
Composable Higher-Order Reactors as the Basis for a
Live Reactive Programming Environment

Bjarno Oeyen
Vrije Universiteit Brussel

Brussels, Belgium
boeyen@vub.be

Humberto Rodriguez
Avila

Vrije Universiteit Brussel
Brussels, Belgium
rhumbert@vub.be

Sam Van den Vonder
Vrije Universiteit Brussel

Brussels, Belgium
svdvonde@vub.be

Wolfgang De Meuter
Vrije Universiteit Brussel

Brussels, Belgium
wdmeuter@vub.be

Abstract
A live programming environment allows programmers to
edit programs while they are running. This means that suc-
cessive “edit steps” must not allow a programmer to bring the
program in a form that does not make any sense to the un-
derlying language processor (i.e., parser, compiler,...). Many
live programming environments therefore rely on discip-
lined edit steps that are based on language elements such
as objects, classes, and methods. Textual modifications to
these elements are not seen as edit steps until some “accept”
button is hit. Unfortunately, no such elements exist in cur-
rent reactive languages. We present a new reactive language,
called Haai, that is based on first-class higher-order react-
ors. Linguistically, Haai programs correspond to reactors or
compositions of reactors. At run-time, reactors produce an
infinite stream of values just like signals and behaviours in
existing languages. Haai’s live programming environment
relies on textual modifications of entire reactors as its basic
edit steps. Changing a reactor automatically updates all oc-
currences of that reactor in the reactive program, while it is
running.

CCS Concepts • Software and its engineering→ Data
flow languages; Integrated and visual development en-
vironments;

Keywords Reactive Programming, High-Order Program-
ming, Live Programming
ACM Reference Format:
Bjarno Oeyen, Humberto Rodriguez Avila, Sam Van den Vonder,
and Wolfgang De Meuter. 2018. Composable Higher-Order React-
ors as the Basis for a Live Reactive Programming Environment.
In Proceedings of the 5th ACM SIGPLAN International Workshop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS ’18, November 4, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6070-8/18/11. . . $15.00
https://doi.org/10.1145/3281278.3281284

on Reactive and Event-Based Languages and Systems (REBLS ’18),
November 4, 2018, Boston, MA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3281278.3281284

1 Introduction
Live Programming has received a lot of attention recently.
The main idea is to have a development environment that
allows a programmer to edit bits and pieces of a program
while it is running. Every live programming environment is
built atop some programming paradigm: one can build live
programming environments for object-oriented program-
ming (e.g., Self [10]), imperative programming (e.g., Light-
Table [1]),. . . . In this paper, we contribute to the realm of
Live Reactive Programming. We aim to build a programming
environment that allows one to modify reactive programs
while they are reacting.

Any live programming environment has to define those
program elements whose modifications will be considered
as valid “edit steps”. For example, in Self or Smalltalk, the
elements modified by an edit step correspond to individual
objects and classes. In other existing live programming en-
vironments, edit steps correspond to individual keystrokes
– i.e., every time the live programmer hits a key, the pro-
gram is updated [12, 13]. Optimally, edit steps should exhibit
transactional behaviour: before and after each edit step, the
program should be in a valid form that allows the runtime
to hot-swap the original version of the program with the
modified version. This means that character-level edit steps
are undesirable because adding or removing individual char-
acters typically brings the program in a form that cannot be
processed by the language processor (i.e., parser, compiler,
...). A programming language that allows such fine-grained
changes results in programs behaving unpredictably once
there are syntax errors in the program text. Languages like
Self avoid this problem by defining “edit steps” based on
successive clicks on the “doIt” or “acceptIt” button. In this
way, the programmer has more control over when the live
environment changes the running program. Invalid code,
caused by intermediate keystrokes is never considered as an
edit step.
Current reactive programming languages lack the kind

of linguistic components that play the code-organising role
that is played by objects in Self and classes in Smalltalk.

51

https://doi.org/10.1145/3281278.3281284
https://doi.org/10.1145/3281278.3281284

REBLS ’18, November 4, 2018, Boston, MA, USA B. Oeyen, H. Rodriguez Avila, S. Van den Vonder, W. De Meuter

They either consider every single keystroke as an “edit step”
(possibly leaving the program in an invalid format) or they
require to hot-swap the entire program based on a global
“compile” button (as in Elm [6]). One might argue that the
signals that constitute a reactive program could play this
role as they can be implemented as first-class values. How-
ever, in current languages signals only exist in the language
runtime. They have no linguistic counterpart in the program-
ming environment apart from the strings of characters that
make up the identifiers that are used to describe them. For
example, programmers cannot “grab” or “point to” signals
as manipulable entities.

In this paper, we present a new reactive programming lan-
guage (called Haai1) and a supporting live programming en-
vironment (called SharkTank). The central linguistic concept
of Haai is the reactor, which is used in the design of the lan-
guage as a way of composing reactors out of other reactors
and is used for changes in the live programming environ-
ment. SharkTank will be able to change the behaviour of
reactors while they are being reacting, such that the modi-
fied behaviour is used in all locations where the reactor is
being used. Textual changes made to reactors (delimited by
successive clicks on the “Commit” button) form the edit steps
of SharkTank, just as in Self or Smalltalk. After successfully
checking the syntax of the modified reactor (and compiling
it), the modified version is hot-swapped in the Haai runtime.
From that moment on, all other reactors that depend on the
modified reactor automatically use the modified version. The
runtime environment for Haai can be seen as a reactive en-
vironment that reacts to both base events (those created by
the program itself), and code change events (those created
by the programming environment).

Haai has the following properties:
1. First-class reactors are the basis of reactivity. Reactors

roughly correspond to the behaviours that exist in other
reactive languages. Reactors can be programmed textu-
ally and given a name at the level of the programming
environment.

