Declarative
Programming

Coen De Roover - 2010



These slides are based on:

Acknowledgements

slides by Prof. Dirk Vermeir for the same course

hitp://tinf2.vub.ac.be/” dvermeir/courses/logic_programming/Ilp.pdf

slides by Prof. Peter Flach accompanying his book “Simply Logical”
http://www.cs.bris.ac.uk/ ™ flach/SL/slides/

slides on Computational Logic by the CLIP group
http://clip.dia.fi.upm.es/ " logalg/


http://clip.dia.fi.upm.es/~logalg/
http://clip.dia.fi.upm.es/~logalg/
http://www.cs.bris.ac.uk/~flach/SL/slides/
http://www.cs.bris.ac.uk/~flach/SL/slides/
http://tinf2.vub.ac.be/~dvermeir/courses/logic_programming/lp.pdf
http://tinf2.vub.ac.be/~dvermeir/courses/logic_programming/lp.pdf

Practicalities

course material exam

oral test with

: individual
Simply | written preparation .
Logical Declarative programming

AT Programming CIbOUi' fheor)’ Clnd prOieCt
({{ exercises
II peter Flach averaged, unless one <7
website exercises
http://soft.vub.ac.be/~ cderoove/ S sessions
declarative programming/ start 6th of October at IG



http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/
http://soft.vub.ac.be/~cderoove/declarative_programming/

DiCtionary

All m Thesaurys

Apple  Wikipedia

| di’kle(a)rativ; -klar-|

adjective

DERIVATIVES
d&daroacﬁve.ly a dV erb

-_

Problem solving strategy

Declarative



Habitat Monitoring using Sensor Network

gather sensor readings

route through network while adjusting
averages and count

power-efficiently and fault tolerantly

a8
O SELECT region,

E? CNT (occupied),
= AUG (sound)

FROM sensors

GROUP BY region

HAVING AUG (sound) > 200
EPOCH DURATION 10@s



XWT

program transformations

if($condition$) {
$x$ = $expris;

else {
$x$ = Pexpr2$;

£;$ = $condition$ ? Pexpri$ : $expr2$;

Jetbrain’s SSR

identifying XML elements
/bookstore/book [price>35.00] /title

< /bookstore/book [position()<3]
O
gz count(//a [ehref]
//img[not (Palt)]
positioning GUI widgets
<{Shell>
<Shell .layout>
<FillLayout/>

</Shell.layout>
{Button text="Hello, world!">

</Button> I
</She11> q so o0



L

r

classical logic

General-purpose declarative programming:
logic formalizes human thought process

Aristotle likes cookies
Plato 1s a friend of anyone who likes cookies
Plato 1s therefore a friend of Aristotle

formally

al : likes(aristotle, cookies)

a2 : vX likes(X, cookies) — friend(plato, X)
tl :friend(plato,aristotle)

T [al,a2] +~ t1i



General-purpose declarative programming: 1:«*;‘
logic assertions as problem specification t

extensionally

Peano gt (@) A nat(s(@)) » nat(s(s@))) » . . .
encoding

natural
numbers

nat (@) x

intensionall
vX ¢ nat(X) — nat(s(X))) intensionatly

v (le(@,X)) A

o %Y (le(X,¥) — le(s(X),s(¥))

add vX (nat(X) — add(@, X, X))
v’,Y,2 (add(X, ¥, Z) - add(s(X), VY, s(2)))

prod vX (nat(X) - mult(@, X, 8)) A
v, Y, Z, W (mult(X,Y,W) A addW,¥Y,Z) — mult(s(X),¥,Z2))

squares X, Y (nat(X) A nat(¥) A mult(X,X,¥) — square(X,¥))

wanted VX wanted(X) «
(¥ nat(¥) A le(¥,s(s(s(s(s(@)))))) A square(Y, X)))

8

squares of natural numbers < to 5



-
U

Assuming the existence of a mechanical proof procedure,
a new view of problem solving and computing is possible
[Greene in 60’s]

General-purpose declarative programming:
proof procedure as problem solver

1 2 3
program proof specify the problem by means  query the proof procedure for
procedure once of logic assertions answers that follow from the
assertions

query answer



{

r

which logic which proof procedure

General-purpose declarative programming:
logic and proof procedure

performance

concurrency, memoization ..
soundness

are all provables true

completeness

can all trues be proven

10



mmin9:

se declarative p
o

al-purp .

Gener lew
historical overv

tion
pr esolu
Green® n: linear !
Robinso
(early) Ko alsk;- procedural INterp lation Of Horp Clauge logic Reaqg
if81 and 2ang .. and n s

to SOlve (e Cu ) A g lve( xecute) 5, and 5, and,... 5,

(early) Co e r: sp Cigl €d the re Prover (e rtr n) e bedoling thep ocC durg|

mterpretatio P g (Pr ra ation tLogiqu )

N the US.: - Xt- nerationA lang d9es” of the tim
dlfficult fo co rof
(Iate) D.H r velo
Very efficieny (



General-purpose declarative programming: I
historical overview

Many commercial CLP systems with fielded applications.

Extensions to full higher order, inclusion of functional programming, ...
Highly optimizing compilers, automatic parallelism, automatic debugging.
Concurrent constraint programming systems.

Distributed systems.

Object oriented dialects.

Applications

Natural language processing
Scheduling/Optimization problems
Al related problems

(Multi) agent systems programming.
Program analyzers

12



Representing
Knowledge

relations among
underground stations

o ErriEnRN
Oxforq

o Circus
Bong o

Street
Tottenham
Court Road
Green O .
Park Piccadily |
Circus Leicester
Quare
Chal’ing
Cross

represented by predicates

predicate symbol

ternary connected/3:

binary nearby/2:

argument terms

nearby (bondstreet, oxford_circus)

|3

CENTRAL

connected (bond_street,oxford_circus,central)



Representing Knowledge:
base information

logic predicate connected/3
implemented through logic facts

connected (bond_street,oxford_circus,central).
connected(oxford_circus, tottenham_court_road, central).
connected (bond_street, green_park, jubilee).

connected (green_park,charing_cross, jubilee).

connected (green_park,piccadilly_circus,piccadilly).

JUBILEE BAKERLOO NORTHERN

Circus CENTRAL

O O PICCADILLY
reen i
are

VICTORIA

logic facts describe a
relation extensionally
(i.e., by enumeration)

connected(piccadilly_circus, leicester_square,piccadilly).

connected (green_park,oxford_circus,victoria).
connected (oxford_circus,piccadilly_circus,bakerloo).

connected(piccadilly_circus,charing_cross,bakerloo).

connected (tottenham_court_road, leicester_square,northern).

| 4



Representing Knowledge:

uppercase=variable

derived information omercase~constan dent
indepe" en
in rule e
logic predicate nearby/2 vor'm‘::z;f o able Xin e ?

implemented through logic rules

conclusion of rule premises of rule

logic rules describe a
relation intensionally

“Two stations are nearby
if they are on the same
line with at most one
other station in between”

compare with an extensional description through logic facts:



Answering Queries:
base information

matching query predicate against a compatible
logic fact yields a set of variable bindings

predicate logic variables as
symbol argument terms
query
answer
answer

compatible
facts



Answering Queries:
derived information

query
matching query predicate with the conclusion of a
compatible rule:

yields:

the original query can premise of compatible rule
therefore be answered by
answering:

matching new predicate against a compatible logic fact
yields:

final
answer



Answering a Query
= constructing a proof for a logic formula

logic rule (with variables

? - nearby(tottenham_court_road, W) renamed for uniqueness)

nearby(X1,Y1) :- connected(X1,Y1,L1)
{ X1=tottenham_court_road, Yi=W }

?— connected (tottenham_court_road, W,L1) logic fact

connected (tottenham_court_road, leicester_square)
{ W=leicester_square,L1=northern}

answer




Answering Queries:
involving recursive rules

reachable(X,Y) :— connected(X,VY,L). VCToRA
reachable (X,Y) :- connected(X,Z,L), reachable(Z,VY).

:—reachable (bond_street, k) reachable (X1,Y1) :- connected(X1,Z21,L1),

reachable (Z1,Y1).
* {X1=bond_street, Y1=W}
:—connected (bond_street,Z1,L1),
reachable (Z1, W) connected(bond_street, oxford_circus,central).
-E * {Z1=oxford_circus, Ll=central}
o= .
S g s :—-reachable (oxford_circus, W) reachable (X2,Y2) :-connected (X2,22,L2),
o = 0 I reachable (22,Y2).
E U O {X2=oxford_circus, Y2=W}
£ € € \/
2 3 a :—connected (oxford_circus,22,L2),
5 reachable 522, W) connected (oxford_circus, tottenham_court_road,central).
+ {z2=tottenham_court_road, L2=central}
:-reachable (tottenham_court_road, W)
I reachable (X3,Y3) :- connected(X3,Y3,L3).
7 {X3=tottenham_court_road, Y3=W}
:—connected (tottenham_court_road, W,L3)
I connected (tottenham_court_road, leicester_square,northern)
* {W=1leicester_square, L3=northern}
[]

19

wiliari Ig
Cross

S3|PLIDA JusiayIp
suoiyooi|ddp a|n. juaisyyip



Prolog’s Proof Strategy:
resolution principle

to solve a query
find a compatible rule

and solve

? onnected(W,21,L1),

by(X1,Y1) :- connected(X1,21,L1),
connected (21 L1).

connected(21,charing_cross,L1)

connected(bond_street, green_park, jubilee).
i) { W=bond_s , 2 n—pa }
ed(green_pa ing_cr jubi )
connec ( n—_par rin )
./
v {}
U

such that a matches qa;

gives ua procedural interpretation to formulas  logic programs

Prolog =
programmation
en logique

20



?- nearby (W, charing_cross)

onnected(W,21,L1), connected(Z1,charing_cross,L1)
—park, jubilee

——”’——’—
{

based on proof by refutation ... ..

ected(green_park, charing_cross, jubilee

| —
v {}

assume the formula (query) is false
and deduce a contradiction

the query

is answered by reducing

“empty rule”:
premises are always true
conclusion is always false

to a contradiction

in that case, the query is said “to succeed”

21

onnected(bond_street, green

}

, jubilee)

earby(X1,Y1) :- connected(X1,21,L1),
cted(Z1,¥1,L1

Prolog’s Proof Strategy: T

).

en_park, Ll=jubilee

).

}

).



/ parént(CyP)s-, mother.(C,P).
Prolog’s Proof Strategy: parent (§;).+~father (C,P).
searching for a proof I
father (j ollen,pqul)
father(ilesbeth paul).
?- parent (X,paul)
barent (C1,P1) = mother (C1,P / parent(C1,P1) :- father(C1,P1)
choice

{C1=X, paul=P1}

{C1=X, paul=P1} poinf

?—- mother (Cl,paul)

blocked as there
are no matches

Prolog uses depth-first search to find a proof. When blocked or more answers
are requested, it backtracks to the last choice point. Of multiple conditions, the
left-most is tried first. Matching rules and facts are tried in the given order.



JUBILEE BAKERLOO NORTHERN

CENTRAL

Representing Knowledge:
compound terms

PICCADILLY

VICTORIA

route (tottenham_court_road, route(leicester_square, noroute))

route
tottenham_court_road route
leicester_square noroute

23



JUBILEE BAKERLOO NORTHERN

CENTRAL

Representing Knowledge:
compound terms

PICCADILLY

VICTORIA

reachable (X, Y, noroute) :— connected(X,VY,L).

reachable (X, Y,route(Z,R)) :- connected(X,Z,L), /™fey,
reachable (Z,Y,R) . log;. e in ,
Pl'ogram ,egU/ Qr

m
do not differ syntactically from predicates, gl
but can be used as their arguments

?- reachable (oxford_circus,charing_cross,R).

answer { R = route(tottenham_court_road,
route (leicester_square,noroute)) }

answer { R = route(piccadilly_circus,noroute)}
{ R = route(piccadilly_circus,
answer route (leicester_square,noroute))}

24



Representing Knowledge: e,

- S (e Ta;
lists Saq, r, 17

Q
d qul)

J

list functor

car | head / \ cdr | tail list notations
a .
b .
/ \ empty list
< []

compound term notation

25



Representing Knowledge:

lists

arbitrary
length

even
length

odd
length

list([]).
list([First|Rest]) :— list(Rest).

evenlist([]).

JUBILEE BAKERLOO NORTHERN

CENTRAL

PICCADILLY

VICTORIA

evenlist([First,Second|Rest]) :- evenlist(Rest).

oddlist ([One]).

oddlist([First,Second|Rest]) :— oddlist(Rest).

oddList([First|Rest]) :- evenlist(Rest).

26



Representing Knowledge:
lists

reachable (X, Y, []1) :— connected(X,Y,L).

reachable (X, Y, [Z|R]) :— connected(X,Z,L),
reachable (Z,Y,R).

JUBILEE BAKERLOO NORTHERN

CENTRAL

PICCADILLY

VICTORIA

?- reachable (oxford_circus,charing_cross,R)

answer { R= [tottenham_court_road, leicester_square] }
answer { R =[piccadilly_circus] }
answer { R =[piccadilly_circus, leicester_square] }

?- reachable (X, charing_cross, [A,B,C,D])

from which X can we reach charing_cross via
4 successive intermediate stations A,B,C,D

27



lllustrative Logic Programs:
list membership

anonymous variable:
use when you do not care about
the variable’s binding

member (X, [X]_]1).
member (X, [_|Taill) :— member (X, Tail).
?- member (X, [1,2,3])
answers {X=1} {Xx=2} {Xx=3}
72— member (h(X), [f(1),g(2),h(3)])
answer {X =3}
?- member (1, [])

query fails (the empty list has no members)
28



lllustrative Logic Programs:
list concatenation

append([],Ys,VYs).
append ( [X|Xs],VYs, [X|Z2s]) :— append(Xs,Ys,Zs).

