Implementing, Verifying and Debugging Distributed Systems

Elisa Gonzalez Boix

https://soft.vub.ac.be/disco/

DISTRIBUTION
& CONCURRENCY
RESEARCH GROUP

VRIJE
UNIVERSITEIT
BRUSSEL

How it all started?

A programming model for ubiquitous computing

asynchronous commun
better, why don't you Im

In an ubiquitous context,

cation suits
plement an

actor-based langu

Ubiquitous Computing Jessie Dedecker
Vision (1988)

age”’

my own language”?!?

Actors in JavaPic%

-lil'\'il;)i('(//l, E\’ulllelf: i

Eliza Conzalez Boix, Stijn Mostinckx and Tom Van Cutsem
{elgonzal smostine,:veutsem } fivub.ac.be

Programming Technology Lab
Department ol Computer Svience
Viije Universiteit Drussel
Fleinlaan 2 - 1050 Brussels - Belziam
Fax: (432 2) 620 35 25

November 2003

Abstrect

This document accompanies the source code and explains the design
and ‘mplementation considerations belind the Javal'ic? Evaluaton

1 Introduction

TLe Fivo lauguage [D'Howmdu, 19961 was criginally develooed as a teaxching
environmen: to provide science stidents with a programming language essy to
reacd but as powerful and simple as Scheme. However, it also became a research
framowork for reflective virtual machines and strong mobility (Van Bello and
[D"Hondt, 2000], Pico was designed as & simple ard extensible langnage Hased
upon quite simple ralee. Morocver. all Pico construets are first class valuce
which tmphes that basie values, lunctiors, tables, environments and parse tress

can be passed es arguments, returned by functions or be bound to a variable,

FPic% was developed as an object onented extension of the Pico language hased
on protetype-based language features. This implies that there are no classes,
instead it is based on the use of prototypes. New objects are ereated by cloning
existing J]Jj"l ts, or]1_'.‘ the use of corstructor functions, which are a tl'un.\]n.l\i'.iuu
of elass-hased ah’ect ennstrinctars. Maodifizatinn and enmmunication is done hy
message passing. Therefore Pic% supports delegation, cloning of prototypical
objects and parent sharing mechenisms. However, Pie', also inherits the simple
Fico syntax. Table 1 shows the Pic’o syntax. The first three rows are the
standarc 3.X3 cyntax rules for Pico (De Mauter et al., 1999) and the Jast three
are specific for Pic%.

Tlror s nificent uends kv videss
coard the contral rele A" canarirren~y

m compuling. Firt, thers 1 an-
creasec ase of interactng processes
by individuad users, furocunple, ap-
plicaticn programs ninning nn X
windowr. Second, wordmiation met-
works have bccomes & cont-clesive

CONCURRENT
OBJECT-ORIENTED
PROGRAMMING

mechznism for resource sharing and
distrbuted problem solving, Forex

ample, locsely wwap'al pacdlens,
such as finding all the fzcrors of larg=
prme numbers, have been sovec by
utdizing sdeal cyzles on networks of
hundreds of workstations. A locecly
eovapled neahlemn is e which can b
easdy partitened into marry smaller
suoproblems 55 taat interactione

betweea the subprebloma i3 quite limited, Finnly, mauprecesor weeh

COMMUSAOAT IS OF THE ASN Sopsrwbor IDRUVTT No 3

factor (n) : createActor ({
fac (c, client) ::{
if ((n> 1, {
next: factor(n-1);
1f(n = ¢, next.fac(c, client),
next.fac(c*n, client)) },
client.result(c))

}
}) s

factorial : createActor ({
result(res) :: { display(res)};
compute (num) :: {
a : factor (num);
a.fac (num, thisActor()) }

b)) s

factorial.compute (3);

ﬂ BN B .1
...... | -

(RTINS

e .

How It all started again®

+a programming model for ubiquitous computing

nat about exploring a
fallure handling model for
AmbientTalk?

AmbientTalk?

Wolfgang
De Meuter

Jessie Tom Stijn
Dedecker Van Cutsem Mostinckx

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D'Hondt, W. De Meuter. 2006. Ambient-Oriented Programming in AmbientTalk. In Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP), LNCS Vol. 4067, pp. 230-254, Springer-Verlag.”, 2006.

AmbientTalk’s Distributed Model = OO + Events

A superset of object-oriented programming that is explicitly geared towards programming
distributed applications that run on mobile ad hoc networks

Generate and receive obj<-msg(arg)
application requests msg(param) { ... }

Follow-up on

outstanding requests future { lresultl ... }
React to services appearing type { lrefl ... }
and disappearing type { lrefl ... }

ref { ...}
React to references ref { ...}
disconnecting,
reconnecting ref { ...}

ref { ...}

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and Wolfgang De Meuter. Ambienttalk: object-oriented event-driven programming in
mobile ad hoc networks. In Inter. Conf. of the Chilean Computer Science Society (SCCC), pages 3—12. IEEE Computer Society, 2007 .

Distributed Applications in AmbientTalk

|

https://soft.vub.ac.be/amop/

deftype PingPong;

def pingPong := object: {
def ping(){
system.println(“received ping");
“pong;
5
¥

export: pingPong as: PingPong;

deftype PingPong;

whenever: PingPong
discovered: {
| farRef |
when: farRef<-ping()@FutureMessage()
becomes: {
lval |
system.println("received " + val);

¥
¥

Data stored at the owner, and all operations go via asynchronous message

passing

How to reconcile failures with distributed event-based model?

oy A lease denotes the right to access a resource for a specific
| 7‘ duration negotiated when the access is first requested.”

