y x+=, y+=

x≤y

x+=, y+=

x≥0 x––: total/mutual order

u(), v() not mutually stable
• “Conflicting”
• Either u() before v(), or v() before u()

Protocols:
• General case: total order, consensus
• 1 lock / set of mutually-conflicting operations
◦ Coarser locks OK

• Single server / conflict set (flat combining)
• Social

57[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Bounded Counter
Specific, common case
Shared counter:
• x ≥ 0

• increment (n)
• decrement (n)	 	 // precondition x ≥ n

Escrow:
• Local share, decrement share –= n
• decrement disallowed if share < n
• Donate share

Mostly AP
Encapsulated, proven correct (CISE)
Causal ordering essential

58[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

What protocols for x≥0 x––?

59[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

x≥0
x––

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

Mutual order: a posteriori vs. a priori
A posteriori, Capricious, Monotonic-Prefix:
• Execute
• Pick a number
• Propagate
• Sort
• Roll back; roll forward
• Iterate

A priori, Gapless, Monotonic Reads:
• Consensus on a number
• Wait for my turn
• Execute & propagate

Capricious + finality ⟹ consensus

60[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

What protocols for arbitrary invariants?

61[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

∀
SSER

Sweet spot: Transactional Causal
Consistency + optional consensus

TCC =
• Causal consistency
◦ x≤y, demarcation

• Snapshot reads + Atomic writes
◦ A⟺B

• System: AntidoteDB
Available: not x≥0

• Strengthen when necessary
• System: Colony

62[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Strongest AP protocol(s)

63[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

“strongest
available”

“strongest
available”

Total order
Any sequential data type, x≥0
Non Monotonic Reads ⟹
rollbacks
No finality

Partial order ⟶ demarcation
Requires Merge / CRDTs
Monotonic Reads; finality

What protocols for what invariants?

64[A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

Sing
le o

p

Gapless total order

Ordering

Grouping

EC

SER, SI

Monot. Prfx

TCC,
PSI

Full asynch

Causal order

Capricious total order

CAP

CC

Atom
ic +

sna
ps

ho
t

LIN

CISE

∀
SSER

x≥0
x––

x≤y x+=, y+=

x≤y

x+=, y+=
A⟺B

h(n)=0

Creative Commons Attribution-ShareAlike 4.0 Intl. License

You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material

for any purpose, even commercially, under the following terms:
	 Attribution — You must give appropriate credit, provide a link to

the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

	 ShareAlike — If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as the
original.

65[A principled approach to programming distributed systems — DARE — 14 Sept. 2023] [A principled approach to programming distributed systems — DARE — 14 Sept. 2023]

