
Implementing, Verifying and Debugging Distributed Systems

Elisa Gonzalez Boix

https://soft.vub.ac.be/disco/

How it all started?

• A programming model for ubiquitous computing

Ubiquitous Computing
Vision (1988)

my own language?!?

Jessie Dedecker

In an ubiquitous context,
asynchronous communication suits
better, why don’t you implement an

actor-based language?

2

Actors in JavaPic% 3

factor(n): createActor ({
 fac (c, client)::{
 if (n> 1, {
 next: factor(n-1);
 if(n = c, next.fac(c, client),
 next.fac(c*n, client))},
 client.result(c))
 }
});

factorial : createActor({
 result(res):: { display(res)};
 compute(num):: {
 a : factor(num);
 a.fac (num, thisActor())}
});

factorial.compute(3);

(Industry)

How it all started again?

• a programming model for ubiquitous computing

5

what about exploring a
failure handling model for

AmbientTalk?

Tom
Van Cutsem

Wolfgang
De Meuter

Jessie
Dedecker

Stijn
Mostinckx

AmbientTalk?
Theo

D’hondt

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D'Hondt, W. De Meuter. 2006. Ambient-Oriented Programming in AmbientTalk. In Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP), LNCS Vol. 4067, pp. 230-254, Springer-Verlag.”, 2006.

AmbientTalk’s Distributed Model = OO + Events
A superset of object-oriented programming that is explicitly geared towards programming

distributed applications that run on mobile ad hoc networks

when: type discovered: { |ref| ... }
whenever: type discovered: { |ref| ... }

when: future becomes: { |result| ... }Follow-up on
outstanding requests

React to services appearing
and disappearing

React to references
disconnecting,
reconnecting

Generate and receive
application requests

obj<-msg(arg)  
def msg(param) { ... }

when: ref disconnected: { ... }
when: ref reconnected: { ... }

whenever: ref disconnected: { ... }
whenever: ref reconnected: { ... }

6

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and Wolfgang De Meuter. Ambienttalk: object-oriented event-driven programming in
mobile ad hoc networks. In Inter. Conf. of the Chilean Computer Science Society (SCCC), pages 3–12. IEEE Computer Society, 2007.

Distributed Applications in AmbientTalk

• Data stored at the owner, and all operations go via asynchronous message
passing

7

deftype PingPong;

def pingPong := object: {
 def ping(){
 system.println(“received ping");
 `pong;
 }
};

export: pingPong as: PingPong;

deftype PingPong;

whenever: PingPong
discovered: {
 |farRef|
 when: farRef<-ping()@FutureMessage()
 becomes: {
 |val|
 system.println("received " + val);
 }
}

https://soft.vub.ac.be/amop/

How to reconcile failures with distributed event-based model? 8

Connected
(messages are

forwarded)

Disconnected
(messages are

buffered)

Expired
(messages are

dropped)

reconnect

expireexpire

disconnect

session

lease: 10.minutes

“A lease denotes the right to access a resource for a specific
duration negotiated when the access is first requested.”

when: ref disconnected: { ... }
when: ref reconnected: { ... }
when: ref expired: { ... }

whenever: ref disconnected: { ... }
whenever: ref reconnected: { ... }

Distributed P2P applications 9

http://tinyurl.com/ambienttalkyoutube

WePong

WeScribbleUrbiflock

PortalPong WePoker

Many times data needed to be shared… 10

def counter := isolate: {

 def val := 0;

 def incr(){ val := val + 1 };
 def decr(){ val := val - 1 };
 def value(){ val };
};

increasing availability: operations
can execute locally

improving reliability: avoid single
points of failure.

providing some form of
consistency is left to the
application programmer

2021

Could we build replicated objects so that ..

• developers can customize conflict resolution
according to the application's needs

11

Could we build replicated objects so that ..