S
-g ?- append([a,b,c], [d,e,f], Result)
..g_ answer { Result = [a,b,c,d,e, f]}
& 5 ?7- append(Left, Right, [a,b,c])
6ﬁa$9 £
\000&0&&@@ 5 answer { Left = [a,b,c,d,e, f], Right= []}
] £
X 2 -
Qo"&\O Q‘o 7 answer { Left = [a]l, Right= [b,c]}
N o
%g\p\ H -
= answer { Left = [a,b], Right= [c]}
3
answer { Left = [a,b,c], Right= []}

29



lllustrative Logic Programs:
basic relational algebra

union r-union_s(Xi, ..., %Xn) = r(Xi, ...,%n).
r_union_S X1y e« eyXn) = S(KiyeoeyXn).

intersection r_meet_s(Xiy...yXn) = P(Xiyeee9®n)y S(XiyeeeyXn).

cartesian product  rox_s(Xi, ooy Ky Knrty oo os Xnen) im P (K, oo, %),
S (Xm+1, e o oy Xm+n) 3

projection  riz(Xi,X3) :— r(Xi,X2,%X3).

selection ri1(X1,X2,X3) :— r(Xi,%X2,X3), smith_or_jones(Xi).
smith_or_jones(smith).
smith_or_jones (jones) .

natural join _join_ X2 s (X1,%2y « « «yXny Y1y oo e¥n) = P (X1, X2...s%n),
S(XZ,VI, .oo,Vn)
30



lllustrative Logic Programs:
deterministic finite automaton

list of symbols Xs

accept(Xs) :- initial(Q), accept(Xs,Q). accepted in state Q

O
v

60
W
N

accept([],Q) :—= final(Q).
accept([X|Xs],Q) :- delta(Q,X,Ql), accept(Xs,Ql).

RS

o

transition from state Q to -
?— accept([a, b, a, b, b]).
state Q1 consuming X = o

answer {}

accepting

q] ?- accept([a, b]).

N b
q0 >
x fail
query fails
b (ab)*b
q2

?7—- accept(Xs).

initial (qe). .g) answer { Xg = b] }
final (ql). S answer { Xs = [a,b,b] }
c
delta(q@,b,ql). & answer { Xs = [a,b,a,b,b] }

del ta(g®,a,g2).
del ta(g2,b,g@) .

[The Art of Prolog, Sterling&Shapiro]

31



lllustrative Logic Programs:
deterministic finite automaton

NSNS

“ decprogl_dfa.pl E

accept(Xs) :- initial(Q), accept(Xs,Q).
accept([]1,Q0) :- final(Q).
accept([XIXs],Q) :- delta(Q,X,0Q1), accept(Xs,Q1).

initial(qg®).
final(ql).|

delta(q@,b,ql).
delta(q@,a,q2).
delta(q2,b,q®).

N e

-:--- decprogl_dfa.pl All (6,10) (Prolog[SWI])
?- % /Users/cderoove/decprogl_dfa.pl compiled 0.00 sec, 3,512 bytes
true.

7- accept([b]).
true

?- accept([a,b]).

false.

7- accept(Xs).
Xs = [b] ;

Xs = [a, b, b] ;
Xs = [a, b, a, b
Xs = [a, b, a, b
Xs = [a, b, a, b
Xs = [a, b, a, b
Xs = [a, b, a, b

1:**-~ *prolog*

(=2
J

a, b, b] ;

a, b, a, b, b] ;

a, b, a, b, al...] ;
a, b, a, b, al...]

e

57% (15,0) (Inferior Prolog: run)

32

demo time



lllustrative Logic Programs:
non-deterministic finite automaton

CPSC312/CPSC312/Lecture/LectureHTML/CS312 10.html#11]

for free
because of
backtracking over
choice points

ql

o

= answer
(ab)*(ab|b) 3

O

o

query fails

o) answer

=

S answer

c

®

@ answer

note that is accepted, but not generated ... more about

the limitations of the proof procedure later

33


http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11
http://www.cse.buffalo.edu/faculty/alphonce/.OldPages/CPSC312/CPSC312/Lecture/LectureHTML/CS312_10.html#11

[The Art of Prolog, Sterling&Shapiro]

lllustrative Logic Programs:
non-deterministic pushdown automaton

from state Q with stack S to state Q1
with stack S1 consuming X

input symbols are pushed
transition for palindromes of even length: abba

transition for palindromes of odd length: madam

symbols are popped and compared with input

34

list used as stack

palindrome recognizer

X pushed
on stack

variable X
substitutes for q
concrete symbol 1!

X popped off stack



Declarative
Programming



Logic Systems:
structure and meta-theoretical properties

syntax

defines which
“sentences” are legal
in the logical language

weakest form:
prove nothing

semantics

gives a meaning to the sentences

usually truth-functional: what is

the truth value of a sentence
given the truth value of its words

soundness

anything you can
prove is true

completeness

anything that is true
can be proven

proof theory

specifies how to obtain
new sentences (theorems)
from assumed ones (axioms)
through inference rules



Logic Systems:
roadmap towards Prolog

statements that can

propositional clausal logic be true or false

statements concern
relations among obiects from a

relational clausal logic universe of discourse

compound terms

full clausal IOgiC aggregate objects

clausal logic

definite clause logic

o o Pure Prolog
no disjunction in head

lacks control constructs, arithmetic of full Prolog
3



Propositional Clausal Logic - Syntax:
clauses

- if

; or

optional

clause : head [:- bodyl

, and head : [atom[;atom]*] Zero or more

body : atom|[,atom]*

atom : single word starting with lower case

“someone is married
or a bachelor if he is a married;bachelor :—-man,adult.
man and an adult”



Propositional Clausal Logic - Syntax:
negative and positive literals of a clause

clause

B=H

. . = -lB Vv H
is equivalent to

positive literals negative literals

hence a clause can also be defined as a disjunction of
literals L1 vL2 v...vL, where each L; is a literal,
i.e. L= Ajor Li = =A;, with Aj a proposition.

5



Propositional Clausal Logic - Syntax:
logic program

Co

Y, S0y
° oo/.
finite set of clauses, each\ Yoy

terminated by a period

woman;man :— human.
human :— man.
human :— woman.

is equivalent to

(human = (woman v man)) (-human v woman v man)
r(man = human) Ar(=man v human)
Ar(woman = human) A (~woman v human)

B=H

E-lB\/H



Propositional Clausal Logic - Syntax:
special clauses

an empty body stands for true an empty head stands for false
man :—. Or man. :— 1mpossible.
true = man impossible = false

man A —m1mpossible



Propositional Clausal Logic - Semantics:
Herbrand base, interpretation and models

Herbrand base Bp of a program P

when represented by the
set of all atoms occurring in P set of true propositions |:

. . subset of Herband base
Herbrand interpretation i of P

mapping from Herbrand base Bp to the set of truth values

~H
An interpretation is a model for a dause if the clause is true e 8
under the interpretation. sy trug
if either the head is true iy, = iy Ury

or the body is false f°~’se ffqlse f°~’se

An interpretation is a model for a program if it is a model for
each clause in the program.



Propositional Clausal Logic - Semantics:
example (1)

program P Herbrand base B»
womanj;man :— human. {woman, man, human}
human :— man.

human :— woman.

23 possible Herbrand Interpretations

I={woman} J={woman, man} K={woman, man, human}
L={man} M={man, human} - 'En(,‘é?,”’an, false)
(hUIDQr; fQISQ)’ ’

N={human} 0= {woman, human} =2



Propositional Clausal Logic - Semantics:
example (2)

H1
program P By ey
womaniman :— human. : . B
human i— man for all clauses: either one atom in head is
human o wom(;ln true or one atom in body is false

4 Herbrand interpretations are models for the program

rtrenciada. w K={woman, man, human}
e  M={man, human}
“fremesde. O0={woman, human} =%



Propositional Clausal Logic - Semantics:
entailment

P entails C

PE=C

clause C is a logical consequence of program P
if every model of P is also a model of C

orogram P models of P

intuitively preferred: doesn’t
assume anything to be true that
doesn’t have to be true
¥



Propositional Clausal Logic - Semantics:
minimal models

no subset is a
model itself

could define best model to be the minimal one
BUT

has 3 models of which 2 are minimal

clauses have at most one
atom in the head

A definite logic program has a
unique minimal model.



Propositional Clausal Logic - Proof Theory:
inference rules

how to check that P F C without computing all models for P
and checking that each is a model for C2

by applying inference rules, C can be derived from P: P+ C

purely syntactic, not
concerned with semantics

has wife:-man, sbachelor:-man,adult

SN

has wife;bachelor:-man,adult

e.g., resolution

happens to be a logical consequence of the
program consisting of both input clauses



Propositional Clausal Logic - Proof Theory:

. case analysis of resolution
2
O O eif/,er
;QO }I Qf'l'ied ¢ d
v ‘ or
O er fo
.:g f rseco” d o
'E - QUSe f
S~ Mman o}
s 2 v has © fry
s & o Mary,; d ~he 9 wel
- S e )
bs ﬁ / Order OI'F
Irs
F c> “Mmap fC/Quse t
Vv o b
S ~Qqd e fr
ult b Ue q
§ ',§ QCll)e/o,. S wel/
3
man ~ad, fheref Ore
u/
ty bQChe/Or y
=m
an hQs



Propositional Clausal Logic - Proof Theory:
special cases of resolution

modus ponens

resolution

o % If it's

raining it's wet;

it’s not wet, so it's
not raining

modus tollens



Propositional Clausal Logic - Proof Theory:
successive applications of the resolution inference rule

A proof or derivation of a clause C from a program P
is a sequence of clauses Co,...,Ch=C

such that vio...n : either C; € P or C; is the resolvent of Ci1 and Ci2 (i1 <i,i2 <i).

If there is a proof of C from P, we write P+ C

square: - requal sides :-parallelogram,right angles
can be
used in further
square:-parallelogram,right angles,equal sides resolutions

resolvent



Propositional Clausal Logic - Meta-theory:
resolution is sound for propositional clausal logic

if PFC then P FC

Propositional Clausal Logic - Proof Theory:

because every model of the two input clauses ;" coe crayss i ressitin

~
]

S 2 eith
° g ;7- er ’"Q”iedl P
IS also a model ror the resolvent
S Ondclq
- Use
§T “Man \, b to be
£ or Smqpr: ewi ve as Well.
: E.. Q"Ied' in ord, .
er f
i
/e
Mq v, to be 4
aduly bache lor TUe g wel[.

by case analysis on truth value of resolvent



Propositional Clausal Logic - Meta-theory:
resolution is incomplete

the tautology is true under any interpretation

hence any model for a program P is also a model of
hence P F

incomplete

however, resolution cannot establish P F



Propositional Clausal Logic - Meta-theory:
resolution is refutation-complete | yorives the empty clause

from any inconsistent set of

PE C clauses

& each model of P is also a model of C

& no model of P is a model of =C

entailment
reformulated

& PUAC has no model C=Livlov...vL,

-C = -|L]/\-|L2.../\-|Ln
= {—lL],—|L2...,—|Ln}

= set of clauses itself

PU=C is inconsistent

it can be shown that:

c o
O
:g 8. if Q is inconsistent then Q empty clause false - frue
Hé 8 £ PE Cthen PUSC F for which no model exists




Propositional Clausal Logic - Meta-theory:
example proof by refutation using resolution

happy :- has_friends. . N .
P friendly :- happy. F friendly :- has_friends. C

happy :— has_friends.

. =-(friendly:-has_friends)
- f dly :— h .
PU-C hz;i?piznds , PPE =a(friendlyv-has_friends)

:— friendly. =-friendlyrhas_friends

:-friendly friendly:-happy
:-hap#i/////figpy:-has_friends

:-has_friends has friends

20



Relational Clausal Logic - Syntax:
C I auses statements concern relations

among obijects from a universe

of discourse
add

roposifional logic

constant : single word starting with lower case
variable : single word starting with upper case
term : constant | variable
predicate : single word starting with lower case
atom : predicate[(term][, term]*])]
clause : head [:- body]
head : [atom[;atom]*]
body : atom[,atom]*

" °
.pef.er likes anyboczly .Who likes (peter,S) :- student_of (S,peter).
is his student. mariaisa  student_of (maria,peter).

student of peter”

21



Relational Clausal Logic - Semantics:
Herbrand universe, base, interpretation

Herbrand universe of a program P

term without variables

set of all terms that are ground in P

Herbrand base Bp of a program P

set of all ground atoms that can be constructed using predicates in
P and arguments in the Herbrand universe of P

Herbrand interpretation | of P

. is this a model?
subset of Bp consisting of ground atoms that are true need to consider

variable substitutions
22



Relational Clausal Logic - Semantics:
substitutions and ground clause instances

A substitution is a mapping o : Var = Trm.

For a clause C, the result of 0 on C, denoted Co

is obtained by replacing all occurrences of X € Var in C by o(X).
Co is an instance of C.



Relational Clausal Logic - Semantics:
models ~gro,

interpretation | is a model of a clause C
< | is a model of every ground instance of C.

interpretation | is a model of a program P
< | is a model of each clause C € P.

P

| is a model for P
because it is a model of all ground instances of clauses in P:



Relational Clausal Logic - Proof Theory:
naive version

naive because there are many

grounding substitutions, most of

which do not lead to a proof instan from all ground
ces o

instead of trying arbitrary substitutions before trying to apply resolution,
derive the required substitutions from the literal resolved upon
(positive in one clause and negative in the other)

_ as atoms can contain variables, do not require exactly the same atom
in both clauses ... rather a complementary pair of atoms that can be
made equal by substituting terms for variables




Relational Clausal Logic - Proof Theory:
unifier

A substitution o is a unifier of two atoms a; and a>
< a10 = a20. If such a o exists, a1 and a2 are called unifiable.

A substitution o1 is more general than o2 if 02 = 010 for some
substitution 0.

A unifier 0 of a1 and a2 is a most general unifier of a1 and a2
< it is more general than any other unifier of a1 and ax.