2. Reactors can be composed resulting in more reactors. Haai
features both pointwise as well as point-free composition.
The latter corresponds to applying a set of (built-in) com-
position operators which “glue together” existing re-
actors. The former corresponds to programming reactors
whose code “calls” parametrised reactors with streams
as “arguments”.

3. Apart from taking reactors as parameters, reactors can
also emit reactors as values. This gives rise to higher-
order reactors. Haai’s built-in point-free composition
operators are nothing but higher-order reactors that glue
together their argument reactors. The reactors that are
emitted as values by a reactor are textually denoted by
means of anonymous reactors in the same way that

1 Haai means Shark in Dutch and is pronounced as “high”.

higher-order functions can return functions by returning
a so-called lambda expression. In Haai, rho expressions
generate anonymous reactors.

4. Many reactive programming languages rely on a host
language (e.g., Scala or Haskell) or contain a non-reactive
functional sublanguage (e.g., Elm). Haai, on the other hand,
is “reactors all the way down”. For example, reactors never
“call” auxiliary functions but rather “push” values to aux-
iliary reactors. Even primitive operators such as + are
reactors.
The rest of the paper is structured as follows. Section 2

introduces the concept of reactors for programming react-
ive programs. Section 3 expands upon these concepts and
shows how reactors can be used for higher-order reactive
programming. Section 4 shows how reactors can be used for
live programming, and in Section 5 we discuss related work.

2 Reactors as Reactive Programs
Traditional reactive programming languages consist of a re-
active layer which allows the programmer to think in terms
of time-varying values (typically called signals or behaviours)
and a functional layer which requires a programmer to think
in terms of functions. “Lifting” (either explicitly or impli-
citly) is the concept that connects between both layers: a
lifted function that is “applied” to a behaviour creates a new
behaviour which then internally applies the function (with
traditional call semantics) to all values that are emitted by
the argument behaviour.
Haai breaks with this tradition. Haai only has a reactive

layer. It does so by replacing functions by so-called reactors
which can be first-class values. They are used to structure a
reactive program, but they can also serve as the values that
are emitted by these reactive programs. Each reactor can be
thought of as a fully-fledged reactive program. Another way
to think of a reactor is to think of them as an abstraction
over a dependency graph.

2.1 Reactors by Example
Haai uses a Scheme-like syntax2. Syntactically reactors are
very similar to function definitions in Scheme. A reactor is
defined by define-reactor and has a name, formal para-
meters (the “input” of the reactor), and a body that defines
its functionality. Listing 1 defines a reactor rectangle that
calculates the area and the perimeter of a rectangle given its
width and height. Informally, each time a value arrives on
one of the inputs w or h, the reactor will calculate the area
and the perimeter and then emit both values to whomever
is listening to the reactor. Every reactor can be thought of as
a stand-alone reactive program. Its corresponding depend-
ency graph, a directed acyclic graph (DAG), is shown in
Figure 1. The sources of the graph correspond to the formal
parameters of the reactor, the sinks of the graph correspond
2 A prototypical Haai interpreter was implemented in Racket.

52

Composable Higher-Order Reactors REBLS ’18, November 4, 2018, Boston, MA, USA

1 (define-reactor (rectangle w h)

2 (define area (* w h))

3 (define perimeter (+ (* w 2)

4 (* h 2)))

5 (export area perimeter))

Listing 1. Reactor that calculates the area and perimeter
of a rectangle.

*

*
w

2

h

*

area

2

+
perimeter

Figure 1. The directed acyclic graph showing how data flows
from input to output of the reactor in Listing 1.

to the exported values, and the internal nodes correspond to
reactive expressions that make up the body of the reactor.

2.2 Deploying Reactors
Reactors correspond to inactive reactive programs because
reactors do not do anything as long as their formal para-
meters have not been “connected” to some active source of
values. That is the role played by streams in Haai. Streams
are “living” in the interpreter and perpetually emit values.
Streams are either built-in (e.g., time) or are the result of
evaluating the expressions exported by a reactor. Central to
this is the notion of deploying reactors.

We say that a reactor is deployed if its input parameters
are “connected” to already existing streams. The result of
deploying the reactor is one or more new streams that cor-
respond to the reactor’s export expression. For instance, if
we consider the built-in streams mouse-x and mouse-y, then
the expression

(rectangle mouse-x mouse-y)

is a deployment of reactor rectangle that will create two
new streams that will produce the areas and the perimeters
of the rectangles defined by the position of the mouse w.r.t.
the origin. Notice that deploying reactors follows the same
syntax as calling procedures in Scheme3.

Conceptually, every deployment of a reactor to a number
of existing streams creates an instance of the reactor (i.e., a
copy of the reactor’s DAG). The streams created in that copy
3 SomeHaai expressions of the form (F a1 ... an) use a preserved keyword for
F (such as if, rho, past, define and define-reactor). These are handled
by the compiler in a special way and we call them special forms as in
Scheme.

1 (define-reactor (rectangle-scale w h factor)

2 (define w-s (scale w factor))

3 (define h-s (scale h factor))

4 (define (a p) (rectangle w-s h-s))

5 (export a p))

Listing 2. Reactor definition that scales a rectangle
before calculating the area and perimeter.