• developers can customize conflict resolution
according to the application's needs

• without exposing them to merge procedures

12

Replicated Data Types (RDTs) 13

Shapiro et al. 2011

Replicated Data Types (RDTs) 14

Shapiro et al. 2011

def statedBasedCounter := object: {

 def vInc;
 def myId;

 def init(typeName,id,n) { .. };
 def increment() {
 def val := vInc.at(myId);
 vInc.atPut(myId, val +1);
 };
 def value() {
 def res := 0;
 vInc.each: { |val|

 res := res + val };
 res
 };
 def merge(senderVector) {
 def i := 0;
 vInc.each: { |a|
 def b := senderVector.get(i);
 vInc.atPut(i, Math.max(a,b));
 i := i + 1}};
… };

RDT

Replicated Data Types (RDTs) 15

Shapiro et al. 2011

RDT
def CRDTTrait := object: {

 def typeName := defaultCRDT;
 def replicas := [];

 def sync(){
 self.broadcast(<-merge(self.serialize()));
 };

def broadcast(msg) {
 self.replicas.each: { |farRef|
 farRef <+ msg

 }
 };

def goOnline(){
 export: self as: (self.typeName);
 whenever: (self.typeName) discovered: {
 | farRef |

 self.replicas := self.replicas + [farRef];
 }
 }
};

Distribution aspects
def statedBasedCounter := object: {
 import CRDTModule.CRDTTrait;
 def vInc;
 def myId;

 def init(typeName,id,n) { .. };
 def increment() {
 def val := vInc.at(myId);
 vInc.atPut(myId, val +1);
 };
 def value() {
 def res := 0;
 vInc.each: { |val|

 res := res + val };
 res
 };
 def merge(senderVector) {
 def i := 0;
 vInc.each: { |a|
 def b := senderVector.get(i);
 vInc.atPut(i, Math.max(a,b));
 i := i + 1}};
… };

Could we build replicated data types that..

• are application-specific ?

• customize concurrency semantics to the application needs

• support application invariants?

• are correct out-of-the box?

• can be arbitrarily composed?

• can be applied to dynamic environments with memory and network
constraints?

16

ECROs

Simplifying the development of application-specific RDTs

Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix. 2021. ECROs: building global scale systems from sequential code.
Proc. ACM Program. Lang. 5, OOPSLA, Article 107 (October 2021), 30 pages. https://doi.org/10.1145/3485484

Distributed
Specification

Explicitly Consistent Replicated Object (ECRO)

• General approach for building hybrid RDTs

sequential
data type Replicated data type

Fast when possible (EC)
consistent when needed (SC)

18

• Avoids unnecessary coordination

Distributed
Specification

Explicitly Consistent Replicated Object (ECRO)

• General approach for building hybrid RDTs

sequential
data type

Replicated data type

19

Fast when possible (EC)
consistent when needed (SC)

Building Geo-Distributed Apps, the ECRO Way

Sequential implementation

20

Implementing an Add-Wins Set

Sequential implementation in Scala

Building Geo-Distributed Apps, the ECRO Way

Sequential implementation

21

Implementing an Add-Wins Set DSL for distributed specification

Sequential implementation in Scala

Building Geo-Distributed Apps, the ECRO Way

Sequential implementation

Implementing an Add-Wins Set DSL for distributed specification

Sequential implementation in Scala

remove

not

Remove-Wins
22

Building Geo-Distributed Apps, the ECRO Way 23

Sequential implementation

DSL for distributed specification

ECRO Data Type

Ordana
Analysis Tool

SMT Solver

Translation

Replicated Data Type

Ordana: Statically Analyzes Distributed Specs

Derives information about:
1. Commutative methods

2. Conflicting methods

And finds:

3. Coordination-free solutions to conflicts

4. Fine-grained locks if no solution can be found

24

Serializing Operations: the ECRO Algorithm

• Replicas serialize operations locally
• strong convergence
• invariant preservation (i.e. safety)