If two atoms are unifiable then they their mgu is unique up to renaming.



Relational Clausal Logic - Proof Theory:
unifier examples

p(X, b) and p(a, ¥Y) are unifiable
with most general unifier {X/a,Y/b}

q(a) and gq(b) are not unifiable

q(X) and q(¥Y) are unifiable:

{X/¥} (or{Y/X}) is the most general unifier

{X/a, Y/a} is a less general unifier



http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf
http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf

Relational Clausal Logic - Proof Theory:
resolution using most general unifier

apply resolution on many clause-instances at once

if C; = L}V...L;H
Co = L%\/L,Z72
Ll = ﬁLIZH forsome1<i<n{,1<j<n,

where 6 = mgu(L;, L?)

1 1 1 1
VIOV .. VL0V L0V .. VL0



Relational Clausal Logic - Proof Theory:
example of proof by refutation using resolution with mgu

» likes (peter,S) :- student_of(S,peter).
student_of(S,T) :— follows(S,C), teaches(T,C).
teaches (peter,decprog).
follows (maria, decprog) .

“is there anyone whom peter likes”2 " add “peter likes nobody” to P

:—1likes (peter,N) likes (peter,S) :-student_of (S,peter).

¢ {s/N}

:—student_of (N, peter)

l IS/N, T/peter}

:—follows(N,C), teaches (peter,C)

student_of(S,T) :- follows(S,C), teaches(T,C).

follows (maria,decprog) .

+ {N/maria, C/decprog}
:—teaches (peter, decprog)

I
v

[]

teaches (peter,decprog) .

:— likes(peter,N)){N/maria} u P + [ hence P k likes(peter,maria)



Relational Clausal Logic - Meta-theory:
soundness and completeness

relational clausal logic is sound

P-C = P:C

sound

relational clausal logic is refutation-complete

Pu{C} inconsistent = P u {C}

new formulation because
.- p(X)EVX—lp(X)
while =(p(X).)==(vX-p(X))=aX-ap(X)

complete



Relational Clausal Logic - Meta-theory:
decidability

The question “P:C2” is decidable for
relational clausal logic.

also for
propositional
clausal logic

Herbrand universe and base are finite
therefore also interpretations and models

could in principle enumerate all models of P and
check whether they are also a model of C



Full Clausal Logic - Syntax:
C I auses compound terms

aggregate objects
Add

fUncf'
Ion
an arip,. S (fu
Y7 Constapy are : Cfc;rs), with
SrY tuncy
Ors,

functor : single word starting with lower case
object variable : single word starting with upper case
term : variable | functor [(term][, term]*)]
predicate : single word starting with lower case
atom : predicate[(term][, term]*])]
proposition clause : head [:- body]
head : [atom[;atom]*]
body : proposition|[,proposition]#*

“adding two Peano- plus (@, X,X).
encoded naturals” plus(s(X),Y,s(2)) :- plus(X,¥Y,2).

32



analogous to

Full Clausal Logic - Semantics: -~ relationdl dausal logi
Herbrand universe, base, interpretation

Herbrand universe of a program P
infinite!

terms that can be constructed from the constants and functors

Herbrand base Bp of a program P

set of all ground atoms that can be constructed using predicates in
P and ground terms in the Herbrand universe of P

Herbrand interpretation | of P is this a model?

possibly infinite subset of Bp consisting of ground atoms that are true

33



Full Clausal Logic - Semantics: .,
infinite models are possible Groung, it e it

An interpretation is a model for a program if it is a model
for each ground instance of every clause in the program.

plus(0,0,0)
plus(s(@),0,s(@)):-plus(0,0,0)
plus(s(s(@)),0,5(s(@))):-plus(s(@),0,5(0))

lus(8,s(8),s(@))
plus(s(@),s(0),s(s(@))):—plus(8,s(8),s(s(0)))
plus(s(s(@)),s(@),s(s(s(@)))):—plus(s(@),s(@),s(s(B)))

according to first ground clause, plus (0,0,0) has to be in any model
but then the second clause requires the same of plus(s(2),0,s5(2))
and the third clause of plus(s(s(9)),0,s(s(@))) ...

all models of this program
are necessarily infinite

34



FUII CIGUSGI LOgiC = PrOOf TheOr)/Z analogous to relational

clausal logic, but have

computing the most general unifier o1k compound

terms into acount when
computing the mgu of
atoms complementary atoms

and

have most general unifier

yields unified atom
plus(s(¥Y),s(@),s(s(¥Y)))

found by

renaming variables so that the two atoms have none in common
ensuring that the atoms’ predicates and arity correspond
scanning the subterms from left to right to s(¥) and (@)
find first pair of subterms where the two atoms differ;
if neither subterm is a variable, unification fails;
else substitute the other term for all occurrences of the variable
and remember the partial substitution;

repeat until no more differences found
35

{v/0}



Full Clausal Logic - Proof Theory:

computing the most general unifier using the

Martelli-Montanari algorithm

repeat
selects=tc¢&
case s — t of
f(S1 ..... Sn) — f(t1 .....
replace s=tby{s; =1#,..., Sn = th}

f(sy,..., Sm)=09(t,..., t,) (f/m+#g/n):

operates on a finite set of equations s=t

t) (n>0):

remove X = X from &

t=X (t¢Var):
replace t = X by X =t

X =t (XeVarA X #tA X occurs more than once in &) :
if Xoccursint
then fail
else replace all occurrences of X in £ (exceptin X =t) by t

esac

until no change

occur check

36

¢4 e

el

= f(g(£),2)}
{X=9(2),9(Y) =2}
{X=9(2),Z2=9(Y)}
{X=9(9(Y)),Z=9(Y)}
{X/a9(g(Y)),Z/9(Y)}

(X, 9(Y))

resulting set = mgu

{f(X,9(X),b) =f(a,9(£), 2)}
{X=ag(X)=9(2),b=72}
IX=a,X=2Z,b=2}
{X=aa=2Z,b="2}
{X=aZ=ab=2}
{X=a,Z=ab=a}

fail




Full Clausal Logic - Proof Theory:

o before substituting a term
Im Portqnce OF OCCUr CheCk for a variablet,tvlri?y thtat the
variable does not occur in the

term; if so: fail
program  query

without occur check, atoms to be resolved
upon unify under substitution

and therefore resolving to the empty clause no semantics for
infinite terms as there

are no such terms in

. the Herbrand base
try to print answer:

BUT

moreover, not a logical consequence of the program omitting occur
check renders

resolution unsound
37



Full Clausal Logic - Proof Theory:
OCCUr CheCk not performed in Prolog out of

performance considerations
(e.g. unify X with a list of 1000 elements)

Martelli-Montanari algorithm SWI-Prolog
ULY, Y) = (X, 1(X))}
= {Y=X,Y=FfX)}
= (Y =X X=1(X)} built-in unification
= falil operator

in rare cases where the
occurs check is needed

38



Full Clausal Logic - Meta-theory:
soundness, completeness, decidability

- full clausal logic is sound

c

=

3 PrC = P:C

o o« o .

o full clausal logic is refutation-complete

o

E [ ] [ ]

6 Pu{C}inconsistent = P u {C} -

O

. The question “PrC2” is only semi-decidable.

;g there is no algorithm that will always answer the question (with
S

g “yes” or “no”) in finite time; but there is an algorithm that, if P FC,
0

will answer “yes” in finite time but this algorithm may loop if P = C.

39



Clausal Logic:

overview

Herbrand universe

Herbrand base

clause

Herbrand models

meta-theory

propositional

{p, g}

sound
refutation-complete

decidable

relational

{G$b}
finite

{p(a,a), plb,a),...}

p(X,2):-
qX,¥),p(¥Y,2)

{}
{pla,a)}
{P(Q’Q)’P(bsa)’q(b’q)}

finite number of finite
models

sound
refutation-complete

decidable

40

full
{a, f(a), f(fla)), ...}

infinite

{pla, fla)), p(fla),
p(f(f(a))),...}

p(x$ f(X)):-
q(X)

{}

{p(a, fla)),qla)}
{p(fla), f(f(a)),
q(f(a))} ...

infinite number of finite
or infinite models

sound (occurs check)
refutation-complete
semi-decidable



Every set of clauses can be rewritten as an equivalent

Clq Usql LogiC: sentence in first-order predicate logic.
conversion to first-order predicate logic (1)

variables in a sentence cannot
range over predicates

married;bachelor :— man,adult.

haswife :— married. A=B=2AvB

becomes (manradult = marriedvbachelor) a ~(AAB)=-Av-B

(married = haswife) , ,
conjunctive normal

or (-man v =-adult v married v bachelor ) form: conjunction of

A (-married v haswife) disjunction of literals

reachable (X, Y,route (Z,R)) :— connected(X,Z,L), reachable(Z,VY,R).

becomes VXvYvZvRvL : =connected(¥X,Z,L) v
-reachable(Z,Y,R) v
reachable (X,Y,route(Z,R))

variables in clauses are

universally quantified

4]



. . Every set of clauses can be rewritten as an equivalent
Clausal Logic:

sentence in first-order predicate logic.

conversion to first-order predicate logic (2)

nonempty (X) :— contains(X,VY).

becomes vXwW: nonempty(X)v-contains (X,Y)

or vX: (nonempty(X)vvY-contains(X,VY))
or v¥X: nonempty(X)v=(3¥:contains(X,Y))
or vX: (¥Y:contains(X,Y))= nonempty(X))

variables that occur only in the body of a
clause are existentially qualified

42



For each first order sentence, there exists

CICI USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (1)

vX [brick (X) = (3¥Y [on (X, ¥) Ampyramid (Y) ] A

=3Y [on(X,¥Y) A on(Y,X)]A
v [-brick (Y)==equal (X,¥Y)])]

1 eliminate = using A = B = -A v B.
vX [Abrick (X) v (3¥Y [on (X, Y ) ~mpyramid (Y) ] A

=3Y [on (X, ¥Y) ron (Y, X) ] A
wW [~ (abrick (Y))v-equal (X,Y¥)])]

2 putinto negation normal form: negation only occurs immediately before propositions

vX [Abrick (X) v (3¥Y [on (X, Y ) ~mpyramid (Y) ] A

v [on (X, ¥) v-on (Y, X) ] A -(AAB) = -Av-B
v [brick (Y)v-equal (X,Y)])] ~(AVB) = 2AA-B
-|(-|A) = A

~vX [p(X)] = 3X [-p(X)]

. =(3X [p(X)] = vX [-p(X]]



For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (2)

€)% Y Y
Skole SXVY /
m Vi
e I'sfen:::/';sfanf s:g(if' Y)
7 Stit
s 00\\\6“\ \ hich doe Y uang;p d “h .forq
s\?o\) leo\\“\lo 0\3\\\ of Qun: of oCCUr . VQI'IQb/
ée\s\\o‘Ie N :o\I\Q vX3aY : loves(X,Y) ”’Versqlq 'N the Scop
“‘?oe c,O“"e‘sca,\dl vX:loves(X,person_loved_by(X)) Wtife, ¢
A\
< 00“ 0\)\|Qe
s\\o"ec"\‘) replace existentially quantified variable by a compound term of

which the arguments are the universally quantified variables in
whose scope the existentially quantified variable occurs

3 replace 3 using Skolem functors (abstract names for objects, functor has to be new)

sup (X) sup (X)

44



For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (3)

vX [Abrick (X) v ([on (X, sup (X)) rpyramid (sup (X)) ] A
v [Fon (X, ¥Y)von (Y, X)] A
v [brick (Y)v-equal (X,¥Y)]1)]

4 standardize all variables apart such that each quantifier has its own unique variable

vX [Abrick (X) v ([on (X, sup (X)) rpyramid (sup (X)) ]
v [Fon (X, ¥Y)von (Y, X) ] A
vZ [brick (Z2)v-equal (X,Z2)])]

5 move V to the front

vXwWvZ [Abrick (X)v([on (X, sup (X)) r~pyramid (sup (X)) ] A
[-on (X, Y)von(Y,X)]A
[brick (Z)v-equal (X,Z2)]1)]1]

45



C I ausa I Logic . For each first order sentence, there exists

an “almost equivalent” set of clauses.

conversion from first-order predicate logic (4)

vXwWvZ [brick (X) v ([on (X, sup (X)) r~pyramid (sup (X)) ] A
[Fon (X, Y)von (Y, X)] A
[brick (Z)v-equal (X,Z2)])]

6

convert to conjunctive normal form using Av(BAC) = (AvB)A(AvC)

vXWvZ [ (brick (X) v [on (X, sup (X)) Ampyramid (sup (X)) ] ) A
(=brick (X)v[-on(X,Y)v-on(Y,X)])A
(m=brick (X)v [brick (Z)v-equal (X,Z2)]1)]

vXwWvZ [ ((Abrick (X) von (X, sup (X)) )a(=brick (X)vapyramid (sup (X)) ) )
(Abrick (X)v[-on(X,Y)v-on(Y,X)])A
(-brick (X)v[brick (Z)v-equal (X,Z2)])]

vXWVZ [ [-brick (X)von (X,sup (X)) ] A

-brick (X)vapyramid(sup (X))] A
-brick (X)v-on(X,¥Y)von(Y,X)] A
-brick (X)vbrick (Z)v-equal (X,2)]]

Av(BvC) = AvBvC

46



For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (5)

vXwWvZ [ [Abrick (X)von (X,sup (X)) ] A

[~brick (X)vapyramid (sup (X))] A
-brick (X)v-on(X,Y)v-on(Y,X)] A
-brick (X)vbrick (Z)v-equal (X,Z2)]]

7/ split the conjuncts in clauses (a disjunction of literals)

vX  =brick (X)von (X, sup (X))

vX  =brick (X)vapyramid (sup (X))
vXvY =brick (X)v-on(X,VY)v-on (Y, X)
vXvZ =brick (X)vbrick (Z)v-equal (X,2Z)

8 convert to clausal syntax (negative literals to body, positive ones to head)

on(X,sup (X)) :— brick(X).