4 4

lease: 1@.minutes
@ P

session

?

disconnect
[Connected \/\(Disconnected | : : :
(messages are (messages are when: ref disconnected: { ... }
forwarded) ~_ buffered) when: ref reconnected: { ... }
reconnect when: ref expired: { ... }
expire expire
[Expired) whenever: ref disconnected: { ... }
(messages are whenever: ref reconnected: { ... }
dropped)

*

O

Distributed P2P applications

Urbiflock WeScribble

’as-/.

For each connected player a portal is created

http://tinyurl.com/ambienttalkyoutube

Many times data needed to be shared...

def counter 1solate: {

def val Q;

def incr(){ val := val + 1 };
def decr(){ val val - 1 };
def value(){ val };

¥

W increasing availability: operations
can execute locally

W improving reliability: avoid single
points of failure.

8 providing some form of
consistency is left to the
application programmer

® JxCat PPSC

Q

ERC [PDeCAT

CUP-G @ PP @ VOX

2021

Could we build replicated objects so that ..

11

+ developers can customize conflict resolution
according to the application’'s needs

Bayou_Write (
update = {insert, Meetings, 12/18/95, 10:00am, 60min, Project Meeting: Kevin},
dependency_check = {
query = SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am,
expected_result = EMPTY },
mergeproc = {
alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {
check if there would be a conflict
IF (NOT EMPTY (
SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, Project Meeting: Kevin};

BREAK;

}

IF (newupdate = {}) # no alternate is acceptable
newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, Project Meeting: Kevin};
RETURN newupdate;

}
)

The Bayou Architecture: Support for Data Sharing among Mobile Users

Alan Demers, Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, Brent Welch

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, Califormia 94304 US A.
contact: terrv@pare xerox.com

Abstract

The Bavou Svstem is a platform of replicated, highly-
available, variable-consistency, mobile databases on
which to build collaborative applications. This paper pre-
sents the preliminary svstem architecture along with the
design goals that influenced it. We take a fresh, bottom-up
and critical look at the requirements of mobile computing
applications and carefully pull together both new and
existing techniques into an overall architecture that meets
these requirements. Our emphasis is on supporting appli-
cation-specific conflict detection and resolution and on
providing application-controlled inconsistency.

1. Introduction

The Bayou project at Xerox PARC has been designing
a system to support data sharing among mobile users. The
system 1s intended to run in a mobile computing environ-
ment that includes portable machines with less than ideal
network connectivity. In particular, a user’s computer may
have a wireless communication device, such as a cell
modem or packet radio transceiver relying on a network
infrastructure that i1s not universally available and perhaps
unreasonably expensive. It may use short-range line-of-
sight communication, such as the infrared “beaming” ports
available on some commercial personal digital assistants
(PDAs). Altermatively, the computer may have a conven-
tional modem requiring it to be physically connected to a
phone line when sending and receiving data or may only
be able to communicate with the rest of the system when
inserted i a docking station. Finally, its only communica-
tion device may be a diskette that is transported between
machines by humans. The main charactenistic of these
communication capabilities is that a mobile computer may
experience extended and sometimes involuntary discon-
nection from many or all of the other devices with which it
wants to share data,

We believe that mobile users want to share their
appomtment calendars, bibliographic databases, meeting
notes, evolving design documents, news bulletin boards,
and other types of data in spite of their intermittent net-
work connectivity., The focus of the Bayou project has
been on exploring mechanisms that let mobile clients
actively read and write shared data. Even though the sys-
tem must cope with both voluntary and involuntary com-
munication outages, it should look to users, to the extent
possible, like a centralized, highly-available database ser-
vice. This paper presents detailed goals for the overall sys-
tem architecture and discusses the design decisions that
we made to meet these goals,

2. Architectural design decisions

Goal: Support for portable computers with limited
resources.

Design: A flexible client-server architecture,

Many of the devices that we envision being com-
monly used, such as PDAs and the ParcTab developed
within our lab [24], have insufficient storage for holding
copies of all, or perhaps any, of the data that their users
want to access. For this reason, our architecture is based
on a division of functionality between servers, which store
data, and clients, which read and wnite data managed by
servers. A server is any machine that holds a complete
copy of one or more databases. We use the term “data-
base™ loosely to denote a collection of data items; whether
such data is managed as a relational database or simply
stored in a conventional file system is left unspecified in
the architecture, Clients are able to access data residing on
any server to which they can communicate, and con-
versely, any machine holding a copy of a database, includ-
g personal laptops, should be willing to service read and
write requests from other nearby machines.

Could we build replicated objects so that .. .,

+ developers can customize conflict resolution
according to the application’'s needs

The Bayou Architecture: Support for Data Sharing among Mobile Users

Alan Demers, Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, Brent Welch

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, Califormia 94304 US A.
contact: terrv@pare xerox.com

- without exposing them to merge procedures

Abstract We believe that mobile users want to share their

Bayou_Write (
update = {insert, Meetings, 12/18/95, 10:00am, 60min, Project Meeting: Kevin},
dependency_check = {
query = SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am,
expected_result = EMPTY },
mergeproc = {
alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {
check if there would be a conflict
IF (NOT EMPTY (
SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, Project Meeting: Kevin};
BREAK;;
}
IF (newupdate = {}) # no alternate is acceptable
newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, Project Meeting: Kevin};
RETURN newupdate;

}

)

The Bavou Svstem is a platform of replicated, highly-
available, variable-consistency, mobile databases on
which to build collaborative applications. This paper pre-
sents the preliminary svstem architecture along with the
design goals that influenced it. We take a fresh, bottom-up
and critical look at the requirements of mobile computing
applications and carefully pull together both new and
existing techniques into an overall architecture that meets
these requirements. Our emphasis is on supporting appli-
cation-specific conflict detection and resolution and on
providing application-controlled inconsistency.