(some of which are exported) are dependent on the argument
streams.
Deploying reactors on streams is very similar to calling

lifted functions on behaviours in existing reactive languages.
However, there are two important differences: First, whereas
functions typically have only one return value, a reactor can
declare multiple output expressions (in its export clause)
that can be used, for example, as the input for deploying other
reactors. Second, Haai reactors are entirely push-based. Most
reactive languages actually use a combination of push and
pull semantics: values are pushed through the dependency
graph, but function calls happening during this process are
treated in a pull-based way. For example, calling + in a tra-
ditional reactive language waits for the sum (i.e., pull) and
subsequently pushes the sum through the rest of the DAG.
+ is a function and therefore does not know the notion of
“dependent expressions”. In Haai, even + is a reactor that
has to be deployed and which follows the push-based philo-
sophy. For instance, the expression (+ x 5) comprises four
streams. The + is a built-in stream that perpetually (from a
conceptual point of view) emits the + reactor. x is a stream
(e.g., a formal parameter). 5 is a stream that, conceptually,
emits the number 5. The entire expression is the stream cre-
ated by deploying the + stream on the operand streams. The
deployment pushes x and 5 into + and registers the “deploy-
ing reactor” (i.e., the site where the expression (+ x 5)
occurs) as a dependency. Every time +, x or 5 emits a new
value, the value of x and 5 will be pushed into the value of
+. It is the implementation of + reactor that will trigger the
“deployment-site” (rather than the “call-site” waiting for the
result of the + function as is normally the case).
For all reactor deployments (both primitive reactors and

user-defined reactors), reactors will start propagating values
when all operand streams to a reactor deployment have con-
sumed all their dependent values. If streams are producing
values at different rates, the last value of every stream will be
used by streams that are producing values slower compared
with the other streams given to a deployment expression.

2.3 Pointwise Composition of Reactors
define-reactor syntax is used to define new reactors. The
body of a reactor consists of a sequence of deployment
expressions (some of which are given a local name with
define). The last expression of a reactor is its export clause
which lists one or more deployment expressions (typically

53

REBLS ’18, November 4, 2018, Boston, MA, USA B. Oeyen, H. Rodriguez Avila, S. Van den Vonder, W. De Meuter

just local names). Each deployment expression defines a part
of the functionality of the reactor. The order in which de-
ployment expressions occur in a reactor is not taken into
account for creating the dependency graph of the stream
that emerges when deploying that reactor. A topological sort
of all deployment expressions is performed at compile-time
to avoid glitches and cyclic dependencies.
Since the body of a reactor consists of deployments of

other reactors, Haai naturally supports pointwise composi-
tion in the same way that functional programming languages
support pointwise composition of functions. An example of
a reactor that illustrates this idea is shown in Listing 2. This
reactor uses the existing scale and rectangle reactors by
deploying them in the body of rectangle-scale. The in-
put streams w and h are pushed into two instances of the
scale reactor together with a scaling factor, and both out-
puts are then pushed into an instance of the earlier-defined
rectangle reactor shown above. Notice that on Line 4 we
use parentheses in define for defining multiple values that
correspond to the deployment of rectangle. That is because
rectangle has two outputs. One of them will push its emit-
ted values to the dependencies on a and the other one will
do the same for the dependencies on p.

Another alternative for composing reactors out of existing
reactors (a point-free style) will be discussed in Section 3.2.

2.4 Stateful Reactors
Stateful reactors are reactors that have to (a) initialise some
state as soon as they are deployed and (b) update that state
for every incoming value emitted by those input streams.
Consider for example the aforementioned sum reactor that
has one input stream emitting numbers and which declares
one output stream used to emit a new sum for every in-
coming number. Rather than trying to combine reactive pro-
gramming (which is all about hiding evolving state) with
imperative language constructs that initialise and assign
local state variables, Haai provides programmers with a very
disciplined way to describe changing state explicitly. past
takes two arguments, namely a stream s and a default value
n. (past s n) then corresponds to a stream that emits n the
very first time s emits a value. After that (i.e. as soon as s has
emitted at least one value) the previous value of s is emitted
from (past s n). past is inspired by ActiveSheet’s [17]
PRE operator and closely resembles Lucid Syncrone’s [3] pre
and fby operations.
Listing 3 shows the implementation of sum using past.

The DAG that corresponds to sum is shown in Figure 2. The
dotted line in the DAG, which is a back-edge in the graph,
suggests a cyclic dependency. However, a cyclic resolution
is avoided at run-time by the fact that the Haai compiler
recognises the past special form by name: a hidden state
variable is generated for acc and every time a new value for
acc gets emitted, the old value is stored in that hidden state
variable. The second argument of past corresponds to the

1 (define-reactor (sum a)

2 (define acc (+ a (past acc 0)))

3 (export acc))

Listing 3. Implementation of the sum reactor using
past.

+
a acc

0

Figure 2. Directed acyclic graph showing data flow from
the input to the output of the sum reactor.

initial value of that hidden state variable. In Figure 2, the
state variable is depicted by a cloud. Every time a stateful
reactor gets deployed, all the occurrences of past will first
emit the initial value of that past expression. Like every
other reactor, a stateful reactor can be deployed multiple
times. All deployments of a stateful reactor manage their
own state.

3 First-Class Reactors
3.1 Streams That Emit Reactors
Streams are not first-class entities in Haai. Streams only
emerge at the interpreter level whenever reactors are de-
ployed. Every deployment results in one ormore new streams
(i.e., the export clause) that emit values as specified by the re-
actor.Whenever a deployment expression occurs in a define,
the newly created stream is given a name that is local to the
reactor and that can be referred to in other deployment ex-
pressions.Whenever a stream occurs in an export expression,
it is not the stream that is exported but rather the values
of the stream. In other words, the expression (export a)
means that the reactor emits the values on stream a. Hence,
streams are only “passed around” by the interpreter when
deploying reactors. Streams are never emitted as values on
streams.
Reactors, on the other hand, are first-class values. This

means that a stream can emit reactors and that a reactor
can be deployed with argument streams that emit reactors.
Reactors whose arguments are streams emitting reactors or
reactors that export streams emitting reactors are known as
higher-order reactors. The difference between higher-order
reactors and higher-order behaviours as found in other re-
active languages is explained in Section 3.6.
In our explanation of deployment, we have explained

the semantics of deployment expressions like (r r1 ...
rn). In these expressions, all sub-expressions correspond to
streams. The first sub-expression is expected to be a stream
that is emitting reactors (just like the first sub-expression in