:— brick (X), pyramid(sup(X)).

:— brick (X), on(X,¥Y), on(Y,X).
brick (X) :—= brick(Z), equal (X,Z).

47



For each first order sentence, there exists

CIG USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (6)

1 eliminate =

2 putinto negation normal form

3 replace 3 using Skolem functors

4 standardize variables

5 move v to the front

6 convert to conjunctive normal form
/7  split the conjuncts in clauses

8 convert to clausal syntax

48



Definite Clause Logic:

60W’
o
° ° W, Us
mofivation s0u 10 o B0
-|q—’ E . e";c/,c,‘ )%/s . Q/)o{g
= 5 married(X);bachelor(X) :- man(X), adult(X). Sny, 'ndeie o) v
— | . .
< o man(peter). adult(peter). man(paul). ”re,cw ”77/,,% o’)'o(,
o 2 :-married(maria). :-bachelor(maria). :-bachelor (paul). Vo, Vs,
£ & ooy
clause is used married(X);bachelor (X):-man(X),adult (X) man (peter)
from right to left
married(peter) ;bachelor (peter):-adult (peter) adult (peter)

married (peter) ;jbachelor (peter)

. married(X) ;bachelor (X):-man(X),adult (X)
clause is used

from left to right

bachelor (maria) :-man(maria),adult (maria)

:-man(maria),adult (maria)

logical consequences that
can be derived in two resolution steps

married(X) ;bachelor(X):-man(X),adult(X)
both literals from

head and body are

resolved away
married(paul) :-adult (paul)

married(paul) ;jbachelor (paul) :-adult(paul)

indefinite
conclusion

:-married(maria)

:-bachelor (maria)

man (paul)

:-bachelor (paul)

49



Definite Clause Logic:
syntax and proof procedure

for efficiency’s sake

rules out indefinite conclusions fixes direction to use clauses

full clausal logic clauses
are restricted: at most
one atom in the head

from right to left:
m procedural interpretation

“prove A by proving each of Bi”

50



Definite Clause Logic: ot and o

Yy
° I ° ° Ql'er,. PrOIoCICluse Wl” be dis';fhe not
recovering lost exXpressivity ey, 9 ahaly p,, i ssed
b not/1 v h: a
= UN9erst00d proee ! Can op|
| Proced Y
can no longer express Urally
§ characteristic
- of indefinite clauses
© which had two minimal models
o
definite clause
containing not
w first model is minimal model of general clause
a to prove that
_g someone is
-~ bachelor, prove
= R that he is a man
% second model is minimal model of general clause and an adult, and
=) prove that he is not

a bachelor

51



Declarative
Programming



Sentences in definite clause logic:
procedural and declarative meaning

declarative meaning realized by model semantics

to determine whether a is a logical consequence of the clause,
order of atoms in body is irrelevant

procedural meaning realized by proof theory
order of atoms may determine whether a can be derived

to prove a, prove b and then prove c

to prove a, prove ¢ and then prove b

in.wgine and proof for b
c is false is infinite



Sentences in definite clause logic:
procedural meaning enables programming

procedural knowledge:
how the inference rules are

applied to solve the problem

algorithm = logic + control

declarative knowledge:
the what of the problem



also: an unwieldy theorem prover in

SLD-resolution refutation: ‘i pegmeer angusge
turns resolution refutation into a proof procedure

|eft-most
determines how to definite
select a literal to clauses
resolve upon . o, e N
selecion = SID o, /wé‘o/a e s h
and which clause rule C/QOSZ)'freszsfe p 6’0/}7@0'
is used when linear O’o ” Ve w,;e ,eso;‘r%o
multiple are resolution 00”5@,0@“" /0'5 %, "e,,,y/
: feg o %9, S
applicable ot 1oy Iy,
refers to the shape of the ng) - Wi

top-dow resulting proof trees



SLD-resolution refutation:
refutation proof trees based on SLD-resolution

_:—grandfather(a,X) r---------- > goal (query) e,
grandfather (C,D) : —father (C,E) ,parent (E,D) . )

L—""{c/a,o/x)

father (a,b).

{E/b}

: Parent(b,X).

parent (U, V) :—-mother (U, V) .

{U/b,V/X}

:—mother (b, X) .

mother (b, c) . computed substitution

/ {X/c} 7

|
___________________ e

{X/c) C/a,D/c,E/b,U/b,V/c} |

________________________________

—_ - =



SLD-resolution refutation: "oty
SLD-trees S

program clauses resolved
with are not shown, nor are

alternative  :—grandfather(a,X)  the resulting substitutions
resolution
steps are :—father (a,E) ,parent (E, X)

shown

: —parent (b, X)

failure /\ success

branch . —father (b, X) :—mother (b, X) branch
. blocked ]
Prolog traverses SLD-trees depth-first, backtracking from every path from the query root to the
a blocked node to the last choice point (also from a empty clause corresponds to a proof

success node when more answers are requested) tree (a successful refutation proof)



Problems with SLD-resolution refutation:
never reaching success branch because of infinite subtrees

rule of thumb: non-recursive
clauses before recursive ones

:—sibling(a, X) had we re-ordered the clauses, we
| would have reached a success branch
:—sibling (X, a) at the second choice point
:—sibling (a, X) []

:-sibling (X, a) incompleteness of Prolog is a design choice:
/\ breadth-first traversal would require keeping

[] : :
all resolvents on a level in memory instead of 1

Prolog loops on this query; renders it incomplete!
only because of depth-first traversal and not because of resolution as all
answers are represented by success branches in the SLD-tree
7



Problems with SLD-resolution refutation:

Prolog loops on infinite SLD-trees
when no (more) answers can be found

:—sibling(a, X)
— T resolvents
] :—sibling(a, 2) ,sibling(Z, Y) grow
:—sibling (b, Y) :—sibling(a,U),sibling (U, 2),
) sibling(Z, Y)
L] :—sibling(a, Z),sibling(Z,Y) ..
infinite .
tree cannot be helped using

breadth-first traversal: is due
to semi-decidability of full
and definite clausal logic



Problems with SLD-resolution refutation:
illustrated on list generation

?-list (L)

[] :-1list (T1)
[] :-1list (T2)

benign: / \
[]

infinitely many lists of :-list (T3)
arbitrary length are
generated



Problems with SLD-resolution refutation:
illustrated on list generation

?-plist (L)
\ less benign:
[] :-p(H1),plist(T1) only lists containing
s are generated
:-plist (T1
e (\) :-plist (T1)
:-p(H1) ,plist(T1) /// \\\
[] :-p(H1) ,plist(T1)
:-plist(T1)

/// \\\ :-plist(T1) :-plist (T1) :-plist(T1)
L /N / N/ \
) [] J [] J [] J

explored by Prolog success branches that are never reached

10



SLD-resolution refutation:
implemen’-"ng backfrack"ng amounts to going up one level

in SLD-tree and descending into
the next branch to the right

when a failure branch is reached (non-empty resolvent
which cannot be reduced further), next alternative for
the last-chosen program clause has to be tried

requires remembering previous resolvents for which not all
alternatives have been explored together with the last
program clause that has been explored at that point

backtracking=
popping resolvent from stack and
exploring next alternative



Pruning the search by means of cut:

cutting choice points

parent (X,VY) :—father (X,VY) .
parent (X,VY) :-mother (X,VY) .
father (john,paul).
mo ther (mary, paul ).

?-parent (john,C)

/ O\

:-father(john,C) :-mother(john,C)

[1] at this point, we know that
exploring the alternative
clause for parent/2 will fail

need to be remembered for all resolvents for which
not all alternatives have been explored

unnecessary alternatives will eventually be explored

parent (X,VY) :—father (X,VY), !.
parent (X, VY) :-mother (X,VY) .
father (john,paul).

mo ther (mary, paul ).

?-parent (john,C)

:—father(john,C),!ﬁﬁ

tells Prolog that this is the
only success branch

[]



Pruning the search by means of cut:
operational semantics

“Once you've reached me, stick with all variable
substitutions you’ve found after you entered my clause”

Prolog won’t try alternatives for: fo Hryg
literals left to the cut

nor the clause in which the cut is found



Pruning the search by means of cut:

an edepIe no pruning above the

head of the clause
containing the cut

p(X,¥):—q(X,V).
P(X,¥Y):-r(X,V¥).
q(X,¥):=s(X), 1, t (V).
r(c,d).

s(a).

s(b).

t (a).

t(b).

right to the cut

:_q(er)

:-s(X),!,t(Y)

?_P(XIY)

N\

:=r(X,Y)




Pruning the search by means of cut:
different kinds of cut

green cut red cut
does not prune away prunes success
success branches branches

stresses that the conjuncts to
its left are deterministic and
therefore do not have
alternative solutions

some logical
consequences of the
program are not returned

and that the clauses below with has the declarative and
the same head won't result in procedural meaning of
alternative solutions either the program diverge



Pruning the search by means of cut:
red cuts »-parent (john, C)

parent (X,Y) :—father (X,¥),!.
parent (X,Y) :-mother (X,VY) . L
father (john,paul). /// o
father (john,peter). same query,

mo ther (mary, paul ). but John has Pt

mother (mary, peter).  multiple children ‘
in this program

{C7petar} L]

:—father(jo

hn,C),!

the cut is now red as a
success branch is pruned

parent (X,Y) :—father (X,¥),!.
parent (X,Y) :-mother (X,VY) .

father (john, paul). :-father (P,paul), !
mother (mary, paul ). same program,

but query

{P?‘m'snu_} quantifies over -1

parents rather ‘
than children

the cut is only green when the
[] literal to its left is deterministic




Pruning the search by means of cut:

placement of cut

likes (peter,VY) :—=friendly(Y).
likes(T,S) :—student_of (S, T).
student_of (maria,peter).
student_of (paul,peter).
friendly(maria).

?-likes(A,B) ?-likes (A,B)

/

:-friendly(B) :—Studentfgf(B A),!

:-!,friendly(B)é

:—friendly(B) % : [] -1
T E; A=peter ‘
P = g 115§ 8 5 = R - and 3= b £ S B=maria
[] []
A=peter A=pet§r s EEAL
B=maria B=maria

likes (peter,¥Y):—!, friendly(¥). likes(T,S) :—student_of (S, T), !.



Pruning the search by means of cut:
more dangers of cut

clauses are not mutually exclusive
two ways to solve query ?—max (3,3, 5)

could use red cut to prune second way

only correct when ?-max (5, 3, 3)
used in queries with

uninstantiated third

Besy argument

S
Q/;o/v e



cut is often used to

Negation as failure:
. ensure clauses are
specific usage pattern of cut  mutually exclusive

/N

cf. previous example

e —q, ! r X ¢ —
only tried when q fails 2 ®
such uses are equivalent to the higher-level []
where fail built-in predicate
not_q always false

Prolog’s not/1 meta-predicate captures such uses:  inmqy

not(Goal) is proved by

failing to prove Goal
slight abuse of syntax

equivalent to call(Goal)



Negation as failure:
SLD-tree where not(q) succeeds because q fails

/N

:=q,r :=not(q),s

/N

:-q,!,fail, s :—S

q evaluated

, , twice
version with ! was more [

efficient, but uses of not/1
are easier to understand

20



Negation as failure:
SLD-tree where not(q) fails because q succeeds

p:—-not(qg),r.
pP:—q-. //// \\\\
q.

re.

:=not(q),r

not (Goal) :-Goal, !, fail.
not (Goal).

[]

branch corresponding to second
:—fail,r clause of not/1 is pruned

21



Negation as failure:

floundering occurs when argument is not ground

22

bachelor (X) :—-not (married (X)),
man (X) .

man (fred) .

man (peter).

married(fred).

query has
no answers

?-bachelor (X)

:—not (married (X)) ,man(X)

/

:-married(X),!,fail,man(X)

:-!,fail,man(fred)

:—fail ,man(fred)

unintentionally interpreted as
“X is a bachelor if nobody is
married and X is man”

not (Goal ) :-Goal, !, fail.
not (Goal).

these are the bachelors
we were looking for!



Negation as failure:
avoiding floundering

correct implementation of SLDNF-resolution:
not (Goal) fails only if Goal has a refutation with an empty answer substitution

Prolog does not perform this check:

not(married(X)) failed because
married(X) succeeded with {X/fred}

work-around: if Goal is ground, only
empty answer substitutions are possible

@ -

grounds X
not ( )

23



Negation as failure:
avoiding floundering

?-bachelor (X)

:-man (X) ,not (married (X))

/ N\

:-not (married(fred)) :-not (married(peter))

_marrled(fred),g,fallln }i :-married(peter),!,fail

._1 fai rounds X
i-t,fail bachelor (X) :— man(X), J

not (married(X)).

man (fred) .
man (peter).
married(fred).

s-fail

24



More uses of cut:
if-then-else

25

q and r evaluated twice

p:—q,r,s,!,t.
p:_q,r,u.
q.

re. only evaluated when s is false
u

and both g and r are true

such uses are equivalent to

p:—q,r,1f_s_then_t_else_u.
1f_s_then_t_else_u:-s, !, t.
1f_s_then_t_else_u:-u.

q.

r.

u.