1. Introduction

The Bayou project at Xerox PARC has been designing
a system to support data sharing among mobile users. The
system 1s intended to run in a mobile computing environ-
ment that includes portable machines with less than ideal
network connectivity. In particular, a user’s computer may
have a wireless communication device, such as a cell
modem or packet radio transceiver relying on a network
infrastructure that i1s not universally available and perhaps
unreasonably expensive. It may use short-range line-of-
sight communication, such as the infrared “beaming” ports
available on some commercial personal digital assistants
(PDAs). Altermatively, the computer may have a conven-
tional modem requiring it to be physically connected to a
phone line when sending and receiving data or may only
be able to communicate with the rest of the system when
inserted i a docking station. Finally, its only communica-
tion device may be a diskette that is transported between
machines by humans. The main charactenistic of these
communication capabilities is that a mobile computer may
experience extended and sometimes involuntary discon-
nection from many or all of the other devices with which it
wants to share data,

appomtment calendars, bibliographic databases, meeting
notes, evolving design documents, news bulletin boards,
and other types of data in spite of their intermittent net-
work connectivity., The focus of the Bayou project has
been on exploring mechanisms that let mobile clients
actively read and write shared data. Even though the sys-
tem must cope with both voluntary and mvoluntary com-
munication outages, it should look to users, to the extent
possible, like a centralized, highly-available database ser-
vice. This paper presents detailed goals for the overall sys-
tem architecture and discusses the design decisions that
we made to meet these goals.,

2. Architectural design decisions

Goal: Support for portable computers with limited
resources.

Design: A flexible client-server architecture,

Many of the devices that we envision being com-
monly used, such as PDAs and the ParcTab developed
within our lab [24], have insufficient storage for holding
copies of all, or perhaps any, of the data that their users
want to access. For this reason, our architecture is based
on a division of functionality between servers, which store
data, and clients, which read and wnite data managed by
servers. A server is any machine that holds a complete
copy of one or more databases. We use the term “data-
base™ loosely to denote a collection of data items; whether
such data is managed as a relational database or simply
stored in a conventional file system is left unspecified in
the architecture, Clients are able to access data residing on
any server to which they can communicate, and con-
versely, any machine holding a copy of a database, includ-
ing personal laptops, should be willing to service read and
write requests from other nearby machines.

Replicated Data Types (RDTs)

Specification 6 State-based increment-only counter (vector version)

1: payload integer[n| P
2: initial [0,0,...,0]

3: update increment ()

4: let g = mylD()

5: Plg] := Plg] + 1

6: query value () : integer v

T let v = Zt P[i]

8: compare (X, Y) : boolean b

0: let b= (Vie [0,n—1]: X.P[i] < Y.Pli])
10: merge (X, Y) : payload Z
11: It Vi € [0,n — 1] : Z.P[i] = max(X.P[i],Y.Pli])

Shapiro et al. 2011

Replicated Data Types (RDTs)

Specification 6 State-based increment-only counter (vector version) RDT
1: payload integer[n| P
2 initial [0,0,...,0] def statedBasedCounter := object: {
3: update increment ()
4 let g = mylD() .
5 Plg] == Plg] +1 def vIncz
6: query value () : integer v def myld;
7: let v =73 Pli]
8: compare (X, Y) : boolean b def init(typeName,id,n) { .. };
9: letb=(Vie[0,n—1]: X.PE = Y.Pli]} def increment() {
10: merge (X, Y) : payload Z def val := vInc.at(myId);

11: IptVie [0,n— 1] : Z.P[i] = max(X.PJi],

vInc.atPut(myId, val +1);

Shapiro et al. 2011 iléf valueQ) {
def res := 0;
vInc.each: { |vall
res := res + val };

res

s

def merge(senderVector) {
def 1 := 0;

vInc.each: { lal
def b := senderVector.get(1i);
vInc.atPut(i, Math.max(a,b));
1 =1 + 1}};
- 15

Replicated Data Types (RDTs)

Specification 6 State-based increment-only counter (vector version)

RDT Distribution aspects

1: payload integer[n| P
2: initial [0,0,...,0]
3: update increment ()
4: let g = mylD()
3

: Plg] := Plg] + 1
6: query value () : integer v
7: let v =75 Pl[i

8: compare (X, Y) : boolean b

0: let b= (Vie [0,n—1]: X.P[i] < Y.P[i])
10: merge (X, Y) : payload Z

11: et Vi € [0,n — 1] : Z.P[i] = max(X.P][i].

Shapiro et al. 2011

def statedBasedCounter := object: {
import CRDTModule.CRDTTrait;
def vInc;

def myld;

def init(typeName,id,n) { .. };
def increment() {
def val := vInc.at(myId);
vInc.atPut(myId, val +1);

55

def value() {
def res := 0;
vInc.each: { |vall

res := res + val };

res

5

def merge(senderVector) {
def 1 := 0;

vInc.each: { lal
def b := senderVector.get(1i);
vInc.atPut(i, Math.max(a,b));
1 =1 + 1}};
- 15

def CRDTTrait := object: {

def typeName := defaultCRDT;
def replicas := [];

def sync(){
self.broadcast(<-merge(self.serialize()));

s

def broadcast(msg) {
self.replicas.each: { [farRefl
farRef <+ msg

}
s

def goOnline(){
export: self as: (self.typeName);
whenever: (self.typeName) discovered: {
| farRef |
self.replicas := self.replicas + [farRef];

}
}
b

DISTRIBUTION

Could we build replicated data types that.. . ARG PO

- are application-specific 7
+ customize concurrency semantics to the application needs
+ support application invariants”?
- are correct out-of-the box?
+can be arbitrarily composed?