54

Composable Higher-Order Reactors REBLS ’18, November 4, 2018, Boston, MA, USA

?if

+

even?
a

- 10

Figure 3. Dependency chain of a reactor stream deployment.
At compile-time it is unknown which reactor is deployed on
a and 10.

a Scheme-expression (e1 ... en)] is expected to be a pro-
cedure at run-time). Otherwise, deployment makes no sense,
and the error value is emitted from the stream that corres-
ponds to the deployment expression. Since r is a stream of
reactors, this means that deployment itself is a higher-order
concept. This has two interesting consequences.

First, consider the following deployment expression:
((if (even? a) + -) a 10)

The stream corresponding to the innermost deployment
expression can emit both the + reactor and the - reactor,
but only one is used by the outermost deployment expres-
sion, depending on the value emitted on the a stream. A
visualisation of the dependency graph is shown in Figure 3.

Second, the set of combinators that one typically finds
in a reactive programming language (e.g., map, filter, ...)
are higher-order reactors that can be implemented in Haai
itself. For example, here is how the filter reactor can be
implemented.

(define-reactor (filter r v)

(export (if (r v) v)))

Remember from section 2.4 that the deployment of stateful
reactors requires special attention. Consider the following
higher-order deployment:

((if (> a 0) sum average) time)

Every time the sign of a changes, Haai will need to toggle
between emitting the sum or the average for the deploy-
ment of the outermost deployment expression. This raises
the question whether the second deployment of sum needs
to proceed with the “old” state of its first deployment or
whether this is considered a fresh deployment that needs to
start from 0 again. In other words, it needs to choose between
throwing away state when a different reactor is emitted by
the higher-order stream or maintaining state for every en-
countered reactor. In Haai we opt for the first approach
since the second one could potentially give rise to enormous
amounts of deployments in case the sign of a changes fre-
quently. In other words, every deployment (sub)expression
in a Haai reactor gives rise to exactly one first-class reactor
that is perpetually emitted by the stream that corresponds
to that deployment (sub)expression. Hence, the above ex-
pression creates two deployments, one that corresponds to

1 (define average

2 (ror (parallel* sum count) /))

Listing 4. Point-free composition of sum and count to
implement average.

1 (define-reactor (average in)

2 (define s (sum in))

3 (define c (count in))

4 (export (/ s c)))

Listing 5. Pointwise composition of sum and count to
implement average.

(sum time) and another one that corresponds to (average
time). The partial expression (if (> a 0) sum average)
is to be seen as a stream that keeps on emitting one of the
two existing reactors.

3.2 Point-Free Composition Operators
Haai supports point-free composition of reactors a result of
reactors being first-class values. Three built-in composition
operators have been defined which compose two constitu-
ent reactors into a new composite reactor. These operations
are ror (“reactor after reactor”), parallel and parallel*.
ror creates new composite reactors that are created by se-
quential composition of its argument reactors. parallel
and parallel* both create new composite reactors that are
created by parallel composition of its argument reactors.
parallel* passes all inputs to the composite reactor to both
constituent reactors, and parallelwill pass the firstn inputs
to the first constituent reactor, when the first constituent
reactor has n inputs, and the remaining inputs to the second
constituent reactor. These operations are implemented as
first-class higher-order reactors that take two reactor streams
as operands, and emits the composite reactors on its output
stream.
Listing 4 exemplifies the usage of ror and parallel*.

Given a reactor sum that calculates the sum of its input values
and a reactor count that counts the number of input values
(sum and count are stateful reactors, see Section 2.4). The
average reactor combines these two reactors to calculate
the average of all values emitted by its input stream. The
corresponding DAG is shown in Figure 4. Notice that this
reactor is fully equivalent to the reactor definition shown in
Listing 5 which uses pointwise composition.

3.3 rho: The lambda of Reactive Programming
In functional programming, higher-order functions go hand
in hand with anonymous functions. For example, in Scheme,
incrementing all the elements of a list l is typically done
using the expression:

(map (lambda (x) (+ x 1)) l)

55

REBLS ’18, November 4, 2018, Boston, MA, USA B. Oeyen, H. Rodriguez Avila, S. Van den Vonder, W. De Meuter

count

sum

/
in

s

c

parallel*
ror

Figure 4. Directed acyclic graph showing the data flow from
the input to the output of the average reactor.

1 (define f-to-c

2 (ror (rho (f) (export (- f 32)))

3 (rho (a) (export (* a 0.5556)))))

Listing 6. Example of how rho can be used for point-
free composition using ror.

1 (define-reactor (creator num-clicks)

2 (export (rho (t)

3 (export (if (even? t)

4 (/ t 2)

5 (+ (* t 3) 1))))))

Listing 7. Reactor that exports an anonymous reactor
that can be deployed elsewhere.

Lambdas are not only useful for calling higher-order func-
tions but also to pass a function defined in the same scope
to another function.

Haai adapts these ideas to the realm of reactive program-
ming. In Haai, anonymous reactors can be created using
the rho construction. The syntax of rho is identical to that
of define-reactor, except that the parameter list is not
prefixed with a name for the reactor. Listing 6 shows the
point-free composition of two anonymous reactors with the
ror operator discussed in the previous section. The first
anonymous reactor reacts by subtracting 32 form the val-
ues emitted by f and the second anonymous reactor reacts
to incoming values by multiplying them by 0.5556. Thus
converting temperatures in Fahrenheit to Celsius.