/N

:_q,r,s,!,t :_q’r’u

i-s,!,t :-=u

1
?-p

:-q,r,if s then t _else u

:-r,if s then_t_else u

:if s then t _else u

/N

[]



More uses of cut:
if-then-else built-in

p :- gq,r,if_then_else(S,T,U).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):— U.

built-in as P->0Q; R

nested if’s:
P—>Q;(R—>S;T)

diagnosis(Patient,Condition) :-—
temperature (Patient,T),
( T=<37 -> blood_pressure(Patient,Condition)
s 1237, T<38 —-> Condition=ok

; otherwise -> diagnose_fever (Patient,Condition)

always
evaluates to true

26



More uses of cut:
enabling tail recursion optimization

play (Board,Player) :-
lost (Board,Player).

play (Board,Player) :-
find_move (Board, Player,Move),

io
make_move (Board, Move, NewBoard), Such thqy they C:s bn all moye
next_player (Player,Next), !, ey ~aN be Undone

pops choice points

1 NewB d, Next).
play (NewBoard, Next) from stack before

:—play(starconfiguration, first). entering next
recursion

most Prolog’s optimize tail recursion into iterative processes if
the literals before the recursive call are deterministic

27



Arithmetic in Prolog:  Poencodi,

is/2
multiplication as repeated
addition using recursion

must be
instantiated

defined as an infix
operator

succeeds if can be evaluated as an
arithmetic expression and its resulting value unifies with

28



Arithmetic in Prolog:
is/2 versus =/2  \-V2upep;, .

r
Cannot b Uments

T P€ Unifijed

succeeds if its arguments
can be unified

?7- X = 5+7-3
X = 5+7-3

27— Q = 5+7-3 ?-display(5+7-3). +/\
3

-(+(517)l3)

no N

97— K = Y43 just a term
X = _947+3

Y = _947

72— X = f(X)

X = FOUF(FCFCFCFCFCFCFCFCFCFCFCFCFC
error: term being written 1s too deep

29



Prolog practices:
accumulators

not tail-recursive

?-length([a,b,c],N)

N1l is M1+1
/W[blc] 14 N1_>N}

:-length([b,c], M1),

N is M1+1 N2 is M2+1

:-length([c] , M2),

M1 is M2+1, N3 is M3+l
N is M1+1
1s| {H->c, T->[], N3->M2}

t-length([],M3),
M2 is M3+1, length([]1,0)

M1l is M2+1,
N is M1+l
| {M3->0}

:-M2 is 0+1,
M1 is M2+1,
N is M1l+1
| M2->1}
:-M1 is 1+1,
N is M1+1
| M1->2)
:=N is 2+1
| {N->3}

[l

Ctlr“q()f‘shq7
after the js /2

length([H|T],N1):-length(T,M1),
length([H|T],N2):-length(T,M2),

length([H|T],N3):-length(T,M3),

Ply place the

Iiferql
as t
a"gumenf haS to b he

reécursijye call

) Iaﬁer,s SeCOnd
e 'Nstantigtey

the resolvent collects as many
is/2 literals as there are
elements in the list before

doing any actual calculation

30



Prolog practices:

tail-recursive length/2 with accumulator

length(L,N) :- length_acc(L,0,N).
length_acc ([]1,N,N). accumulator represents
length_acc ([H|T],NO,N) :- length so far

N1 1s Ra+l, read length_acc(L,M,N)
length—ace (T,N1,N). as N =gMTI- Ien(gth(L) )

?-length_acc([a,b,c],0,N) length_acc([H|T],N10,N1):-N11 is N10+1,

length_acc(T,N11,N1)
%blc] 4 N10_>0I N1_>N}

:-N11 is 0+1,
length_acc([b,c],N11,N)

{N11->1}

:-length_acc([b,c],1,N) length_acc([H|T],N20,N2):-N21 is N20+1,

length_acc(T,N21,N2)
Ac], N20—>1, N2_>N}

:-N21 is 1+1,
length_acc([c],N21,N)

{N21->2}

:-length_acc([c],2,N) length_acc([H|T],N30,N3):-N31 is N30+1,

length_acc(T,N31,N3)

:=-N31 is 2+1,
length_acc([],N31,N)

{N31->3}

:-length_acc([],3,N) length_acc([],N,N)

ooy 3]

[]




Prolog practices:
tail-recursive reverse/2 with accumulator

naive_reverse ([], []). reverse(X'le)
naive_reverse([H|T],R) :- =N Z=reverse(X)+Y
naive_reverse (T,R1), &
append (R1, [H],R). costly reverse (X,Z) :— reverse(X, [1,2).
append([],Y,Y). reverse([],Z,2).
append ([H|T],Y, [HIZ]) :- reverse([H|T],Y,2) :-
append (T,Y,Z). reverse (T, [H|IY],2Z2).

reverse(X,[],Z )& Z=reverse(X)
reverse([H|T],Y,Z) & Z=reverse([H]|T])+Y
< Z=reverse(T)+[H]+Y
& Z=reverse(T)+[H]|Y]
< reverse(T,[H]|Y],Z)



Prolog practices:
difference lists

represent a list by a term L1-L2.

variable for minus list:
can be used as pointer to end of represented list

33



Prolog practices:
appending difference lists in constant time

-2 XPlus >
e one unification step rather than as
- , - many resolution steps as there are
XMinus . .
- olue - elements in the list appended to
- >
YMinus
-2 XPlus >
- >

YMinus

append_dl (XPlus—XMinus, YPlus—-YMinus, XPlus—-YMinus)
or

e— XMinus=YPlus.

append_dl (XPlus-YPlus, YPlus—-YMinus, XPlus—YMinus) .

?—-append_dl ([a,b|X]-X, [c,d|Y]-Y,2Z).
X = [c,d|Y], Z = [a,b,c,d|Y]-Y

34



Prolog practices:
reversing difference lists

reverse(X,Y,Z) < Z=reverse(X)+Y
& reverse(X)=Z-Y

reverse([H|T],Y,Z) < Z=reverse([H]|T])+Y
< Z=reverse(T)+[H]| Y]
< reverse(T)=Z-[H]|Y]

35



Second-order predicates:
map/3

or, when atoms with variable as Terp, . "[Porenf Sms;
predicate symbol are not allowed: Uentfy” ‘Peter

Term=..List succeeds
if Term is a constant and List is the list [Term]
if Term is a compound term f(A1,..,An)
and List is a list with head f and whose tail unifies with [A1,..,An]

36



Second-order predicates:

findall/3

findall(Template, Goal, List) succeeds if List unifies with a list of the terms Template
is instantiated to successively on backtracking over Goal. If Goal has no
solutions, List has to unify with the empty list.

?-findall (C,parent(john,C),L).
parent (john,peter). L = [peter,paul,mary]
parent (john,paul).
parent (john,mary) . ?-findall (f(C),parent (john,C),L).

parent (mick, davy) . L = [f(peter), f(paul), f (mary)]
parent (mick,dee).
parent (mick,dozy) . ?-findall (C,parent(P,C),L).

L = [peter,paul,mary,davy,dee,dozy]

37



Second-order predicates: it Fom findal/3 G
contains free ria
bagof/3 and setof/3 —

parent (john,peter). ?-findall (C,parent(P,C),L).

parent (john, paul ). L = [peter,paul,mary,davy, dee,dozy]
parent (john,mary) .

parent (mick, davy) . ?-bagof (C, parent (P,C),L). a parent and its

parent (mick,dee). P = john list of children
parent (mick, dozy) . L = [peter,paul,maryl;

P = mick

L = [davy,dee,dozy]

?-bagof (C,P*parent(P,C),L).
L = [peter,paul,mary,davy,dee,dozyl
The construct Var*Goal
tells bagof/3 not to list of children for

bind Var in Goal. which a parent exists

setof/3 is same as bagof/3 without duplicate elements in List

findall/3 is same as bagof/3 with all free variables existentially quantified using *
38



Second-order predicates:

assert/1 and retract/1 Lok,
I'//,70 C in
Fup 9 o
asserta(Clause) fo fZO'o f/,eZSUc/, I
adds Clause at the beginning of the Prolog database. Wty Vhe ~ras

oSe/ ofI.O/)S
assertz(Clause) and assert(Clause) '

adds Clause at the end of the Prolog database.

retract(Clause)
removes first clause that unifies with Clause from the Prolog database.

retract all clauses of which the head unifies with Term

fail

faii. failure-driven loop

39



Second-order predicates:
assert/1 and retract/1

Powerful: enable runtime program modification
Harmful: code hard to understand and debug, often slow

sometimes used as global variables, “boolean” flags or to memoize:

if you’ve remembered an answer
for this goal before, return it

most Prologs require
such a declaration for
clauses that are added

or removed from the

program at run-time
40

[Slides on Computational Logic from CLIP group]



Higher-order programming using call /N:
call(Godl,...)

a more flexible form of call/1, which takes additional
arguments that will be added to the Goal that is called

)
(0 8
= Suppo
5 Tod 4
'S )’/;7
k- Can "o/o
S Offe O cop I Sy
S Use n 6 Q/// Sfe
a My o Se / n o/d
£ e { /
= all result in being called vl Whe
£ Cohsf re)'o
o o U
S " the _*OUly
8— 900/
%
)
2
Q
o
=
X

4]



Higher-order programming using call/N:
implementing map and friends

map (_F, [1, []1).
map (F, [A@|As0@], [A|As]) :-
call (F,AB,A),

map (F,As0,As) .
foldr (F,B, []1,B)~
foldr (F,B, [A|As],R) :-
filter(_P, [1, [1). foldr (F,B,RAs,R1),
filter (P, [AB|AsB],As) :- call (F,A,R1,R).
(call (P, AB) ->
As = [AB|As1] compose (F, G, X, FGX) :—
sAs = Asl), call (G, X,GX),

filter (P, AsB, Asl) call (F,GX,FGX) .

[Higher-order logic programming in Prolog, Lee Naish, 1996]

42



Higher-order programming using call /N:
using map and friends (1)

[Higher-order logic programming in Prolog, Lee Naish, 1996]

called goal: >(5,X)

between(l,J,X) binds X to an integer
between | and J inclusive.

assuming that plus/3 is reversible
(e.g., Peano arithmetic)

relies on execution order in

which X is bound first

43



Higher-order programming using call /N:
USing mdp Clnd fl"iends (2) flatten defined in terms of foldr

[Higher-order logic programming in Prolog, Lee Naish, 1996]

using empty list and append

flattens first, then adds 1

conceptual difficulty: ok to cyrr

a call
. there is also g d y a call(sum(2,3)) to q sum(2,3,Z)

efinition for sum(X,Y)?

44



Inspecting terms:
var/1 and its use in practice

var(Term) 72— var (X) .
succeeds when Term is an uninstantiated variable  true.

: : 72— X=3,var (X).
nonvar(Term) has opposite behavior falce.

ensuring relational

1 XeYy,2Z) -
P US( 3T ) nature of prediccﬂes

nonvar (X),nonvar (Y),Z is X+VY.
plus(X,Y,2Z2) :-

nonvar (X),nonvar (Z),Y is Z2-X.
plus(X,Y,2Z2) :-

nonvar (Y),nonvar (Z),X is Z2-VY.

directing search for
efficiency

grandparent (X,Z) :-
nonvar (X),parent (X,Y),parent(¥Y,Z2).
grandparent (X,Z) :-
nonvar (Z),parent (Y,Z), parent (X,Y).

45



Inspecting terms:

arg/3 and functor/3

arg(N,Term,Arg)

complement =..
operator

succeeds when Arg is the Nth argument of Term

functor(Term,F,N)

succeeds when the Term starts with the functor F of arity N

tests whether a term is ground (i.e.,
contains no uninstantiated variables)

ground (Term) :-
nonvar (Term),constant (Term) .
ground (Term) :-
nonvar (Term),
compound (Term),
functor (Term,F,N),
ground (N, Term) .

ground (N, Term) :- common Prolog

N > e, mon Prolog
arg (N, Term, Arg), practice. anty of
ground (Arg), auxiliary and main
N1 is N-1, predicates differ
ground (N1, Term) .

ground (0, Term) .
46



EXtending PrOIOQ: called by Prolog for
fe rm_equnsion (+In,'OUi') each file it compiles

clause or list of clauses that will be added to
the program instead of the In clause

useful for generation code, e.g. :

given compound term representation of data

want to use accessor predicates

instead of explicit unifications throughout the code

to ensure independence of one particular representation of the data
47

[hitp://ww?2.cs.mu.oz.au/255/last semester/last semester/lec/subject-prolog meta.pdf]


http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf

Extending Prolog:
term_expansion(+In,-Out)

:— struct student(name, id).

student_name (student (Name, _), Name).
student_id(student(_, Id), Id).

t semester/lec/subject-prolog meta.pdf

declares struct as a prefix operator

create Template with same
functor and arity, but with

term_expansion((:- struct Term), Clauses) :- variable arguments rather
functor (Term, Name, Arity), than constants
functor (Template, Name, Arity),
gen_clauses (Arity, Name, Term, Template, Clauses).

:— op(115@, fx, (struct)).

48


http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf

Extending Prolog:
term_expansion(+In,-Out)

7~ X=p 1
X < gas
N-th argument ?~ char_,
recursed upon X = .de (X, 95)

gen_clauses (N, Name, Term, Template, Clauses) :-

. (N =:=0 ->

trick to merge Clauses = []

recursive and ;arg(N, Term, Argname),
base clause arg(N, Template, Arg),

atom_codes (Argname, Argcodes),
atom_codes (Name, Namecodes),
append (Namecodes, [0’_|Argcodes],Codes),

conversion from atom_codes (Pred, Codes), creates fact
atom to list of Clause =.. [Pred, Template, Arg],
character codes Clauses = [Clause|Clausesl],
N1 is N - 1,
gen_clauses (N1, Name, Term, Template, Clausesl)
).

://ww?2.cs.mu.oz.au/255/last_semester/last semester/lec/subject-prolog mei...