Machine 1

Replicated Objects

Machine 2

Replicated Objects

Object State

ECRO Replication Algorithm

5 12 8 17

hb hb

co

Add-Wins Set Replica

Object’s State

ECRO Replication Algorithm

5 12 8 17

hb hb

co

Add-Wins Set Replica

Method call
Propagation

25

Validation

 Performance of ECROs vs PoR and RedBlue consistency

26

0

500

1000

1500

ge
tStat

us

op
en

Auc
tio

n

sto
reB

uy
Now

reg
iste

rU
se

r

pla
ce

Bid

clo
se

Auc
tio

n

La
te

nc
y

(in
 m

s)

ECRO
PoR
RedBlue

Well-known CRDTs
Counter
EW-Flag
DW-Flag
AW-Set
RW-Set
AW-Map
RW-Map
List

No CRDT

Stack
Queue

Application Specific
RUBiS

 Portfolio of ECROs

ECROs: Take Aways

• Augment sequential DT with distributed specification

• Static analysis is key to derive efficient RDTs
• allows for informed decision at runtime

• But… separate specification
• in FOL —> non-trivial, error-prone
• subtle errors —> runtime anomalies
• must evolve along with the code

27

How to ease the development of ECROs?

• High-level OOP language for sequential DTs

• Define concurrency semantics and invariants

• Fully compilable to SMT
—> FOL specifications for free

• Synthesizes ECROs

28

The EFx language 29

Analyzer

EFx AST

SMT-LIB
 code

RDT
info

EFx

Compiler

analyze

transpile
EFx

source
code

EFx AST

parse

implementation

Ordana

Scala plugin

SMT plugin JS plugin

...

concurrency contract

analysis

Scala
Pgm

ECRO

Add-Wins Set in EFx
trait SetOps[V] {
 val set: Set[V]
 protected def copy(set: Set[V]): SetOps[V]

 def contains(elem: V) = this.set.contains(elem)
 def add(elem: V) = this.copy(this.set.add(elem))
 def remove(elem: V) = this.copy(this.set.remove(elem))
}

@replicated
class AWSet[V](set: Set[V]) extends SetOps[V] {
 protected def copy(set: Set[V]) =
 new AWSet(set)

 // add wins
 inv add(elem: V) {
 this.contains(elem)
 }
}

30

Remove-Wins Set in EFx

@replicated
class AWSet[V](set: Set[V]) extends SetOps[V] {
 protected def copy(set: Set[V]) =
 new AWSet(set)

 // add wins
 inv add(elem: V) {
 this.contains(elem)
 }
}

@replicated
class RWSet[V](set: Set[V]) extends SetOps[V] {
 protected def copy(set: Set[V]) =
 new RWSet(set)

 // remove wins
 inv remove(elem: V) {
 !this.contains(elem)
 }
}

trait SetOps[V] {
 val set: Set[V]
 protected def copy(set: Set[V]): SetOps[V]

 def contains(elem: V) = this.set.contains(elem)
 def add(elem: V) = this.copy(this.set.add(elem))
 def remove(elem: V) = this.copy(this.set.remove(elem))
}

31

Validation: Portfolio of RDTs

Application specific
32

ECRO portfolio

VeriFx

Correct replicated data types for the masses

Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. VeriFx: Correct replicated data types for the masses. In 37th European Conference
on Object-Oriented Programming, ECOOP 2023, pages 9:1--9:45. Schloss Dagstuhl, July 2023.

The VeriFx Language

• High-level OOP language with extensive functional collections
• maps, sets, vectors, etc.

• Features a novel proof construct
• used by programmers
• describe application-specific

correctness properties

• Also fully compilable to SMT
—> Automated proof verification

34http://verifx.org/

VeriFx’s Iterative Workflow for developing RDTs 35

Implement RDT in VeriFx

Automated verification

correct?

