
A Graph-Based Formal Semantics of Reactive 
Programming from First Principles

Bjarno Oeyen, Joeri De Koster, Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Belgium

FTfJP Workshop @ Ecoop (07/06/2022)

1



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

2

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 3010 20 30

3

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 30

1020306060

4

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 30

10203060

6020

5

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 6

60

20

6

6

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 6

60

20

63636

7

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in Haai

(defr (average x y z)
(/ (+ x y z) 3))

10 20 6

60

20

636

3612

8

Higher-Order

Haai

Shark

Sounds like…

Is Dutch for…

• Syntactically looks like Scheme code
• Makes graphs

• Reactive semantics
• Instead of applying functions, reactors are deployed.
• Instances of reactors are called deployments

• Push-based propagation
• Evaluation of RP programs in turns.

• Haai-specific characteristics
• Everything is a reactor (even + and /)
• Higher-Order Reactors



Reactive Programming in a nutshell
• Automatic recomputation of program state

• By declaring constraints/dependencies between signals
• No callback hell to keep data dependencies updated

• Sources bound to data producers
• E.g., user input, sensors...

• Sinks bound to data consumers
• E.g., actuators, user interface…

• Other “RP” languages:
REScala, Frappé, FrTime, Elm, ReactiveX, Akka Streams…

10 20 6

60

20

636

3612

9



•Motivation

•Formalisation

•Lessons learned
10



Two implementation styles of RP languages

• Function-Based
Functions & Function Composition
Examples: Fran, Yampa, SFRP, Dunai…
• Usually implemented in Haskell…

• Graph-Based
Graphs & Graph Composition
Examples: FrTime, REScala, Frappé, EmFRP…

Well-studied
(∃ many formalisations of 

function-based RP)

Not as well studied as 
function-based RP

So why bother 
formalising graph-

based RP?

11



Memory Usage of a Yampa program

• Haskell RP languages are, in general, 
unsuitable for embedded devices [*]
• E.g., IoT, CPS, Real-Time Systems

• Risk of space leaks
• Need for a garbage collector
• …

• Which is usually also the case of their 
formalisations.

12[*] Sawada, K., & Watanabe, T. (2016, March). Emfrp: a functional reactive programming language for small-scale embedded 
systems. In Companion Proceedings of the 15th International Conference on Modularity (pp. 36-44).

Memory usage of a simple Yampa 
program. Memory usage constantly 

fluctuates = GC needed.



•Motivation

•Formalisation

•Lessons learned
13



Karcharias

14

Intra-Turn Semantics Inter-Turn Semantics

Higher-Order

Haai

Shark

Karcharias

Sounds like…

Is Dutch for…

In Greek…



Syntax

(defr (average x y z)
(/ (+ x y z) 3)) = =

15

Special input names (𝑖𝑛!,#)

Special output names (𝑜𝑢𝑡!,#)

Graph VisualisationHaai Syntax Karcharias Syntax

Name: average

Anonymous, nested, 
graph definitions with 

lexical scope.



Environment

Set of active deployment identifiers

Set of wirings

Set of snapshots

Toggle environment

Configurations

Deployment identifier

Signal environment

Deployment identifier

Node set

Signal environment

Wirings

Snapshots

Deployments

16



Main Idea: Signal Environments
(defr (average x y z)
(/ (+ x y z) 3))

17

(average sensor0 sensor1 sensor2)

Construct a cascade of reactor 
deployments (instances) to fully connect 

the average reactor.



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

(defr (average x y z)
(/ (+ x y z) 3))

18

(average sensor0 sensor1 sensor2)



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

Semantic entities that 
refer to global signals.

19

(defr (average x y z)
(/ (+ x y z) 3))

(average sensor0 sensor1 sensor2)



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

20

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

21

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

22

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

23

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

24

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

25

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

26

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

27

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

28

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0



Wiring (W-Rules)

• Connect signals between deployments
• Signal environment is populated step-

by-step
• Set of nodes of the reactor definition.

29

Deployment identifier

Node set

Signal environment



30

Deployment identifier

Node set

Signal environment



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

31

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

32

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

33

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10

20

30



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

34

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

1020306060



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

35

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10203060

6060



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

36

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10203060

60
6060



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

37

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10203060

60
60

602020



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

38

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10203060

60
60

6020

2020



Main Idea: Signal Environments

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

out1,0

39

(defr (average x y z)
(/ (+ x y z) 3))

+ (𝜾𝒅,()

Name Signal

in1,0

in2,0

in3,0

out1,0

/ (𝜾𝒅,/)

Name Signal

in1,0

in2,0 3

out1,0

10

20

30

10

20

30

10

20

30

10203060

60
60

6020

20

20



Propagation (S-Rules)

• Reduce signal’s into their 
current values.

• S-rules define the semantics 
of computing a snapshot.