When trying out, put gen_clauses/5
before term_expansion/2
49


http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf
http://ww2.cs.mu.oz.au/255/last_semester/last_semester/lec/subject-prolog_meta.pdf

Exfending Prclog: Certain functors and predicate symbols

that be used in infix, prefix, or postfix

OperCI"O rs rather than term notation.

integer between 1 and 1200;
smaller integer binds stronger

atb/c = a+(b/c) = +(q,/(b,c)) if / smaller than +

prefix: fx, fy
infix: xfx, XFY/YFX associative not right left
postfix: xf,yf x fx xfy yfx

X op Y op <2 / op (X,0p(¥Y,2)) op (op(X,Y),2)

50



Extending Prolog:
: . Moy, .
operators in towers of Hanoi ne. e,

of
€9 C :SCS from 'Zoves fo
:— op (900, xfx, to). an i;" SIngpegBiA fo
hanoi (@,A,B,C, []1). e”ned,-c,,y S
hanoi (N,A,B,C,Moves) :— move n-1 ¢ from A to B. '
N1 1s N-1, disc #n is left on A
hanoi (N1,A,C,B,Movesl),
hanoi (N1,B, A, C, Moves2), move n-1 discs from B to C.

append (Movesl, [A to C|Moves2],Moves). they will rest on disc #n

move disc #n from A to C

3 DISKS

(1)
_‘L I I _A_I_l_ ?- hanoi (3, left,middle,right,M)
A B C A B C M = [left to right,
2) | (3) | (4) | lgft to middle,
L L L . s l right to middle,
A B C A B C A C left to right,

middle to left,

B
® | | ‘ @1 | -._”’ | i_ middle to right,
— A B left to right ]

A B (8 A B (M A

51



1200 xfX ==+ *~
12001X == ?-

Extending Prolog:
built-in operators

1100 xfy 5+ |
1050 xfy =>- OP*~
1000 xfy «

000 fy ¥

900 1fx ~ -@-.-:-.“.“.-\-.).)-
700xfx<.-.-...
600 xiy N
5()0\t\+ VAVAVES

? .rem
210)?:\:\* . 1T rdiv. << >> mod

200 xfx**

+’(a, '/’ (b,c)) a+b/c
is(X, mod(34, 7)) X is 34 mod 7
<’'(’'+'(3,4),8) 3+4<8
= (X, f(¥Y)) X=f (Y)
-’ (3) -3
-’ (p(X),q(¥)) p(X) := q(¥)

- (pX), ', ' (q(¥),r(2))) pX) := q(¥J),r(2)

- clauses are also Prolog terms!
&

52

\--,-‘S

[Slides on Computational Logic from CLIP group]



Extending Prolog:
vanilla and canonical naf meta-interpreter

Avoids problems where

prove (Goal ) : - rove (t e |
clause (Goal , Body) , P e(true):— !. c|c1use/2 is. called with a
prove (Body) . orove ((A,B)):— I, conjunction or true.
rove (A
prove ((Goall,Goal2)) :- EroveEBgi
prove (Goall),
prove (Goal2). prove (not (Goal)):- !,

hot
Srove (true). ot (prove (Goal)).
prove (A) :-
Are these meta-circular % not (A=true; A=(X,Y); A=not(G))
clause(A,B),

interpreters? prove (B) .

Availability: builr-in
clause(:Head, ?Body) [ISO]
True if Head can be unified with a clause head and Body with the

corresponding clause body. Gives alternative clauses on backtracking. For
facts Body is unified with the atom rrue.

53



Extending Prolog:
meta-level vs object-level in meta-interpreter

KNOWLEDGE REASONING
clause (p (X),q(X)). ?—prove(p(X)).
META- clause (q (q): true). X=a
LEVEL
OBJECT- p(X):—q(X). ?-p (X).
q(a). X=a
LEVEL
Reified unification explicit at meta-level :
Canonical meta-interpreter still prove (A) ‘(‘ )
. . . clause (Head, Body
ubsorl;s ba.ckhiqckln.g, unification uni fu (A, Heac,:l, MGU. E%esul £),
and variable environments apply (Body, MGU, NewBody),

implicitly from the object-level. ., Pprove_var (NewBody) .



(might not work equally

PrOIOg progl‘dmming: well for everyone)
a methodology illustrated on partition/4

1  Write down declarative specification

2 ldentify recursion and “output” arguments

what is the recursion argument?
what is the base case?

3 Write down implementation skeleton o
Empty list is

partitioned into
two empty lists.

We recurse on
the “input”
55 argument list.



Prolog programming:
a methodology illustrated on partition/4

4

Complete bodies of clauses

partition([],N, [1, []1).

partition([Head|Tail],N,?Littles,?Bigs) :—
Head < N,
partition(Tail,N,Littles,Bigs),
?Littles = [Head|Littles],?Bigs = Bigs.

partition([Head|Tail],N,?Littles,?Bigs) :— has to be added to
Head >= N, . .
partition(Tail,N,Littles,Bigs), Bigs otherwise
?2Littles = Littles,?Bigs = [Head|Bigs].

Head is smaller, has to
be added to Littles

Fill in “output” arguments

partition([],N, []1, []1).
partition([Head|Tail],N, [Head|Littles],Bigs) :-
Head < N,
partition(Tail,N,Littles,Bigs).
partition([Head|Tail],N,Littles, [Head|Bigs]) :-
Head >= N,
partition(Tail,N,Littles,Bigs).



Prolog programming:
a methodology illustrated on sort/2

1  Write down declarative specification

2 ldentify recursion and “output” arguments

3  Write down implementation skeleton

4 Complete bodies of clauses

Auxiliary

redicate
57 P



Prolog programming:
a methodology illustrated on insert/3

1  Write down declarative specification

€ insert(X,In,0ut) <- In is a sorted list, Out is In
% with X 1nserted 1in the proper place

2 Identify recursion and “output” arguments

3  Write down implementation skeleton

insert (X, []1,?Inserted).

insert (X, [Head|Tail],?Inserted) :-
/* do something with Head */
insert(X,Tail, Inserted).

58



Prolog programming:
a methodology illustrated on insert/3

4 Complete bodies of clauses

insert (X, []1,?Inserted) :-
?Inserted= [X] .

insert (X, [Head|Tail],?Inserted) :-

X > Head,

insert(X,Tail, Inserted),

?Inserted = [Head|Inserted].
insert (X, [Head|Tail],?Inserted) :-

X =< Head,

?Inserted = [X,Head|Tail].

5 Fill in “output” arguments

insert (X, [1, [X]).

insert (X, [Head|Tail], [X,Head|Tail]) :-
X =< Head.

insert (X, [Head|Tail], [Head| Inserted] ) :-
X > Head,

insert(X,Tail, Inserted). -



More Prolog programming:
quicksort

quicksort([], []1).

quicksort ([X|Xs],Sorted) :-
partition(Xs,X,Littles,Bigs),
quicksort(Littles,SortedLittles),
quicksort(Bigs,SortedBigs),
append (SortedLittles, [X|SortedBigs], Sorted).

quicksort(Xs,Ys) :- gsort(Xs,Ys-1[]).

qsort([],Ys-Ys).

qsort ([X0|Xs],Ys-2Zs) :-
partition(Xs, X0,Ls,Bs),
gsort (Bs, Ys2-Zs),
gsort(Ls,Ys-[X0|VYs2]).

with difference lists:

60



Revisiting the Eliza classic in Prolog:
example conversation

61

[The Art of Prolog, Sterling and Shapiro]



Revisiting the Eliza classic in Prolog:
core “algorithm”

driven by stimulus-response patterns

statement
statement

while the input is not ,bye”
choose a stimulus-response pair
match the input to the stimulus
generate the reply from the response and the match
output the response

62

[The Art of Prolog, Sterling and Shapiro]



Revisiting the Eliza classic in Prolog:

dictionary lookup

as association list for arbitrary keys:

1ookup (Key, [(Key,VUalue) |Dict],Value).
lookup (Key, [(Keyl,VUaluel)|Dict],Value) :-
Key \= Keul,
1ookup (Key,Dict,Value).

as binary tree for integer keys:

lookup2 (Key,dict (Key, X,Left,Right),Ualue)
X = Ualue.

lookup2 (Key,dict (Keyl,X,Left,Right),VUalue)
Key < Keyl,
lookup2 (Key,Left,VUalue).

lookup2 (Key,dict (Keyl,X,Left,Right),VUalue)
Key > Keyl,
lookup2 (Key,Right,VUalue).

63

will be used to
store matches
between stimulus
and input

*

[The Art of Prolog, Sterling and Shapiro]



Revisiting the Eliza classic in Prolog:
representing stimulus/response patterns

numbered numbered
place-holder place-holder

pattern([i,am,1], ['How', long, have, you,been,1,?]).

pattern([1,you,2,me], ['What', makes,you, think, 'I',2,you,?]).

pqttern(:i,like,l],:'Does',qngone,else,in,gour,fqmilg,like,l,?]).

pattern([i, feel, 1],' Do’ y You, often, feel, that,way, ?]).

pattern([1, X, 2],[ Please', you, tell,me, more, qbout X1) -
1mportant(X)

pattern([1], ['Please',go,on, '."']). conditional

pattern

important (father).
important (mother).
important(sister).
important (brother).
important (son) .
important (daughter) .

64

[The Art of Proiog, Steriing and Shapiroj



Revisiting the Eliza classic in Prolog:
main loop

reply([]) :—= nl.
reply([Head|Taill) :— write(Head),write(' '),reply(Tail).

eliza :- read(Input),
eliza(Input),
I,
eliza([bye]) :-
writeln(['Goodbye. I hope I have helped you']).
eliza(Input) :-
pattern(Stimulus,Response),
match (Stimulus, Table, Input), _
match (Response, Table, Output), mc.utch it with the Input,
reply (Output), storing matches for place-
read (Inputl), substitute holders in Table
l

© 9
eliza(Inputl).

find a Stimulus

place-holders in
Output

65

[The Art of Prolog, Sterling and Shapiro]



Revisiting the Eliza classic in Prolog:
actual matching

match ([N|Pattern],Table, Target) :-
integer (N), place-holder
lookup (N, Table,LeftTarget),
append (LeftTarget,RightTarget, Target),
match (Pattern, Table,RightTarget).
match ( [lord|Pattern],Table, [Word|Target] ) :-
atom (Word),
match (Pattern, Table, Target). word
match([],Table, []).

suppose D = [(a,b),(c,d) | X]

?— lookup (a,D,V) The incomplete
- datastructure oes no!
?- lookup(c,D,e) < be mmd\'\zed
no have o0

?— lookup (e,D, f)

yes

® D = [(q’b)’ (c,d),(e,f)IX]

66

[The Art of Prolog, Sterling and Shapiro]



Declarative
Programming



State space search:

blocks world iy
N
rh/'l Bcl\
/B C
I =
: — il_—'—.l




State space search:
8-puzzle

1.3 1143 11al3 1143

7146 .7 6 7186 7 6.

5|82 5|82 5 2 5|82
Left * Right Up Down Left Right # Up Down
] 1 3.. 3|1 K 3|1 3] 1 4. i 3
7 71461 6|5 6|7 6|7 6 6|37 2
5 58|25 2 . 2 . 2|l 5 . 5/8l/2]||5 .

<« 0 ([N | B>
< 01 |0 |
<N ([0 | P~
~J
-
<o | | >




State space search:
graph representation

state space .
solution

state=node, state transition=arc
path from start to goal node

goal nodes and start nodes o L
optimal if cost over path is minimal

cost associated with arcs between nodes

search algorithms

completeness: will a solution always be found if there is one?
optimality: will highest-quality solution be found when there are several?
efficiency: runtime and memory requirements

blind vs informed: does quality of partial solutions steer process?

4



State space search:
Prolog skeleton for search algorithms

reached, but goal state for which
untested states goal (Goal) succeeds
succeeds if the goal search (Agenda, Goal ) :— .
state Goal can be next (Agenda, Goal,Rest), selects a candidate
reqched from qa si-ai-e gOCI]. (GOCI].) o S|'CI|'e I:rom the AgendCI

on the Agenda
search (Agenda, Goal ) : -
next (Agenda, Current,Rest),
children(Current,Children), expands the
add (Children,Rest, NewAgenda),

t stat
search (NewAgenda, Goal ) . current state



State space search:
depth-first search

next/3 implemented by taking
first element of list

search_df ([Goal |Rest],Goal) :- Qgendq, , |
re

goal (Goal).

search_df ( [Current|Rest],Goal) :-
children(Current,Children),
append (Children,Rest, NewAgenda),
search_df (NewAgenda, Goal ) .

children (Node,Children) :-
findall (C, arc (Node,C),Children).

arc(1,2). arc(1,8). arc(1,6).
arc(2,?7). arc(2,12). arc(2,4).
arc(12,9). arc(12,15). arc(6,3).
arc(6,11). arc(11,0). arc(11,5).

@ @ ®)\06, e

—

add/3 implemented by
prepending children of first
element on agenda to the
remainder of the agenda



State space search:
depth-first search with paths

B
HCORG
ON S
o ®

keep path to node on agendaq,
rather than node

?- search_df([[initial_node]],PathToGoal).



State space search:
depth-first search with loop detection

~ keep list of
¢ visited nodes

search_df_loop ( [Goal |Rest],Visited,Goal) :-
goal (Goal).

search_df_loop ( [Current|Rest],Visited,Goal) :- add current
children(Current,Children), node to list of
add_df (Children,Rest,Visited, NewAgenda), vidied redhe

search_df_loop (NewAgenda, [Current|Visited],Goal).

do not add a
child if it's
already on the
agenda

add_df ([],Agenda,Visi ted, Agenda) .

add_df ([Child|Rest],01dAgenda,Visited, [Child|NewAgenda]) :-
not (element (Child, 0l1dAgenda)),
not (element(Child,Visited)),
add_df (Rest,01dAgenda,Visi ted, NewAgenda) .

add_df ([Child|Rest],01dAgenda,Visited, NewAgenda) :-

element (Child, 0ldAgenda), do not add
add_df (Rest,01dAgenda,Visi ted, NewAgenda) . already
add_df ([Child|Rest],01dAgenda,Visited, NewAgenda) :- . .
. 1 visited
element (Child,Visited), hild
children

add_df (Rest,01dAgenda,Visi ted, NewAgenda) .
8



State space search:
depth-first search using Prolog stack

search_df (Goal,Goal ) :—
goal (Goal). 1
search_df (CurrentNode, Goal) :- £
arc (CurrentNode,Child),
search_df (Child,Goal).

vanilla

search_bd (Depth, Goal ,,Goal ) :-
goal (Goal).

use Prolog call
stack as agenda

might loop on cycles

do not exceed depth

O search_bd(Depth, CurrentNode, Goal):- threshold while searching
'-cc-)_ e Depth>0, 2
o 5 NewDepth is Depth-1, always halts, but no
° 8 arc (CurrentNode, Child), solutions beyond threshold

search_bd (NewDepth, Child, Goal).