Apart from using anonymous reactors as parameters of a
higher-order reactor, they can also be emitted from a reactor.
Listing 7 shows a reactor called creator that reacts to one
input stream num-clicks. Every time the latter emits a value,
the stream created by deploying creator will emit a first-
class reactor. Notice that the same reactor is emitted time
and time again (conceptually) since num-clicks is not used
in the rho expression.

Anonymous reactors can be used to implement simplified
versions of the composition reactors as long as the number
of input streams is static. Reactors, unlike procedures in
Scheme, do not allow an arbitrary amount of input streams4,
4 With the exception of the built-in arithmetic reactors.

1 (define-reactor (creator num-clicks)

2 (export (rho (a)

3 (export (if (even? a)

4 num-clicks)))))

Listing 8. Reactor that exports an anonymous function
that can be deployed elsewhere. Due to scoping the
stream num-clicks is also used in the anonymous
reactor. And all deployments of the anonymous reactor
add an implicit dependency on this stream.

as the existence of such a construct would result in either a
variable not being a stream, or result in a stream that contains
a list of streams, which is not possible since streams are not
first-class entities.

3.4 Captures
Anonymous reactors can occur inside the body of other
reactors, and therefore can be seen as nested reactors. An-
onymous reactors are subject to lexical scoping. Consider the
example in Listing 8 which is a modification of the creator
reactor from Listing 7. In this example, a stream that was
created by deploying creatorwill emit a new rho. However,
in this case, the num-clicks that is in the lexical scope of
the anonymous reactor is effectively used in the body of the
rho. Hence, any stream that is created by deploying that rho
will have to emit those values emitted on num-clicks at the
time when an even value is emitted by the input stream a.
Hence the anonymous reactor that is emitted by the stream
corresponding to creator needs to maintain a reference to
all the streams that are in the surrounding lexical scope of
an anonymous reactor. During compilation, it is possible to
determine which streams from the surrounding lexical scope
are used by nested anonymous reactors.

Analogous to closures in functional languages, first class
reactors are represented by so-called captures. A capture
is the run-time value that corresponds to a rho expression
just like a closure is the run-time value that corresponds
to a lambda expression. Conceptually, inside the reactive
interpreter, a capture for a rho is a couple that consists of a
DAG that corresponds to the body of the rho and a list of
all the streams which the rho inherits from its surrounding
lexical scope. In the rho shown in Listing 8, the creator
reactor thus conceptually emits a stream of captures. All
those captures consist of the DAG that corresponds to the
body of the rho and a reference to the num-clicks stream.

3.5 Deploying Captures
Now we that we know that first-class reactors are actually
captures emitted by a stream,we can think of deploying those
captures. This is needed for deployment expressions where
the deployed reactor corresponds to a stream of captures
which are not all the same. Consider the example shown

56

Composable Higher-Order Reactors REBLS ’18, November 4, 2018, Boston, MA, USA

1 (define-reactor (temp-conversion temp

in-celsius)

2 (export

3 (if in-celsius

4 (rho (out-celsius)

5 (export (if out-celsius temp (* (-

temp 32) 0.5556))))

6 (rho (out-celsius)

7 (export (if out-celsius (+ (/ temp

0.5556) 32) temp))))))

Listing 9. Temperature conversion between fahrenheit
and celsius, and vice versa, bymaking use of anonymous
reactors.

in Listing 9. Deploying this reactor with a given temperat-
ure stream t and a stream of booleans b with the expres-
sion (temp-conversion t b) results in a stream that per-
petually emits one of both rho captures from the body of
temp-conversion based on the boolean value that is emitted
by in-celsius.
Deploying a capture means that the given input streams

(i.e., the deployment arguments), as well as the implicit
streams stored in the capture need to be connected to the
body DAG of the capture. When captures in a deployment
expression are emitted by a higher-order reactor, then the
input streams need to be disconnected from the previous
capture emitted by the higher-order reactor and reconnected
to the next capture emitted by the higher-order reactor. Cau-
tion is required, as naively disconnecting them can lead to
subtle errors. When a reactor that emits captures using rho is
(temporarily) no longer deployed, its previously emitted cap-
tures may still be deployed elsewhere in the program. Thus,
it is possible that, although the temp-conversion reactor is
no longer deployed, that it is still active indirectly via the
deployment of one of its once-emitted captures elsewhere
in the program. If the captures would have a dependency
on a stream created in temp-conversion (e.g. the incoming
temperature is first converted to Kelvin), then this stream
should still be listening to the incoming events passed on
the temp stream, even when the temp-conversion reactor
is not directly deployed.
Alternative approaches were considered for anonymous

reactors. In one alternative approach, snapshots would be
used instead of captures. In this approach, the last value of
each dependent stream would be stored. However, this was
deemed less expressive as a deployed capture can listen to a
stream found in the lexical scope, even if the reactor were
the capture was created is no longer deployed, which is not
possible using snapshots.

3.6 Higher-Order Reactors vs. Behaviours
Haai features higher-order reactors, which is different from
the traditional higher-order signals found in other reactive

programming languages. Examples of signals of signals, or
streams of streams, can be found in FlapJax [15], and Reactive
Extensions [2]. We argue that this is a problematic feature
that is very difficult to grasp since it requires a programmer
to understand two-dimensional time: the outer stream is
emitting streams which are at the same time all emitting
values. This is avoided by disallowing such streams, and
introducing first-class reactors. Deploying a higher-order
reactor may result in a stream that emits reactors. However,
these are “dead” reactors that have not been deployed yet.
This is much easier to understand. These “dead” reactors (or
more precisely: captures) only start “living” when they are
deployed because that is the moment that their DAG gets
connected to input streams. In summary, we conjecture that
it is easier to understand a reactor that emits deployable
reactors than a reactor that emits reacting reactors.