+can be applied to dynamic environments with memory and network
constraints®

FCROs

Simplifying the development of application-specific RDTs

Kevin De Porre, Carla Ferreira, Nuno Preguica, and Elisa Gonzalez Boix. 2021. ECROs: building global scale systems from sequential code.
Proc. ACM Program. Lang. 5, OOPSLA, Article 107 (October 2021), 30 pages. https://doi.org/10.1145/3485484

Explicitly Consistent Replicated Object (ECRO)

18

General approach for building hybrid RDTs

©

Distributed
Specification

sequential
data type

Replicated data type

+ Avoids unnecessary coordination

:. Fast when possible (EC) ;
| consistent when needed (SC) |

Explicitly Consistent Replicated Object (ECRO)

General approach for building hybrid RDTs

] sequential
data type 1

- casc class AWSct[V](set: Set[V]) (..
def add(x: V) = >
new AWSet(set + x)

def remove(x: V) = DiSTribUTed
new AWSet(seti - x) .. .
Specification

def contains(x: V) =
set.contains(x)

3 object AWSet (‘

Replicated data type

| Fast when possible (EC) |

Building Geo-Distributed Apps, the ECRO Way

20

Implementing an Add-Wins Set

Sequential iImplementation in Scala

case class AWSet[V](set: Set[V]) {
def add(x: V) =
new AWSet(set + x)

def remove(x: V) =
new AWSet(set - Xx)

def contains(x: V) =
set.contains(x)

Building Geo-Distributed Apps, the ECRO Way

Implementing an Add-Wins Set Q. DSL for distributed specification
object AWSet {
\ // contains: V X State X Bool
Seqguential implementation in Scala val contains: Relation = ...

postcondition of add {
(old: OldState, res: NewState) =>
contains(x, res) /\

case class AWSet[V](set: Set[V]) (

def add(x: V) = contains.copyExcept(old -> res, elem === x)
new AWSet(set + x))
postcondition of remove {
def remove(x: V) = (old: OldState, res: NewState) =>
~ not (contains(x, res)) /\
L AWSet(set X> contains.copyExcept(old -> res, elem === Xx)
}

def contains(x: V) = invariant on add {

set.contalns(x) (_: OldState, res: NewState) =>
} contains(x, res)

T e —— }

}

T — B

Sequential implementation in Scala

case class AWSet[V](set: Set[V]) {
def add(x: V) =
new AWSet(set + Xx)

def remove(x: V) =
new AWSet(set - x)

def contains(x: V) =
set.contains(x)

(b remove

invariant on -a€e= {
(_: OldState, res: NewState) =>
contains(x, res)

¥ tno‘r

22

Building Geo-Distributed Apps, the ECRO Way .

ECRO Data Type
Sequential implementation\ Replicated Data lype

case class AWSet[V](set: Set[V]) {
def add(x: V) =
new AWSet(set + x)

def remove(x: V) =
new AWSet(set - x)

def contains(x: V) =
set.contains(x)

}

*

< DSL for distributed specification

object AWSet {
// contains: V X State X Bool

Ordana |
val contains: Relation = ... B T “ Q | L T ‘ ‘ ‘
postcondition of add { na ySIS OO 1

(old: OldState, res: NewState) => L

contains(x, res) /\
contains.copyExcept(old -> res, elem === x)
) .
postcondition of remove { .
(old: OldState, res: NewState) =>
not (contains(x, res)) /\
contains.copyExcept(old -> res, elem === x)

|

invariant on add {
(_: OldState, res: NewState) =>
contains(x, res)
}
}
T ———

Ordana: Statically Analyzes Distributed Specs

Derives information about:
1. Commutative methods

2. Conflicting methods
And finds:

3. Coordination-free solutions to conflicts

4.

-Ine-grained locks it no solution can be founad

Serializing Operations: the ECRO Algorithm s

[' [[
» Replicas serialize operations locally it 0 st o o
1 (Z,0p.M.G.LF),withG= {(C.E) » CCRO's internal state
2: o % > abject current state o
() S't rO n COn Ver en Ce 3: function EXECUTE_Locarn(m(a)) & execulion of method m with paramelers @, al orgn replica
g g 4: ¢« (m(a), uniqueld(), timestamp()) = lag method call with unigue 1d and logical Lmestamp
5 if restrictions(c) # @ then ® call ¢ may be unsafe
' ' ' 0 6 acnuire_locks(restrictians(c))
» invariant preservation (i.e. safety) L
&: forve CAv#ce da » determine relevant hh-edges for call ¢
9; if not seqCommutative(c, v) then t call ¢ 15 sequentzal non-commulative with call v
10 E« EU{{v.hb,.c)} > add hb-edge between call vand call ¢
11 t—t+c > local call ¢ has no impact on topological order
12- o « apply(c, ¢) » execute call ¢ on current state o
15 commitStableCalls() t commils previous calls il There is a single replics
Mach | ne 1 M ach | ne 2 .: Kﬁﬁﬁ:’ then > propagation of call ¢ to remote replicas (at-least-once causal dehivery)
16: wait ack() > if nceded, wait for ack
Replicated Objects Replicated Objects . release _locks(restrictiomns(c) _

18: function EXECUTE_REMOTE(c) > execulion of call ¢ al remole replica
19: C—Cu{c & add call ¢ lo the graph verlices
Add'WlnS Set RepllCa Add'WlnS Set RepllCa 20 forve C {/'\ V}t c do ® determine relevant edges t,(clation:) for call ¢
21: if v <c A naot seqCommutative(c, v)then » el ¢is sequential non-commutative with eall v
. . 22: E «FE U{ {v,hb, c)} » add hb-edge hetween call vand eall ¢
ObjeCt’S State ObJeCt State Z3: else if v || ¢ then & call v 1s concurrent with call ¢
_ _ 24: if resolution(c, v) = < then > conflict solved by ordering ¢ before v
val set: Sem val set: Sem 25: E —E U {{c, co,v)} > add co-edge between call ¢ and call v
26: else if resolution(c, v) — > then » conflict solved by ordering 2: before ¢
27: E«—E U{{vce}) ® add co-edge between call v and call ¢
ECRO RepllCatlon A|gOrIthm ECRO RepllCathn A|gOrIthm 28. else if rescluticn(c,v)=T A ® calls ¢ and v are non-conflicting and non-commutative