Interpret
counterexample

Transpile

yes

Deploy in
system

Design RDT

Modify RDT
implementation

no

http://verifx.org/

Supporting development of distributed systems goes beyond
providing novel programming models

Tooling is essential! 37

Reasoning about distributed events.. 38

when: type discovered: { |ref| ... }
whenever: type discovered: { |ref| ... }

when: future becomes: { |result| ... }Follow-up on
outstanding requests

React to services appearing

and disappearing

React to references
disconnecting,

reconnecting, and

expiring

Generate and receive
application requests

obj<-msg(arg)  
def msg(param) { ... }

when: ref disconnected: { ... }
when: ref reconnected: { ... }
when: ref expired: { ... }

whenever: ref disconnected: { ... }
whenever: ref reconnected: { ... }

Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. Distributed debugging for mobile networks. Journal of Systems and
Software, 90:76–90, 2014.

go()

REME-D Breakpoint Catalog 39

Meth
od

 br
ea

kp
oin

ts

Sy
mbo

l b
rea

kp
oin

ts

Code breakpoints
Conditional breakpoints

Sender breakpoints
Receiver breakpoints

On entry breakpoints
On exit breakpoints

Mes
sa

ge
 br

ea
kp

oin
ts

Mes
sa

ge
 re

so
lut

ion
 br

ea
kp

oin
ts

Mes
sa

ge
 co

nd
itio

na
l b

rea
kp

oin
ts

Role

Designation

Objective

shoppingSession<-go()@FutureMessage

Message resolution breakpoint

M
es

sa
ge

 re
so

lut
io

n

resolve(value)

REME-D Stepping

Step Over
Step Into
Step Return
Step Until

40

buyerP

go

inventory

credit bureau

shipper

Step Into partInStock

checkCredit

canDeliver

5 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D

email: egonzale@vub.ac.be
office: 10F731

5 goShopping: Debugging AmbientTalk programs with
REME-D

Lab session material available at Pointcarre under LabSessions, and at http://soft.
vub.ac.be/˜egonzale under Teaching.

5.1 Idea
The purpose of this exercise is to get familiar with REME-D 1, a distributed debugger
designed for AmbientTalk applications. To this end, the lab material provides you with
an application that contains errors. You should try to fix them by launching it in the
Eclipse AmbientTalk plugin in debug mode and using REME-D’s features.

5.2 Finding bugs in the goShopping application
The provided application is a sample shopping application that needs to process pur-
chase orders. Before the shop can acknowledge the order, it must verify three things:
1) whether the requested items are still in stock, 2) whether the customer has provided
valid payment information and 3) whether a shipper is available to ship the order in
time. The following picture depicts this application which consists of 4 actors.

buyer Actor

shipper Actor

account Actor

product Actor

teller

partInStock

checkCredit

canDeliver

1read as remedy

1

Pre-experimental User Study

Goal: How real users perceive and value the
features of an ambient-oriented (AmOP) debugger.

• One-group pretest-posttest quasi-experiment
design.

• 22 participants.

41

Pre-experimental User Study: Take Home Message

• Users value REME-D as tool to make AmOP
programming in AmbientTalk easier.

• REME-D supports expected features for an
ambient-oriented debugger.

• Impact of UI and visualisations.
0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

((" (" 0" +" ++"

Value as a tool to find bugs

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

((" (" 0" +" ++"

Value as a tool to ease distributed
programming in AmbientTalk

Pretest
Posttest

42

Could we build debugging support that..

• deals with non-determinism inherent to distributed systems?

• can be applied to different concurrency models?

• features advanced visualisations for the event-based nature of distributed
systems?

• is probe-effect free?

• deals with big amounts of data?

• can be used in environments with memory and network constraints?

43

IDRA and Spa

Practical Online Debugging of Big Data Processing Applications

Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. Practical Online Debugging of Spark-like Applications. In Proceedings of the IEEE
21st International Conference on Software Quality, Reliability and Security (QRS). IEEE, p. 620-631 12 p. 2021.