?- search_df (10, initial_node,Goal).

increase depth bound

search_id (CurrentNode, Goal) :- |ess memo™Y on each iteration
5 2 search_id (1, CurrentNode, Goal) . than bfs | 4 solut X
2 ‘£ search_id(Depth,CurrentNode,Goal) :- complete and solutions on, but
o 3 search_bd (Dep th, CurrentNode, Goal) . upper parts of search space
® ® search_id(Depth,CurrentNode,Goal) :- not that bad for full trees:
= 5  NewDepth is Depth+1, a single level is smallos o e O nodes af

search_id (NewDepth, CurrentNode, Goal )
9

maller than ql| nodes above jt



State space search:
breadth-first search

next/3 implemented by taking
first element of list

search_bf ( [Goal |Rest],Goal) :- Agengy ﬁrs"’n, Irst.
goal (Goal). a freqpey Ut
search_bf ( [Current|Rest],Goal) :- as q Que
children(Current,Children), \\\ifi

append (Rest,Children, NewAgenda),
search_bf (NewAgenda, Goal ) .

children(Node,Children) :-
findall (C, arc (Node,C),Children).

appending children of first
element on agenda to the
remainder of the agenda



State space search:

bﬂ) /td
r : e :
dfs vs bfs J2Ching foeper limi
d§de Ctor of
m§depfl; Pth ofSe Seq,.cb s
spirals away from start node, of ors Qrch Pac Pace
# candidate paths to be remembered est Path so/e '
grows exponentially with depth Utiop
breadth-first depth-first depth-limited dI;:;aet:i/re\g
time b? b™ b’ b?
space bd bm bl bd
shortest J J

solution path might be second

child of root node

complete v v if 1=d v



State space search:
water jugs problem

fill a jug from the pool

empty a jug into the pool

operations

pour one jug into another until one poured

from is empty or the one poured into is full
12

goal

4L in a jug

[The Art of Prolog, Sterling and Shapiro]



State space search:
implementing the search

as a generic algorithm for
state space problems

visited states sequence of transitions to reach goal from current state

solve_dfs(State,History, [1) :-

U .
final_state (State) . il no,,
solve_dfs(State,History, [Move|Moves]) :-_ ad Unnq, We only,
move (State, Move), : Med 4
update (State, Move,Statel), r.n.u|hp|e named rcs
legal (Statel), transitions out of a state

not (member (Statel,History)),
solve_dfs(Statel, [Statel |History] ,Moves).

test_dfs (Problem,Moves) :-
initial_state(Problem,State),
solve_dfs(State, [State] ,Moves).

[The Art of Prolog, Sterling and Shapiro]



State space search:
encoding water jugs problem

starting and goal states

initial _state(jugs, jugs(0,0)).
final _state(jugs(4,VU2)).
final _state(jugs(V1,4)).

possible transitions out of a state

move (jugs (U1,VU2),fill(1)).

move (jugs (U1,VU2),fill(2)). . .
move (jugs (U1,U2),empty(1l)) :— Ul1>0. empty first jug (1), but only if
move (jugs (V1,V2),empty(2)) :- U2>0. it still contains water (C1)
move (jugs (U1,U2), transfer(2,1)).

move (jugs (U1,U2), transfer(1,2)).

[The Art of Prolog, Sterling and Shapiro]



State space search:
encoding water jugs problem

states a transition can lead to

a jug can be filled up to

update (jugs(U1,U2),fill(1),jugs(C1,VU2)) :-

capacity(i,Cl). its capacity from the pool
update (jugs(U1,U2),fill (2),jugs(U1,C2)) :-

capacity(2,C2). the first jug will contain OL
update (jugs (U1,U2), emptg(l),Jugs(O Uu2)). f hing it
update (jugs (U1,VU2),empty(2), jugs (Ul 9)). arrer emptying |

update (jugs (U1,U2), trqnsfeP(Z 1),Jugs(N1 W2)) :-
capacity(1, Cl),
Liquid is Ul + U2,
Excess is Liquid - Cli,
adjust(Liquid, Excess, W1, W2).

update (jugs (U1,U2), transfer(1,2), jugs (W1,W2)) :-

capacity(2,C2),
Liquid is Ul + U2, the first jug can be poured
Excess 1s Liquid - C2, in the second

adjust(Liquid, Excess, W2, 1) .

adjust(Liquid, Excess,lLiquid,®) :— Excess =< 0.
adjust(Liquid, Excess,U,Excess) :- capacity(j1,8).
Excess > 0, capacity(j2,5).

U is Liquid - Excess. legal (jugs(C1,C2)).

[The Art of Prolog, Sterling and Shapiro]



Proving as a search process:

o ;’/ :fonIUncf,o ns
prove (true) :— !. conj_append (true,Ys,Ys). ! Co’7Iuncf,'0n
prove ((R,B)) :- conj_append (X, Ys, (X,Ys)) :-

l, not (X=true),
clause (A,C), not (X=(0One, TheOther).
, conj—append(C,B,D), conj_append ((X,Xs),Ys, (X,Zs)) :—
instead of prove (D). conj —append (Xs, Ys,2s) .
prove((A,B)) -  prouve(A):-
prove(A),prove(B) clause (A,B),

prove (B) .

prove_df_a(Goal) :-
prove_df_a([Goal]).

prove_df_a([true|RAgenda] ).

prove_df_a([(A,B)|Agendal ) :-

iy I,

EE findall (D, (clause(A,C),conj_append(C,B,D)),Children),

S  append(Children, Agenda, NewAgenda),

3 prove_df_a(NewAgenda) . swapping arguments of
prove_df_a([A|Agenda] ) :- append/3 turns this into a

findall (B,clause(A,B),Children),
append (Children, Agenda, NewAgenda),
prove_df_a(NewAgenda) .

breadth-first meta-interpreter!

|6



Proving as a search process: i
. e
bf agenda-based meta-interpreter “Bstitufiy,

foo(X) :— bar(X).

problem: ?- findall (Body,clause(foo(Z),Body),Bodies).
findall(Term,Goal, List) Bodies = [bar(_G336)].
creates new variables in
the instantiation of Term for
the unbound variables in
answers to Goal trick:
store a(Literals,OriginalGoal) on agenda
where OriginalGoal is a copy of the Goal

pr\;:ﬁi;iié?ig]t)[(; (GOG]. , Goal ) ] , Goal ) . GOCII WI" be instantiatele Wli'h the
prove_bf_a ( [a (tr‘ue, Goal ) | ngndq] , Goal ) . correct answer substitutions
prove_bf_a([a((A,B),G)|Agenda],Goal) :-1!,
findall (a(D,G), (clause (A,C), conj_append(C,B,D)),Children),
append (Agenda, Children, NewAgenda),
prove_bf_a(NewAgenda, Goal ) .
prove_bf_a([a(A,G) |Agenda],Goal ) :—
findall (a(B,G),clause(A,B),Children),
append (Agenda, Children, NewAgenda),
prove_bf_a(NewAgenda, Goal ).

breadth-first

|7



Proving as a search process:
forward vs backward chaining of if-then rules

backward chaining forward chaining
from head to body from body to head
search starts from where we want search starts from where we
to be towards where we are are to where we want to be
e.g. Prolog query answering e.g. model construction

what’s more efficient depends on structure of search
space (cf. discussion on practical uses of var)



Proving as a search process:
forward chaining - bottom-up model construction

model of clauses defined by cl/1

grounds literal add a literal from the head
from head of a violated clause to the
current model

no more
violated clauses .
(note the !) o V|o.|ated clause:
body is true in the current model,
grounds but the head not
literal from
body



Proving as a search process:
forward chaining - auxiliaries

element (A,M).
satisfied_head((A;B),M) :-

element (A,M).
satisfied_head((A;B),M) :-

satisfied_head(B,M).

20



Proving as a search process:
forward chaining - example

cl ((married (X);bachelor (X) :—man (X),adult(X))).
cl ((has_wife(X) :—married(X),man(X))).

cl ((man(paul) :—true)).

cl ((adul t (paul) :—true)).

?-model ([],M)

?- model (M)
M = [has_wife(paul),married(paul), o
adul t (paul), man (paul)]; T et o
M = [bachelor (paul), model ([L1,1)- -
adul t (paul), :
man (paul )]

:-model ([man (p)],M)

two minimal models as there is a .
diSiUl’lCﬁOl’l in the head :-model ([adult (p) ,man(p)],M)

:-model ([married(p), :-model ([bachelor(p),
adult(p) ,man(p)],M) adult(p) ,man(p)],M)

:-model ( [has_w.ife (p) ,married(p),
adult(p),man(p)],M) [l

[]
21



Proving as a search process:
forward chaining - range-restricted clauses

Our simple forward chainer cannot

construct a model for following clauses:  ;; ynground man(X) will be added to
the model, which leads to the second
clause being violated —which cannot be

solved as it has an empty head

works only for clauses for which grounding the body also grounds the head

add literal to first clause, to
+= enumerate possible values of X
-

LL



Proving as a search process:
forward chaining - subsets of infinite models

cl ((append([],Y,¥Y):-1list(¥Y))).
cl ((append ([X|Xs],VYs, [X|Z2s]):-thing(X), append (Xs,Ys,Z2s))).
cl((list([]):—true)).

cl((list ([X[|Y]):—thing(X),list(Y))).

cl ((thing(a):-true)). r°”99~"esfricfed
cl ((thing(b) :-true)). Version of
cl ((thing(c) :—true)). °

model_d(D,M) :—
model_d (D, [1,M). depth-bounded
construction of submodel
model_d(@,M,M) .
model_d(D,MO, M) :—
D>0,
D1 is D-1,
findall (H,is_violated (H,M8),Heads),
satisfy_clauses (Heads,M@,M1),
model_d(D1,M1,M).

satisfy_clauses([],M,M).

satisfy_clauses([H|Hs],M@,M) :—
disj_element(L,H),
satisfy_clauses (Hs, [L|MB],M).

23



Informed search: formed; s,
best-first search Given by oo 2 node

search_best ( [Goal | RestAgendal ,Goal) :—
goal (Goal) .
search_best ( [CurrentNode |RestAgenda] ,Goal) :-

best-first: children of node are
added according to heuristic

children (CurrentNode,Children), (lowest value ﬁrs*)/Agenda
add_best (Children, RestAgenda, NewAgenda), iSSOHL
search_best (NewAgenda, Goal) . ed

add_best ([] ,Agenda, Agenda) .
add_best ( [Node | Nodes] , Agenda, NewAgenda) :-

insert (Node, Agenda, TmpAgenda), add_best(A,B,C): C contains the
add_best (Nodes, TmpAgenda, NewAgenda) . elements of A and B (B and C sorted

insert (Node, Agenda, NewAgenda) :- according to eval/2)
eval (Node,Value),
insert (Ualue, Node, Agenda, NewAgenda) .
insert (Value, Node, [], [Nodel]).
insert (VUalue,Node, [FirstNode|RestOfAgendal, [Node,FirstNode|RestOfAgendal ) :-
eval (FirstNode, FirstNodeUalue),
Ualue < FirstNodeUalue.

insert (Ualue,Node, [FirstNode|RestOfAgendal, [FirstNode|NewRestOfAgenda] ) :-
eval (FirstNode,FirstNodeVUalue),
Ualue >= FirstNodeUalue,

insert (Value, Node, Rest0OfAgenda, NewRest0fAgenda) .

24



Informed search:
best-first search on a puzzle

000 OO0

A tile may be moved to the empty spot if there are
at most 2 tiles between it and the empty spot.

Find a series of moves that bring all the black tiles
to the right of all the white tiles.

Cost of a move: 1 if no tiles were in between,
otherwise amount of tiles jumped over.

25



Informed search: DDD.@@@

best-first search on a puzzle - encoding

Board: @@® OO0 get_tile(Position,N,Tile) :-
get_tile(Position,1,N,Tile).

[b,b,b,e,w,w,w]
get_tile([Tile|Tiles],N,N,Tile).
get_tile([Tile|Tiles],N@,N,FoundTile) :-
N1 is N@+1,
get_tile(Tiles, N1, N, FoundTile).

replace([Tile|Tiles],1,ReplacementTile, [ReplacementTile|Tiles]).
replace([Tile|Tiles],N,ReplacementTile, [Tile|RestOfTiles] ) :-
N>1,
Ni is N-1,
replace(Tiles,N1,ReplacementTile,RestOfTiles).

Moves: star t_move (move (noparent, [b,b,b,e,w,w,w],0))

from to cost

Agendd move_value (Move, Ualue)

items:
heuristic evaluation of position reached by Move

26



Informed search: DDD.@@@

best-first search on a puzzle - algorithm

acc for

til ListOfPositi TotalCost) :—
iles(Lis ositions, TotalCost) VisitedMoves

start_move (StartMove),
eval (StartMove, Ualue),
tiles([move_value (StartMove, Ualue)], FinalMove, [], VUisitedMoves),

order_moves (FinalMove, VUisitedMoves, [], ListOfPositions,®, TotalCost).

besff‘ k ards

-Tir. ckKW

QCCumSl‘Isc-zqrch rint Po‘h \i?“ove 1o acc for acc for
Yiating from fina ListOfPositions TotalCost

tiles(Agenda, LastMove, VO, V): goal can be
reached from a move in Agenda where
LastMove is the last move leading to the goal,
and V is VO + the set of moves tried.

tiles ( [move_value (LastMove,VUalue) |RestAgendal ,LastMove,Visi tedMoves,VisitedMoves) :—
goal (LastMove) .

tiles ( [move_value (Move,Value) |RestAgendal,Goal,VisitedMoves, FinalVisitedMoves) :-
show_move (Move,VUalue),

setof@ (move_value (NextMove, NextUalue), Yﬁ‘ﬁ
(nex t_move (Move, NextMove), eval (NextMove, NextUalue)), ﬁndssoﬂed : o
Children), hildren with the

merge (Children, RestAgenda, NewAgenda), ¢ ovaluation

tiles (NewAgenda, Goal, [Move|VUisitedMoves],FinalVisitedMoves).