4 Live Environment
Live Programming aids program development by blurring
the distinction between editing code and running the pro-
gram. Thus developers do not have tomentally switch between
“developing” and “testing”. It minimises the effects of the
“feedback loop” that occurs whenever a programmer tries
to verify the effects of changing the code of the program,
however minimal or large a change may be.

A live programming environment for a reactive program-
ming language needs to define the granularity of code changes
that can be applied while the program is running, i.e., it
needs to define what exactly constitutes one “edit step”. Live
programming environments for reactive programming lan-
guages currently use one of two approaches. The first ap-
proach is used by an experimental time-travelling debugger
for Elm [5] where the granularity of change is nothing less
than a recompilation of the entire program. Unfortunately,
in the context of live programming reloading the entire pro-
gram is a costly operation that should be avoided. The second
approach, used by Glitch [13], conceptually reloads the pro-
gram on every individual keystroke. Keystrokes that leave
the program in a broken state (e.g., parser or compiler er-
rors) are not visualised in the programming environment.
We believe that reusing reactors as a linguistic element that
defines the granularity of change is a sweet spot between
these two radical extremes. This approach is similar to how
objects and classes define the granularity of change in Self
and in SmallTalk live programming environments.

In previous sections, we discussed that a reactive program
written in Haai is one giant reactor that typically consists of
multiple smaller constituent reactors, and that the constitu-
ent reactors can be changed without touching the reactor(s)
that use it in some (point-free or pointwise) composition.
In essence, modifying a reactor amounts to installing a new
version of said reactor, which automatically causes any de-
pendencies on the old constituent reactor to be replaced

57

REBLS ’18, November 4, 2018, Boston, MA, USA B. Oeyen, H. Rodriguez Avila, S. Van den Vonder, W. De Meuter

(a) View to manage reactors. (b) View to manage streams.

Figure 5. Overview of the SharkTank Live Reactive Programming Environment.

with dependencies to the newly installed constituent reactor.
Based on these principles we introduce SharkTank, a proto-
typical live programming environment for the Haai reactive
programming language.

4.1 SharkTank in Action
Figure 5 shows the SharkTank editor. When the editor is star-
ted, two views can be used to inspect the running reactive
program. The view in Figure 5a gives an overview of all user-
defined (named) reactors in the running program. The pane
on the left shows a list of those reactors, and the text field
on the right shows the source code of the currently selected
reactor in that list. Anonymous reactors are omitted from
the list since they can only be modified by modifying their
encapsulating reactor. When the source code of a reactor
is modified, it can be committed by clicking the “Commit”
button. This action will cause all deployments of that par-
ticular reactor to be replaced by deployments of the newly
committed reactor. It can be the case that, according to the
updated behaviour of a named reactor, (a) modified anonym-
ous capture(s) has to be emitted. Such updated captures are
propagated throughout the program as soon as the named
reactor that produces them gets (re)deployed. Apart from
the “Commit” button, the view in Figure 5a also shows an
“Interact” button that leads the programmer to a facility to
test reactors offline, a feature that is outside the scope of this
paper.
The view in Figure 5b is used manipulate streams which

correspond to the deployment of some of the reactors that
make up the reactive program (more precisely: the streams
that have been explicitly created by the programmer; not the
streams that correspond to deployments in reactor expres-
sions). This view gives an overview of all the streams in the
current application that were manually created by the pro-
grammer (the leftmost pane), the source code of the currently
selected stream (the topmost text field), a “watcher” that lists
the 5 most recent values emitted by the selected stream
(middle-left), and finally, a text field to attach a Scheme

“listener” to the selected stream (explained further below).
Similarly to editing the source code of a reactor, the defini-
tion of a stream can be edited while the program is running.
In this case, an implementation is shown of the space-keys
stream that filters the built-in stream of all keystrokes, such
that it only contains events of the space key being pressed.
Conceptually the SharkTank live programming environ-

ment can be seen as a layer built on top of the Haai runtime
which is itself written in an imperative language and which
is connected to the “imperative world” (e.g. storage, input-
output, ...). Even in order to just “see the output” of a reactive
program, a link needs to be established between some of
the streams and this imperative world: even a simple dis-
play of the results emitted by the program corresponds to
an imperative side-effect on the screen. The problem of com-
municating results from a reactive program to an imperative
one has been previously discussed in [9]. SharkTank allows
a programmer to establish this connection by attaching a
Scheme “listener” to some of the streams. These Scheme
listeners are 1-argument callbacks that will be called every
time a value is emitted on the stream. In future versions of
SharkTank we plan to use the actor-reactor model [7] to
cleanly separate the threads that manage reacting streams
from the threads that manage the imperative world.

4.2 Updating State
Reactors that use past for their internal definitions are state-
ful, and these reactors may be redefined via SharkTank as
well. Ideally, the internal state of a reactor is preserved when
a new version of that reactor is committed by the user. How-
ever, since any changes to reactors are permitted, often the
old state will not be compatible with the new structure of the
reactor, or if the structure is similar enough the semantics
of the state may have changed. Therefore the internal state
created in all previous deployments are completely discarded
when a new version of that reactor is installed by the live
programming environment. In future versions of SharkTank
we may explore strategies to keep internal state, but other

58

Composable Higher-Order Reactors REBLS ’18, November 4, 2018, Boston, MA, USA

than replaying all events since the start of the program we
do not know of a general solution to this problem.

5 Related Work
In this section, we discuss the reactive languages, libraries,
and live programming environments that are, from our point
of view, most related to the goals of Haai.