Big Data Processing

Finance

Healthcare

Big Data SocialMedia

Environment

Long Running
Due to the high volume of data
they have to analyze

Distributed
They remotely execute on clusters, which
slows down the debugging cycle

Bugs in Big Data Processing Applications
46

Code Defect
Explicit errors inserted by developers

Operation Fault
Common operational mistakes, e.g., file renaming

Misuse
A configuration error, e.g., using a wrong library version

37% of Reported Errors
In cloud Big Data processing
services are attributed to developer
errors [Zhou et al. 2015]

Could we build a debugger so that..

Online Debugging
Debug the system when the bug happens

Global View
Centralised debugging of the distributed system

Updates of the Running System
Deploy code-fixes without restarting the whole distributed system

Isolation
Debug the system without interfering with its execution

47

Avoid Replays

Live Code Updating

Domain-Specific Debugging

Out-of-Place Debugging
48

Master

Worker

Worker

Debug Session
Exception

Debug Session
Exception

ClusterDeveloper Machine

Avoid Replays

Domain-Specific Debugging

Debugging Events
49

Debugging Session
Captures the execution state through
the call-stack

Include the event-inducing record
I.e., the record that was being processed when the
debugging event (breakpoint or error) happened.

Include the partition of the event-
inducing record
The partition of data that was being processed when
the debugging event happened, that includes the
event-inducing record

Remove Framework Frames
Reduce the amount of data to be transferred

Avoid Replays

Main >> main
...

TwitterApplication >> analyzeTweets
...
...
...

OutOfMemoryException >> signal

:TwitterApplication

:Tweet

:TweeterStream

Heap Call-Stack

<<local variable>>

<<receiver>>

Distributed Live Code Updates
50

Master

Worker

Worker

ClusterDeveloper Machine

Exception

Patch

Commit

Patch

Live Code Updating

 IDRAMR: A Live Debugger for Map/Reduce
51

Debug Single Record
Select which debugging event to
debug starting from the event-
inducing record, including its partition

Debug on Virtual Partitions
Including all of the event-inducing
records, or a merge of all their
partitions

Domain-Specific Debugging

 Spa: a Live Debugger for Spark
52

Dedicated stepping operations
Tailored to Spark-like computations Classic stepping operations

Typical of online debuggers

Domain-Specific Debugging

https://www.youtube.com/watch?v=GpipdhVxYq0

Event-based Out-of-place Debugging

Practical Online Debugging of Internet of Things applications

Tom Lauwaerts, Carlos Rojas Castillo, Robert Gurdeep Singh, Matteo Marra, Christophe Scholliers, and Elisa Gonzalez Boix, In,
Proceedings of the 19th International Conference on Managed Programming Languages and Runtimes (MPLR) Association for Computing
Machinery (ACM), p. 85-97 13 p. 2022.

Out of Place Debugging for Internet of Things
54

Non-transferable resources 55Domain-Specific Debugging

Non-transferable resources 56Domain-Specific Debugging

In Conclusion

• Distributed systems are varied, successful and widespread.

• They are still challenging to design and implement.

• It is essential to explore novel programming abstractions in tandem with
software tools tailored to modern concurrent and distributed software.

57

Thanks to DisCo & collaborators!
Dominik Aumayr

Jim Bauwens

Clément Béra

Dina Borrego

Kevin De Porre

Carla Ferreira

Robert Gurdeep Singh

Tom Lauwaerts

Stefan Marr

Matteo Marra

Hanspeter Mössenböck

Aäron Munsters

Florian Myter

Isaac Nyabisa Oteyo

Guillermo Polito

Nuno Preguiça

Carlos Rojas Castillo

Christophe Scholliers

Angel Luis Scull Pupo

Carmen Torres Lopez

…

58

https://soft.vub.ac.be/disco/@elisagboixegonzale@vub.be

mailto:egonzale@vub.be