29: not commutative(e, v) then
/ \ 30: if Td(c) < Td(v) then » arhitrate a2 deterministic order hased on ids
31: E«—EU|(v,200)} > add ac-edge between call ¢ and call v
hb hb Method call hb hb 52 else E«— E U { (v, 20, c)} > add ac-edge between call v and call ¢
. 33 t « dynamicTopologicalSort(G) ® apply algorithm to subgraph of concarrent calls to¢
co Propagatlon co - €« J[’P'Y("ﬂ. t) P exeonte calls on initial state o,
35: commitStableCalls() > commit prefix of cansally stable calls

__ - — ———

Validation

PEddfoienoEESP BOROSs vs PoR and RedBlue consistency

Well-known CRDTs ECRO

B PoR
Counter 15001 @ RedBlue
EW-Flag

DW-Flag
AW-Set
RW-Set
AW-Map
RW-Map
List
Stack
Queue

1000-

Latency (in ms)

500

—r e 5 & & < > Y
Application Specific & $° N Nid £ &°
RUBIS S & <@ S o

ECROs: Take Aways

- Augment sequential DT with distributed specification

Static analysis is key to derive efficient RDTs
allows for informed decision at runtime

But... separate specification Qz.,,.
N FOL —> non-trivial, error-prone
subtle errors —> runtime anomalies
must evolve along with the code

How to ease the development of ECROs"?

- High-level OOP language for sequential DTs

- Detine concurrency semantics and invariants Q«

- Fully compilable to SMT
—> FOL specifications for free

« Synthesizes ECROs

28

Ihe EFx language

O implementation

O concurrency contract |

EFx AST
EFXQ analyze
parse
source transpile
code

EFx
Analyzer
EFx AST
2 r
Ordana
SMT-LIB| analysis
>
code @
_ (4
\ f
Compiler
SMT plugin JS plugin
> _ J _ J

'

Scala plugin

R e R

\. J/

RDT
info

Scala
Pgm

ECRO

29

Add-Wins Set in EFx

trait SetOps[V] {
val set: Set[V]
protected def copy(set: Set[V]): SetOps[V]

this.set.contains(elem)
this.copy(this.set.add(elem))
this.copy(this.set.remove(elem))

def contains(elem: V)
def add(elem: V)
def remove(elem: V)

@replicated
class AWSet[V](set: Set[V]) extends SetOps[V] {
protected def copy(set: Set[V]) =
new AWSet(set)

// add wins

inv add(elem: V) { Q,
this.contains(elem) :

¥

}

30

Remove-Wins Set in EFx N

trait SetOps[V] {
val set: Set[V]
protected def copy(set: Set[V]): SetOps[V]

this.set.contains(elem) k
this.copy(this.set.add(elem))

this.copy(this.set.remove(elem))

def contains(elem: V)
def add(elem: V)
def remove(elem: V)

Iy
@replicated @replicated
class AWSet[V](set: Set[V]) extends SetOps[V] { class RWSet[V](set: Set[V]) extends SetOps[V] 1
protected def copy(set: Set[V]) = protected def copy(set: Set[V]) =
new AWSet(set) new RWSet(set)
// remove wins
add(elem: V) { <<>. inv remove(elem: V) A <Q;
this.contains(elem) . 'this.contains(elem) :
I3 ¥

} }

Validation: Portfolio of RD s

Data Type LoC C

M Description and distributed semantics

Supports increments and decrements.

Flag that can be enabled and disabled. Enable wins over
concurrent disable operations.

Similar to EW-Flag but guarantees disable-wins semantics.

Set providing add-wins semantics for concurrent adds and
removes of the same element.

Set providing remove-wins semantics.

Counter 6 1
EW-Flag 13 1
DW-Flag 13 1
AW-Set 12 1
RW-Set 12
LWW.-Set 11

Set providing last-writer-wins semantics.

LWW-Array 21 1

Array providing last-writer-wins semantics for concurrent
writes on the same index.

2
2
2
2
2
2
1
1

Array with coordinated writes (locks index before writing).

ECRO portfolio |SmeAmy 24 1

AW-Map 16 1

Map with add-wins semantics for concurrent adds and
2 removes of the same key, and last-writer-wins semantics for
concurrent adds of the same key.

RW-Map 16 1

Similar to AW-Map but remove-wins semantics for
concurrent adds and removes of the same key.

Stack 14 1

Stack allowing push, pop, and top operations. Push
operations execute optimistically and are totally ordered.
Pop operations are coordinated in order not to pop more
elements than there are on the stack.

neue 12 1
Q

VotingGame 53 3

Enqueue operations run optimistically and are totally
2 ordered. Dequeue operations are coordinated to avoid

degueueing more elements than there are in the queue.

A distributed voting game inspired by contemporary

2 tv-shows [Cet+14].

App‘ication SpeCiﬂC SmallBank 90 9

Banking application corresponding to the SmallBank
benchmark Alo+08].

RUBIS 87 2

6 Auction system similar to the RUBIS benchmark [EJ09].

Airline 285 0

9 An airline reservation system inspired by Acme Air [TS].

32

VeriFx

Correct replicated data types for the masses

Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. VeriFx: Correct replicated data types for the masses. In 37th European Conference
on Object-Oriented Programming, ECOOP 2023, pages 9:1--9:45. Schloss Dagstuhl, July 2023.

E

The VeriFx Language

http://verifx.org/ =

- High-level OOP language with extensive functional collections

* maps, Sets, vectors, etc.