FrTime [4] is a functional reactive programming language
built on top of Racket. While FrTime has been a very influ-
ential language in the field of reactive programming with
respect to the representation of signals and glitch prevention,
it does not facilitate higher-order reactive programming.

Flapjax [10] is a reactive programming language for build-
ing interactive web applications in JavaScript that is inspired
by FrTime. One of its most interesting features related to
Haai is support for higher-order reactive programming via
nested event streams. However, besides a limited number of
built-in operators that can be applied to higher-order streams,
Flapjax does not define the linguistic concepts that are ne-
cessary to handle the complexity of higher-order reactive
programs. We believe one of the main differences between
higher-order reactive programming in Haai and Flapjax is
that Haai adds an extra layer which is the concept of re-
actor deployment5. When a reactor is produced as the result
of some computation, it can only become active once it is
deployed by another reactor. In contrast, event streams in
Flapjax can produce other event streams as their values, and
conceptually all of those inner event streams immediately
start producing events when they are conceived, regardless
of whether they are used in the rest of the program or not.

Lucid Synchrone [3] is a functional synchronous program-
ming language that closely resembles Haai. It has support for
higher-order functions to be passed around, but streams of
functions are not automatically used to reconfigure the pro-
gram, which is a manual operation compared to the dynamic
deployment of streams of reactors in Haai. Furthermore, Lu-
cid Synchrone contains the notion of clocks to support inputs
that have a different production rate. This is absent in Haai
since reactors will react on any change, at any moment in
time.
Elm [6] is a purely functional reactive programming lan-

guage for building interactive web applications. During the
early days of its research, there has been some experimenta-
tion using Elm for building a time-travelling debugger to de-
bug andmodify reactive programswhile they are running [5].
The granularity of an “edit step” in this time-travelling de-
bugger is the recompilation of the entire reactive program.
In contrast, the granularity of program modifications in Haai
is on the level of individual reactors rather than a completely
new deployment of the program wherein state can be (pos-
sibly) restored.

5 Nested event streams as they occur in languages like Flapjax are still
available in Haai by deploying a reactor that produces the nested stream.

SuperGlue [12, 14] is a live-textual language inspired by
declarative data-flow visual languages. It allows developers
to program interactive applications as a combination of ob-
jects and signals. Although SuperGlue’s signals facilitate
the construction of a reactive data-flow model to support
“liveness”, the objects themselves are not reactive, and the
abstractions for representing signals do not integrate with
the rest of the language.
A prototype by Schuster and Flanagan [16] uses a com-

bination of a textual and visual live programming environ-
ment for building web applications. In this environment,
programmers can change string literals in the source code of
a non-reactive language (JavaScript). Furthermore, it allows
developers to replay execution of the program via direct ma-
nipulation within a graphical user interface. The prototype
does not facilitate live editing of reactive programs.

ZenSheet [8] is a programming environment for reactive
computations that generalises the concept of a spreadsheet
to provide developers with an environment that combines
textual and visual live programming features. Its language,
Peano, uses “lazy variables” as the backbone of its reactive
model. Contrary to Haai, Peano allows developers to write
imperative expressions, and it does not support higher-order
reactive abstractions.
ActiveSheets [17] is a stream programming platform for

spreadsheets. Its novel features are importing of live data
in spreadsheet cells, a windowing mechanism to segment
live streams into static ranges of data over time, and the
introduction of stateful cells. Since spreadsheets typically
do not allow any form of recursion or side-effects in their
formulas, every spreadsheet program can be seen as a large
reactor.

6 Limitations and Future Work
Further research can focus on incorporating the notion of
Edit Transactions [11] into Haai. Currently, one “commit”
can only modify the implementation of one reactor at a time.
If a change to a reactor requires other reactors to be modified
as well (e.g., the number of input or outputs streams of a
reactor changes), then changing every reactor one-at-a-time
will result in errors. Edit Transactions can be useful to group
multiple changes into one change that is applied as a single
transaction.
Furthermore, Haai has some more fundamental restric-

tions. There is no support for recursion, iteration nor side-
effects by design to ensure strong reactivity [7]. Furthermore,
there can be no cycles in the dependency chain, except where
they can be fixed by making use of past to refer to a previ-
ous value emitted on a stream. A less fundamental limitation,
is the absence of compound data types (such as pairs, vec-
tors, dictionaries,. . .). This restriction has been set in place
to focus first on the semantics of higher-order reactive pro-
gramming by means of first-class reactors. We expect that

59

REBLS ’18, November 4, 2018, Boston, MA, USA B. Oeyen, H. Rodriguez Avila, S. Van den Vonder, W. De Meuter

constructors and accessors, and even functional mutators,
can be implemented as reactors.

7 Conclusions
In this paper we introduced Haai, a reactive programming
language for higher-order reactive programming. At the
basis of Haai is the concept of the reactor that serves as an
abstraction over a reactive program. Reactor composition
lies at the basis of Haai programs, which can be done in both
a pointwise and point-free style.

With Haai we investigated a new way to construct higher-
order reactive programs via first-class reactors. One of the
key differences in relation to previous approaches for writing
higher-order reactive programs is the concept of “reactor
deployment”. Whereas in previous approaches a reactive
value is usually “active” from its conception, reactors only
become active once they are deployed. We believe this is
an important step to precisely define higher-order reactive
programming with clear and concise semantics.
We used Haai to build SharkTank, a prototype live pro-

gramming environment for reactive programming languages.
Whereas previous approaches required either a full-program
recompilation or modified the running program on a per-
keystroke basis, in SharkTank unit of “change” is on the level
of individual reactors. Because Haai is reactive all the way
down, it is possible for the live programming environment
to deploy new versions of existing reactors, which will auto-
matically propagate throughout the program like any other
reactive value. As only the deployments of the modified re-
actor need to be updated, the impact of a live change is more
manageable compared to previous approaches.