40

Deployment identifier

Signal environment



41

Deployment identifier

Signal environment



42

It’s not that easy…

(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

Sometimes +, sometimes *.
(e.g., (if (even? time) + *))



+ (𝜾𝒅,()

Name Value

in1,0

In2,0

in3,0

out1,0

Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0

?

43

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

s0

… …

Wiring decision is made 
at-propagation time, not 

at wiring time.



+ (𝜾𝒅,()

Name Value

in1,0

In2,0

in3,0

out1,0

Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0

?

44

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

… …

Meta signal with the 
deployment identifier (𝜄!)



+ (𝜾𝒅,()

Name Value

in1,0

In2,0

in3,0

out1,0

Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0

?

45

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

… …

Meta signal with the 
deployment identifier (𝜄!)

10

20

30



+ (𝜾𝒅,()

Name Value

in1,0

In2,0

in3,0

out1,0

Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0

?

46

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

… …

Meta signal with the 
deployment identifier (𝜄!)

10

20

30

𝜾𝒅,∗

10

20

30



+ (𝜾𝒅,()

Name Value

in1,0

In2,0

in3,0

out1,0

Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0

?

47

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

… …

Meta signal with the 
deployment identifier (𝜄!)

10

20

30

𝜾𝒅,∗

Deployment disabled 
(its output is not used in 

this turn)

10

20

30



Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

48

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

d1

out1,0

10

20

30
What happens in the 

very first turn?



Higher-Order Reactivity
(defr (weird x y z)
(def +or* …)
(/ (+or* x y z) 3))

49

average (𝜾𝒅,𝒂𝒗𝒈)

Name Signal

in1,0

in2,0

in3,0

d0

s0

d1

out1,0

10

20

30

𝜾𝒅,∗

* (𝜾𝒅,∗)
Name Value

in1,0

In2,0

in3,0

out1,0When “evaluating” the 
meta signal, the new 

deployment is created.



W-Rules and S-Rules can be interleaved!

• Dynamically create new deployments 
for new captures (reactors) on the 
operator signals.

50



W-Rules and S-Rules can be interleaved!

• Dynamically create new deployments 
for new captures (reactors) on the 
operator signals.

51

Branching location identifier

Capture (reactor) identifier

Deployment identifier

Toggle Environment

Stored in the configuration.



W-Rules and S-Rules can be interleaved!

• Dynamically create new deployments 
for new captures (reactors) on the 
operator signals.

• One reduction relation (→!)
• Two helper relations (→" and →#)

• Both local and global wiring and snapshot rules.

52



Inter-Turn Semantics (Driver Loop)

• Perform intra-turn steps “forever”
• Feeding new data in each turn
• E.g., time, thermometer…

• Essentially, the driver loop of the 
RP program

53



Karcharias

54

Intra-Turn Semantics Inter-Turn Semantics

PLT Redex implementation of Karcharias can be found 
online:

https://gitlab.soft.vub.ac.be/boeyen/karcharias



•Motivation

•Formalisation

•Lessons learned
55



Lessons Learned

• Graph-based RP needs wiring and propagation
• w-rules and s-rules
• Wiring and propagating can, in general, be interleaved!

• Run-time wiring decisions due to higher-order reactivity

• Memory consumption …

56



Remember this graph?

57

Why does this happen?



(>>>): sequential composition of SFs

58

Signal Functions

Actually, this is not what 
really happens due to 

optimisations…

Nilsson, H., Courtney, A., & Peterson, J. (2002, October). Functional reactive 
programming, continued. In Proceedings of the 2002 ACM SIGPLAN 
workshop on Haskell (pp. 51-64).

Elegant, because it’s all just
composition of functions.Recursion



Without optimisations

59

GC isn’t possible!

Each recursive application of 
(>>>) extends the function’s 

lexical environment.
In addition to Haskell’s lazy 

evaluation model, this 
introduces a space leak!

Which is what graph-based RPLs 
avoid altogether by treating RP 

programs as graphs [*].
Cooper, G. H., & Krishnamurthi, S. (2006, March). Embedding dynamic 
dataflow in a call-by-value language. In European symposium on 
programming (pp. 294-308). Springer, Berlin, Heidelberg.



In case of Karcharias…

60

• Easy/ier to determine memory consumption
• Wirings remain static, after they have been constructed.
• Snapshots are ”reduced” versions of wirings (with actual values of signals)

Question now becomes: when 
do we have to wire?



Future Work

• Currently lacking:
• No error handling / detection of stuck states
• Stateful computations aren’t formalised yet
• Thorough comparison between function-based RP and 

graph-based RP

• Ultimate goal
• Expressive, higher-order, RP language that works for very 

small computers 
• Statically classify RP programs w.r.t. their required memory 

allocation/consumption behaviour

61Looking for ideas!



A Graph-Based Formal Semantics of Reactive 
Programming from First Principles

Bjarno Oeyen, Joeri De Koster, Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel, Belgium

FTfJP Workshop @ Ecoop (07/06/2022)

62