+ Features a novel proof construct

- used by programmers

+ describe application-specific
correctness properties

- Also fully compilable to SMT .
—> Automated proof verification

Tuple<A, B>

+ fst: A
+snd : B

Set<V->

+ add(e: V) : Set<V>

+ removel(e: V) : Set<V>

+ contains(e: V) : bool

+ isEmpty() : bool

+ nonEmpty() : bool

+ union(s: Set<V>) : Set<V>

+ diff(s: Set<V=>) : Set<V-

+ intersect(s: Set<V>) ; Set<V>
+ subsetOf(that: Set[V]) : bool
+ map<W>(f: V => W) : Set<W>
+ filter(p: V => bool) : Set<V>
+ forall(p: V => bool) : bool

+ exists(p: V == bool) : bool

Vector<V>

+ size ; Int

+ get(idx: Int) : V

+ write(idx: Int, value: V) : Vector<V=

+ append(value: V) : Vector«Vs>
+ map<Ws(f: V == W) : Vector«W>

Map=<K, V>

+ add(k: K, v: V) : Map<K, V>

+ remove(k: K) : Map<K, V>

+ contains(k: K) : bool

+ get(ke K) : V

+ getOrElse(k: K, default: V) : V

+ keys() : Set<K>

+ values() : Set<V>

+ bijective() : bool

+ map<W>(f: (K, V) => W) : Map<K, W>

+ mapValues<W>(f: V => W) : Map<K, W>

+ filter(p: (K, V) => bool) : Map<K, V>

+ zip<W>(m: Map<K, W>) : Map<K, Tuple<V, W>>
+ combine(m: Map<K, V>, £ (V, V) => V) : Map<K, V>
+ forall(p: (K, V) => bool) : bool

+ exists(p: (K, V) == bool) : bool

+ toSet() : Set<Tuple<K, V>>

| | List<V>
| |+ size : [nt
+ get(idx: Int) : V
+ insert(idx: Int, value: V) : List<V>
+ delete(idx: Int) : List<V=>
+ map<Ws=(f: V == W) : List«W>

+ 2ip«Ws(v: Vector«Ws): Vector<Tuple<V,W>> + zip«W>(l: List«Ws): List«Tuple«V,W> >

+ forall(p: V => bool) : bool

+ exists(p: V == bool) : bool

+ forall(p: V => bool) : bool
+ exists(p: V == bool) : bool

VerikFx’s Iterative Workflow for developing RDTs http://verifx.org/ =

Design RDT |

v
Implement RDT in VeriFx

y

—> Automated verification v

Modify RDT | (gorrect?>————
implementation / _
Transpile
T o ;

counterexample system

Interpret § [Deploy in}

Supporting development of distributed systems goes beyond
providing novel programming models

looling Is essentiall .

' Elisa Gonzalez Boix

@elisagboix

— | S ELE 15) Running around with 10000 euros for my AmbientTalk class about
: | | distributed programming on android :D

) tost.as

¢ hellcvorld;

£33 dnf © 1@ cotect (ot sayWel leCo{system . printint ke lo world from Adraid! 33}
Wparts o an o hel'olorid; 4
system. printinl'wellaforid ecoortiig to the neteork ‘. 0)
netaork.ariine

1€ 0 AmblentTa k 2 o v TasSize 2 °

e Terminal - java — BOx24
J1at tezl.as = olisp
ntTalk Shell, verziar 2.19
172 12 the networ«:«<oh)s 180807 % (xuy-w

» Morld frow &-2reid

B AW T8
o ANBRNTRRE Sl ersier 275
~T.

SHEIMMS L Cocovmed “y el
SULy.] 1 ADORTL ey Melcy <0

Reasoning about distributed events..

Generate and receive

application requests

obj<-msg(arg)
def msg(param) { ... }

Follow-up on
outstanding requests

when: future becomes: { |resultl

¥

Il (pause)
M (stepping)

React to services appearing when: type discovered: { lrefl ... }

and disappearing

whenever: type discovered: { |ref|

- © (epidemic)

React to references
disconnecting,
reconnecting, and

ref
ref
ref

when:
when:
when:

disconnected: { ... }
reconnected: { ... }
expired: { ... }

expiring

whenever:

whenever:

ref disconnected: { ... }
ref reconnected: { ... }

® (breakpoints)—

~
-

Iworkspace-helios

v o, :“.)l-l Vi Debug ™
D Deeg I UL Servers . > e [X - —| -
v . NuiastMesienger [AmbiereT ol [
v P AT 2 Pocamast] at | W - BESE596220)205 L 0968 " -~
Facker i 66214005 Mefee N R s
Sacsord -B2074511 D L84) - "
Taver Wl 200842650 Dine 164) oo -
o Ut 171 dhug pont (39021 MG 195988428 Tiimitdisplay
L T «oby 167103192 NaetUsernam
actor view | >
b warrantyle b stantMessmagerat Bl caaniMene g O " O
er{usernome)|
{ v neaee
A
|
LAt "2} »
o> |
T | verg |
|
’
Q " LogCm -
[T am T Y
Amd o er il e F A9 (devels
IMarager .o ng fcduy part by def | 1o 14005
1133500220 Future mak
lllllll
of JNERL759)
alMe] ench) g upport b 0ed|) ~ 2003 e
LS ablys PP ? 8¢ 34 -) 74511
L% dy
f , I
Writabl e

Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. Distributed debugging for mobile networks.
Software, 90:76—90, 2014.