Acknowledgments
Sam Van den Vonder is funded by the Research Foundation -
Flanders (FWO) under grant number 1S95318N. Humberto
Rodriguez Avila is also supported by the FWO under grant
number 8B02.

References
[1] 2018. Light Table. http://web.archive.org/web/20180830122311/http:

//lighttable.com/. (2018). Accessed: 2018-08-30.
[2] 2018. ReactiveX: An API for asynchronous programming with ob-

servable streams. https://web.archive.org/web/20180829121631/http:
//reactivex.io/. (2018). Accessed: 2018-08-29.

[3] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing
signals and modes in synchronous data-flow systems. In Proceedings
of the 6th ACM & IEEE International conference on Embedded software,
EMSOFT 2006, October 22-25, 2006, Seoul, Korea, Sang Lyul Min and
Wang Yi (Eds.). ACM, 73–82. DOI:http://dx.doi.org/10.1145/1176887.
1176899

[4] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In Programming Lan-
guages and Systems, 15th European Symposium on Programming, ESOP
2006, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006,
Proceedings (Lecture Notes in Computer Science), Peter Sestoft (Ed.), Vol.
3924. Springer, 294–308.

[5] Evan Czaplicki. 2013. Interactive Programming: Hot-swapping in
Elm. https://web.archive.org/web/20180831090231/http://elm-lang.
org/blog/interactive-programming. (2013). Accessed: 2018-08-31.

[6] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan
(Eds.). ACM, 411–422.

[7] Sam Van den Vonder, Joeri De Koster, Florian Myter, and Wolfgang De
Meuter. 2017. Tackling the awkward squad for reactive program-
ming: the actor-reactor model. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems, Vancouver, BC, Canada, October 23, 2017, Guido Salvaneschi,
Wolfgang De Meuter, Patrick Eugster, and Lukasz Ziarek (Eds.). ACM,
27–33.

[8] Monica Figuera. 2017. ZenSheet studio: a spreadsheet-inspired en-
vironment for reactive computing. In Proceedings Companion of the
2017 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity, SPLASH 2017, Van-
couver, BC, Canada, October 23 - 27, 2017, Gail C. Murphy (Ed.). ACM,
33–35.

[9] Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi. 2006.
Crossing State Lines: Adapting Object-Oriented Frameworks to Func-
tional Reactive Languages. In Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26,
2006, Proceedings (Lecture Notes in Computer Science), Masami Hagiya
and Philip Wadler (Eds.), Vol. 3945. Springer, 259–276.

[10] John H. Maloney and Randall B. Smith. 1995. Directness and Liveness
in the Morphic User Interface Construction Environment. In Proceed-
ings of the 8th Annual ACM Symposium on User Interface Software
and Technology, UIST 1995, Pittsburgh, PA, USA, November 14-17, 1995,
George G. Robertson (Ed.). ACM, 21–28.

[11] Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2017. Edit Trans-
actions: Dynamically Scoped Change Sets for Controlled Updates in
Live Programming. Programming Journal 1, 2 (2017), 13.

[12] Sean McDirmid. 2007. Living it up with a live programming language.
In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr. (Eds.).
ACM, 623–638.

[13] Sean McDirmid. 2013. Glitch: A Live Programming Model. (2013).
[14] Sean McDirmid and Wilson C. Hsieh. 2006. SuperGlue: Component

Programming with Object-Oriented Signals. In ECOOP 2006 - Object-
Oriented Programming, 20th European Conference, Nantes, France, July
3-7, 2006, Proceedings (Lecture Notes in Computer Science), Dave Thomas
(Ed.), Vol. 4067. Springer, 206–229.

[15] Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and ShriramKrishnamurthi. 2009.
Flapjax: a programming language for Ajax applications. In Proceed-
ings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009,
October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T.
Leavens (Eds.). ACM, 1–20.

[16] Christopher Schuster and Cormac Flanagan. 2016. Live Programming
by Example: Using Direct Manipulation for Live Program Synthesis.
In LIVE Workshop.

[17] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and
Martin Hirzel. 2014. Stream Processing with a Spreadsheet. In
ECOOP 2014 - Object-Oriented Programming - 28th European Confer-
ence, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings (Lecture
Notes in Computer Science), Richard E. Jones (Ed.), Vol. 8586. Springer,
360–384.

60

http://web.archive.org/web/20180830122311/http://lighttable.com/
http://web.archive.org/web/20180830122311/http://lighttable.com/
https://web.archive.org/web/20180829121631/http://reactivex.io/
https://web.archive.org/web/20180829121631/http://reactivex.io/
http://dx.doi.org/10.1145/1176887.1176899
http://dx.doi.org/10.1145/1176887.1176899
https://web.archive.org/web/20180831090231/http://elm-lang.org/blog/interactive-programming
https://web.archive.org/web/20180831090231/http://elm-lang.org/blog/interactive-programming

	Abstract
	1 Introduction
	2 Reactors as Reactive Programs
	2.1 Reactors by Example
	2.2 Deploying Reactors
	2.3 Pointwise Composition of Reactors
	2.4 Stateful Reactors

	3 First-Class Reactors
	3.1 Streams That Emit Reactors
	3.2 Point-Free Composition Operators
	3.3 rho: The lambda of Reactive Programming
	3.4 Captures
	3.5 Deploying Captures
	3.6 Higher-Order Reactors vs. Behaviours

	4 Live Environment
	4.1 SharkTank in Action
	4.2 Updating State

	5 Related Work
	6 Limitations and Future Work
	7 Conclusions
	Acknowledgments
	References