Journal of Systems and

38

§ (object inspector)

&
(browse
history of
messages)

REME-D Breakpoint Catalog

& &
3 R
KR . >
Messagedesgiution lyfeakpoint
6\{\ .\O{\ \é\ .\QQ \{,\\'
< & & & 8
> O S & R
‘Q@) @rg \Q\Q’(b 00 Q\QSO
@ shoppingSghs i$n<3yo (W FuplreMessage
% S N % S
¥ N ¥
rote [Sender breakpoints ¢ ¢ ¢
Receiver breakpoints ® @ Q-
— Code breakpoints -@ & @
Designation N _
Conditional breakpoints @ Q-
. — On entry breakpoints @ @ Q-
Objective .
——0 " ' breakpoints . ’
--- C
-- p~\‘
\ ,'

resolve (value)

REME-D Stepping

inventory T

Step Over p

L
m partInStock| .~

Step Return P
Step Until

checkCredit
~

~
~
~
~
b
hd
~
~
~
~
~
~
~

\~*
canDelilver <::>
™~

Pre-experimental User Study

Goal: How real users perceive and value the
features of an ambient-oriented (AmORP) debugger.

- One-group pretest-posttest quasi-experiment
design.

22 participants.

5 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D

email: egonzale@vub.ac.be
office: 10F731

5 goShopping: Debugging AmbientTalk programs with
REME-D

Lab session material available at Pointcarre under LabSessions, and athttp://soft.
vub.ac.be/~egonzale under Teaching.

5.1 Idea

The purpose of this exercise is to get familiar with REME-D !, a distributed debugger
designed for AmbientTalk applications. To this end, the lab material provides you with
an application that contains errors. You should try to fix them by launching it in the
Eclipse AmbientTalk plugin in debug mode and using REME-D’s features.

5.2 Finding bugs in the goShopping application

The provided application is a sample shopping application that needs to process pur-
chase orders. Before the shop can acknowledge the order, it must verify three things:
1) whether the requested items are still in stock, 2) whether the customer has provided
valid payment information and 3) whether a shipper is available to ship the order in
time. The following picture depicts this application which consists of 4 actors.

product Actor

,,.-"[o‘értInStock

buyer Actor N/

account Actor

checkCredit
teller

canDeliver

shipper Actor

Iread as remedy

Pre-experimental User Study: Take Home Message

Value as a tool to find bugs

Users value REME-D as tool to make AmOP "

programming in AmbientTalk easier.)

12

10

REME-D supports expected features for an
ambient-oriented debugger.

o N B~ OO ©®©

- 1

0

\mpaC’[of Ul and visualisations. Value as a tool to ease distributed

programming in AmbientTalk

18

16

14

12

10

o N B~ O ©®

[1Pretest — l I

BPosttest . _ 0

& CONCURRENCY
Could we builld debugging support that.. RESEARCH GROUP

+deals with non-determinism inherent to distributed systems”?
+can be applied to different concurrency models?

- features advanced visualisations for the event-based nature of distributed
systems”/

+ 1S probe-effect free”
+ deals with big amounts of data”?

+can be used In environments with memory and network constraints?

IDRA and Spa

Practical Online Debugging of Big Data Processing Applications

i
#

Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. Practical Online Debugging of Spark-like Applications. In Proceedings of the IEEE
21st International Conference on Software Quality, Reliability and Security (QRS). IEEE, p. 620-631 12 p. 2021.

Big Data Processing

Healthcare

S

gk saL

Long Running Distributed
Due to the high volume of data They remotely execute on clusters, which
they have to analyze slows down the debugging cycle

Bugs In Big Data Processing Applications

46

Code Defect

=Xplicit errors inserted by developers

37% of Reported Errors

In cloud Big Data processing

services are attributed to developer Operation Fault
eITOrS [Zhou et al. 2018 Common operational mistakes, e.g., file renaming
Misuse

A configuration error, e.g., using a wrong library version

Could we build a debugger so that..

Online Debugging
Debug the system when the bug happens

Global View
Centralised debugging of the distributed system

Isolation
¢|>

Debug the system without interfering with its execution

7 Updates of the Running System
W Deploy code-fixes without restarting the whole distributed system

Avoid Replays

Domain-Specific Debugging

Live Code Updating

47

Out-of-Place Debugging

Developer Machine

Cluster

Master

Worker

[
= T

|
i

!

Worker

Avoid Replays

Domain-Specific Debugging

48

Debugging Events

Debugging Session
Captures the execution state through
the call-stack

Heap Call-Stack

OutOfMemoryException >> signa

Avoid Replays

Remove Framework Frames
Reduce the amount of data to be transferred

Include the event-inducing record
l.e., the record that was being processed when the
debugging event (breakpoint or error) happened.

Include the partition of the event-

inducing record

The partition of data that was being processed when
the debugging event happened, that includes the
event-inducing record

49

Distributed Live Code Updates

Developer Machine E Cluster

]
ayy

Master

Worker

Worker

Live Code Updating

50

IDRAwMR: A Live Debugger for Map/Reduce

x - 0O IDRA Manager Overview v

CompositeExceptior CodeManager

Composite Exceptions

D stack of the selected Composite Exception

[3] Error: Reading a number failed: a digit between 0 and 9 expected while applying Map in VoteCountingMRApplication | NumberParser(Object)>>error:

Debug Single Record

Select which debugging event to
debug starting from the event-
Inducing record, including its partition

NumberParser>>expected:
NumberParser>>nextUnsignedintegerBase:
NumberParser>>nextintegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:
VoteCountingMRApplication>>map:
MRWorkerDebugger>>simulatedRMapOn

Data that caused the exception & Inspect selected

Abruzzo Matteo April182019
Abruzzo Dario April182019
Abruzzo Matteo April182019

Debug Selected

Debug All Failed Debug On Merged Collection

Debug on Virtual Partitions
Including all of the event-inducing
records, or a merge of all their
partitions

51

Spa: a Live Debugger for Spark

52

Dedicated stepping operations

Classic stepping operations Tailored to Spark-like computations

Typical of online debuggers

x = [Halt _ v Bytecode GT -

Stack »Proceed (- Restart| ™ Into < Over »* Through

SpaVoteCountingApplication{Object) halt

SpaVoteCountingApplication checkTimeForPair:

SpaVoteCountingApplication runWithData: [:pair | self checkTimeForPair: pair |

OrderedCollection select:

SpaDDDPartition filter:

SpaDDDPartition{PoriDistributedExceptionMetaData) currentExecution

PortDistributedPipelinedException(IDRACompositeExce debugContext: | self value. Processor terminateActive |

Source Z] Whereis? |22 Browse

runwWithData: data
| votes splitted valid pairs |
splitted := data map: [:1 | L substrings: ',"'].
valid := splitted filter: [:pair | self checkTimeForPair: pair].
pairs :=(valid map: [:col | col first -> 1]) execute.
votes := (pairs reduceByKey: [:a :b | a + b])getCollection.
A votes.

https://www.youtube.com/watch?v=GpipdhVxYg0

Event-based Out-of-place Debugging

Practical Online Debugging of Internet of Things applications

Tom Lauwaerts, Carlos Rojas Castillo, Robert Gurdeep Singh, Matteo Marra, Christophe Scholliers, and Elisa Gonzalez Boix, In,
Proceedings of the 19th International Conference on Managed Programming Languages and Runtimes (MPLR) Association for Computing
Machinery (ACM), p. 85-97 13 p. 2022.

Out of Place Debugging for Internet of Things

o4

Developer's Machine

s N R
d Source Code Bytecode 4 I N ([R |
_AS > | Wosm Application WA
. ||) (i)| |
s N ™ - ™ |

Debug Debug R Debug
Views Manager Monitor |
A
VRN / /) \\ /)

Debugger Frontend

Debugger Backend

Remote Device

[= em em e em m— = = = = - N
' |
| !
| |
N e - - - e - - - - - ./
- N (O R
Debug
Proxy WA
o PR ROU TNOY

)

Proxy Debugger

P

Non-transferable resources o

Developer’'s Machine Remote Device @Act
uator
| W
/ N s N\ A)\
(' Source Cade Bytecode R # n) (R [|
d — —
AS | —— IM Application WA : ')
Location \ — 8 PRALEDUINOIY | =
Independent - ~ =
| 1 =
Debug Debug . Debug -
Non-transferable Views Manager *J . Monitor J
Resources - y)\)
Debugger Frontend Debugger Backend Proxy Debugger
Pull-based

u—(

Non-transferable resources o

Developer’'s Machine Remote Device

W

.
/ ~\ s N\ [= o= o= o= = o = = o = -)\
i Source Cade Bytecode R i n) (R [|
a: —
AS | ————> |Wam Application ! '
- = | ! =J/
Location L) 8 YRAWIEDUINOR —
Independent p < =\
W 1 =
Debug Debug . Debug -
Non-transferable Views Manager *J . Monitor J
RDUINO
Resources < Py J N J
...... Debugger Frontend Debugger Backend Proxy Debugger
o Pull-based

g — Q Developer’s Machine = Remote Device @A
ctuator

= | N

Push-based / Y (o
(" Source Code Bytecode h (") (
g > Q AS | —— Fvaj Application /
| —) _ J ﬂ= =
s N R '\ ouel ﬂ\%
Event Queue
D?bug s Debug l l
Views Manager - G Debug Monitor
\ J \ “)

Debugger Frontend Debugger Backend Proxy Debugger

INn Conclusion

- Distributed systems are varied, successtul and widespread.
- They are still challenging to design and implement.
- |t Is essential to explore novel programming abstractions in tandem with
software tools tallored to modern concurrent and distributed software.
First Summer School on Distributed and Replicated ARECOOP 00 ISSTA K23 ot/ DEBT 2023 ot
Environments (DARE 2023) First Workshop on Future Debugging Techniques SERT 5093

From 11 to 15 September | Brussels | Belgium

DARE 2023 Attending ~ Program ~ Speakers Important Dates Organization

Program Accepted Pagers Call for Cantributions

While debugging '@ an integral activity of the software devalopment cycle, meinstreem 1ools used for debugging have
hardly eveolved with the vast programming language and hardware advances we have witnessad in the past decades.
Even though debugging support has found its way into mainstream |Dzs, tha technigues used for debugging remain
largely based on techniques for programs running on tha hardware of the past century. Mocern softvare is mostly
concurrent and/or distributed anc runs on clusters, multicore machines. microcontrollers, etc. Unfortunztaly,
surprising'y 'ittle rasearch has been spent on devaloping cebuggers that deal with these modern programming
paracigms. The current lack of appropriate too s makes debugging extremely time-consuming. For example, a 2017
Cambridge study showed that the costs of debugging, testing, and verification of softwars have an estimated impact of
50 to 70% of the tolel budget in softwers deve opment orojects.

The geal of this workshop is to gather researchers from all areas in the field of programming languages 1o discuss novel
ideas to define the debugger of the future.

Questions? Lise the D=3T cortact iarm.

Important Dates

Mon 17 Jul 2023
DEET workshop

Mon 26 Jun 2023
Camera Ready

Tue 2C Jun 2023
Author Notification

Mecn 22 May 2C23
Submission deadina

QO Aok (UTC-12h)

Y

Thanks to DisCo & collaborators!

Dominik Aumayr Aaron Munsters

Jim Bauwens Florian Myter
Clément Béra Isaac Nyabisa Oteyo
Dina Borrego Guillermo Polito

Kevin De Porre Nuno Preguica

Carla Ferreira Carlos Rojas Castillo
Robert Gurdeep Singh Christophe Scholliers
Tom Lauwaerts Angel Luis Scull Pupo
Stefan Marr Carmen Torres Lopez

Matteo Marra

anspeter Mossenbock

><egonzale@vub.be Bl @elisagboix . hitps://sc . vub

mailto:egonzale@vub.be