27



Informed search: DDD.@@@

best-first search on a puzzle - encoding’

next_move (move (Position,LastPosition,LastCost),
move (LastPosition,NewPosition,Cost)) :-

get_tile(LastPosition, Ne, e), NewPosition is reached
get_tile(LastPosition, Nbw, BW), in one move from
not (BW=e), LastPosition with cost Cost
Diff is abs (Ne—-Nbw),

Diff<4,

replace (LastPosition,Ne,BW, IntermediatePosition),
replace (IntermediatePosi tion, Nbw, e, NewPosition),
(Diff=1 -> Cost=1

; otherwise -> Cost is Diff-1

e

goal (Move) :—
eval (Move, @) .

eval (move (0ldPosition,Position,C),Value) :-
bLeftOfw(Position,Value).

bLeft0fw(Pos,Val) :-
findall ((Nb,Nw),
(get_tile(Pos,Nb,b),get_tile(Pos,Nw,w), Nb<Nw),L),

length(L,Val).
sum of the number of black tiles to

the left of each white tile



Informed search: DDD.@@@

best-first search on a puzzle - auxiliaries

order_moves(FinalMove, VisitedMoves,Positions, FinalPositions, TotalCost, FinalTotalCost):
FinalPositions = Positions + connecting sequence of target positions from VisitedMoves ending in
FinalMove's target position.
FinalTotalCost = TotalCost + total cost of moves added to Positions to obtain FinalPositions.

order_moves (move (hoparent, StartPosition,8),
UisitedMoves,Positions,
[StartPositionPositions], TotalCost, TotalCost).

order_moves (move (FromPosition, ToPosition,Cost),
UisitedMoves,Positions,
FinalPositions, TotalCost,FinalTotalCost) :-
element (PreviousMove, UisitedMoves),
PreviousMove = move (PreviousPosition, FromPosition,CostOfPreviousMove),
NewTotalCost i1s TotalCost + Cost,
order_moves (PreviousMove, VUisitedMoves,
[ToPosition|Positions],FinalPositions,NewTotalCost,FinalTotalCost).

29



Informed search

best-first search on a puzzle - example run

QOoO0oooM-NFOFFOMON —
___________

..w..w..m.w tnnNnnNnnnan

N &K &N N &N N &N &N N N N

NN &N &N &N N N & &N &N N N N

N &N AN N N &N NN & & N N

N &N N N N & NN &N & N N

%hhhhhbbbhmm

a & & & ar-—m
— — e e

N A &N AN &N &N

N A &N AN &N &N

N A &N AN &N &N

N A &N AN &N &N

N A &N AN &N &N

N AR &N AN &N &~

el el el el bl Rl

® & N & & &
— e e e

N NN N N N O ©

N &N N N N O ©

N NN N N N O ©

N NN AN N N O ©

N &N N N N O ©

N &N N N N O©

el el el el bl Rl

SO OO 0 M~ M O &~ O <~ O O N - O
g 9O IO b_mmmmun
cficlisAugsfeRsReNeRsRull-
O ® @ e
SHNONONONONONONS O O
PN ]_ﬂjJ
® | o] lg 0@
R
rLthrL A JEE 4 _DOO
O ~ N ¥ 0O O O O o N o

30



Informed search:
optimal best search

a heuristic might consistently

Best-first search is not complete by itself: assign lower values to the nodes
on an infinite path

An A algorithm is a complete best-first search algorithm that aims

at minimizing the total cost along a path from start to goal.

f(n) = gln) + h(n) o,

~gener. Qtes t,

reqdfh'ﬁrsf
estimate on further cost to reach goal:

if optimistic (underestimating the cost), an optimal path
will always be found. Such an algorithm is called A*.

actual cost so far:
adds breadth-first flavor

31



Declarative
Programming



Definite clause grammars: ., e,

Singy; ~thguy, ®Nsitiye
,_ i_ f . P I s ”th;n > [tyn telxample-
context-frree grammars in Prolog Sitivg Ul i
~Vers
b ~3 [SJQQef‘
]
one non-terminal on
. sentence —-> noun_phrase,verb_phrase.
left-hand side
noun_phrase -—-> proper_noun.
noun_phrase —--> article,adjective,noun.
noun_phrase —--> article,noun.
. verb_phrase —--> intransitive_verb.
non-terminal verb_phrase --> transitive_verb,noun_phrase.
defined by rule article --> [the].
produces syntactic adjective —-> [lazu].
category adjective --> [rapid].
proper_noun --> [achilles]. vamfoall vl I
noun —--> [turtle]. lanauage
intransitive_verb--> [sleeps]. 9vas
transitive_verb --> [beats].

sentences generated by grammar are lists of terminals:
the lazy turtle sleeps, Achilles beats the turtle, the rapid turtle beats Achilles



Definite clause grammars:
parse trees for generated sentences

syntactic categories

sentence as leafs
/ \
noun_phrase verb_phrase

article adjective noun transitive_verb noun_phrase

I
proper_noun

I

the rapid turtle beats achilles

words of sentence
as leafs



Definite clause grammars: -
o IMilgy
fop-clown construction of parse trees ¢ ’eso/u:,-off&

sentence sentence --> noun phrase,
#ﬂ/#_ﬂﬂﬂ#,ﬂ~.---’*’ﬂ’”ﬂﬂﬂﬂgdtﬂﬂ’#ﬂﬂﬂlpﬂﬂ_ verb phrase

noun_ phrase,verb phrase noun_phrase --> article,

adjective,
~ﬂ#’ﬂ#’/#_ﬂ#,~f’~#-*’ﬂ*’ﬂ”’ﬂ#’~¢’~#’ﬂ#’ noun

article,adjective,noun,verb phrase article --> [the]

[the],adjective,noun,verb phrase adjective --> [rapid]

[the], [rapid],noun,verb phrase noun --> [turtle]

[the], [rapid], [turtle],verb phrase verb phrase --> transitive verb,

ﬂ~#ﬂﬂﬂ’#ﬂﬂﬂ.#ﬂ---~’*”ﬂﬂ*ﬂﬂﬂ’%’ﬂﬂgﬂﬂﬂlﬂ noun_ phrase

[the], [rapid], [turtle],transitive verb,noun phrase transitive verb --> [beats]

sl et vom o e Sroneie

[the], [rapid],[turtle], [beats],noun phrase noun phrase --> proper noun
[the], [rapid],[turtle], [beats],proper noun proper noun --> [achilles]

el o P

[the], [rapid],[turtle], [beats],[achilles]

start with NT and repeatedly replace NTS on right-hand side of an
applicable rule until sentence is obtained as a list of terminals

4



DCG rules and Prolog clauses:
equivalence

sentence

grammar rule

equivalent
Prolog clause

parsing

[the, rapid, turtle, beats, achilles]

sentence ——> noun_phrase, verb—-> [sleeps]
verb_phrase

sentence(S) :- verb ([sleeps]).
noun_phrase (NP),
verb_phrase (UP),
append (NF, UR; 8. S is a sentence if some first part
belongs to the noun_phrase
category and some second part
to the verb_phrase category

?7- sentence([the,rapid, turtle,beats,achilles])



DCG rules and Prolog clauses:
built-in equivalence without append/3

met a'eV el

grammar rule

equivalent
Prolog clause

parsing

L consists of a sentence
followed by LO

built-in meta-predicate calling
sentence(L,[])

starting
non-terminal
6



DCG rules and Prolog clauses:
summary and expressivity

GRAMMAR PARSING

META-

LEVEL & ==> Bp,Vp ?-phrase(s,L)
OBJECT- s(L,LO):-
np(L,L1l),
LEVEL vp(L1,L0)

non-terminals can have arguments
goals can be put into the rules
no need for deterministic grammars
a single formalism for specifying syntax, semantics
parsing and generating



Expressivity of DCG rules:

non-terminals with arguments - plurality

sentence --> noun_phrase (N),verb_phrase(N).

noun_phrase(N) --> article(N),noun(N). arguments unify to
verb_phrase(N) --> intransitive_verb(N). express plurality
article(singular) --> I[al. agreement
article(singular) --> [the].

article(plural) ——> [the].

noun(singular) --> [turtle].

noun(plural) —=> [turtles].

intransitive_verb(singular) --> [sleeps].

intransitive_verb(plural)--> [sleep].

phrase (sentence, [a, turtle,sleeps]). 8 yes
phrase (sentence, [the, turtles,sleep]). % yes
phrase (sentence, [the, turtles,sleeps]). % no




Expressivity of DCG rules:

non-terminals with arguments - parse trees

sentence (s (NP, UP) ) —-> noun_phrase (NP),verb_phrase (UP).
noun_phrase (np(N) ) —-> proper_noun(N).

noun_phrase (np (Art,Adj,N)) —-> article(Art),adjective(Adj),
noun(N) .

noun_phrase (nhp (Art,N)) --> article(Art),noun(N).

verb_phrase (vp(IV)) —--> intransitive_verb(IV).

verb_phrase (vp (TU,NP)) —-> transitive_verb (TU),noun_phrase (NP).

article(art(the)) —--> [the].
adjective(adj (lazy)) --> [lazyl.
adjective (adj (rapid)) —=> [rapid].
proper_noun(pn(achilles)) ——> [achilles].

noun (n(turtle)) ——> [turtle].
intransitive_verb(iv(sleeps))——> [sleeps].
transitive_verb (tv (beats)) ——> [beats].

?-phrase (sentence(T), [achilles,beats, the, lazy, turtle])

T = s(n E n(achilles))
UB Qvgbeqts), ’
np (art (the)

ad) (lazydy



Expressivity of DCG rules:

goals in rule bodies XYIN)
- i _

Num : Is
numeral (N) ——> n1_999(N). <\\\£¥ylgle;Y7
numeralN) --> n1_9(N1), [thousand],n1_999(N2), {N is N1*1000+N2}.
n1_999(N) --> n1_99(N).
n1_999(N) --> ni_9(N1), [hundred],ni_09(N2), {N is Ni*1@0+N2}.
n1_99(N) --> nB_9(N).
ni_99(N) —=> n18_19(N).
n1_99(N) --> n20_90(N). regular goal enclosed
n1_99(N) --> n20_98(N1),n1_9(N2), {N is N1+N2}. by braces
ne_9(@)—-> [].

nB_S(N)—-> n1_9(N).

ni_9(1)—-—-> [one].

ni_9(2)—-> [two].

nl6_19(10)
n1e_19(11)

n20_90 (20)
n20_90 (30)

—->
—->

—->
—->

[ten] .
[eleven] .

[twenty] .
[thirty] .

ni_99(N,L,LB) :-
n20_90 (N1,L,L1),
HI_Q(N2,L1,L@),

1s N1 + N2.

?-phrase (humeral (2211),N).
N = [two, thousand, two, hundred, eleven]



Interpretation of natural language:
syntax and semantics

sentence —-> determiner, noun, verb_phrase
sentence —-> proper_noun, verb_phrase
verb_phrase —-> [is], property

property ——> [a], noun

property ——> [mortal]

determiner ——> [every]

proper_noun —-> [socrates]

syntax

noun ——> [human]

[every, human, is, mortal]

interpret a sentence: assign a clause to it

semantics

mortal (X) := human (X) represents meaning of

sentence



Interpretation of natural language:
interpreting sentences as clauses (l)

operator X=>L: term X is mapped to literal L

singleton clause list, cf.

determiner ‘some’

the meaning of the
proper noun ‘Socrates’ is
the term socrates

the meaning of the
property ‘mortal’ is a
mapping from terms to
literals containing the
unary predicate mortal

the meaning of a phrase
(proper noun - verb) is a
clause with empty body
and of which the head is
obtained by applying the
meaning of the verb
phrase to the meaning of
the proper noun



Interpretation of natural language:
interpreting sentences as clauses (ll)

sentence(C) ——> determiner(M1,M2,C),
noun (M1),
verb_phrase (M2) .
noun (X=>human (X)) --> [human] .

determiner (X=>B, X=>H, [(H:— B)]) ——> [every]. the meaning of a
determined sentence with
determiner ‘every’ is a
clause with the same
variable in head and body

?-phrase (sentence (C), [every, human, is,mortal] )
C = [(mortal (X):— human(X))]



Interpretation of natural language:
interpreting sentences as clauses (lll)

determiner (sk=>H1, sk=>H2, the meaning of a

determined sentence
[(H1:-true), (Hl:-true)] —--> [some]. with determiner ‘some’

are two clauses about
the same individual
(i.e., skolem constant)

?-phrase (sentence(C), [some, humans, are, mortal])
C = [(human(sk) :-true), (mortal (sk) :—true)]



Interpretation of natural language:
relational nature illustrated

?-phrase (sentence(C),S).

human (X) :—human (X)
[every, human, is, a, human] ;

mortal (X) :—human (X)
[every, human, is, mortal];

human (socrates) :-true
[socrates, is, a,human] ;

mortal (socrates) :-true
[socrates, is,mortall];

DO OO VO VO

?-phrase (sentence (Cs), [D, human, is,mortall] ).
D = every, Cs = [(mortal (X):—human(X))];
D = some, Cs = [(human(sk):-true), (mortal (sk) :—true)]l



Interpretation of natural language:
complete grammar with plurality agreement

:— op (600, xfy, '=>"').

sentence(C) ——> determiner (N,M1,M2,C), noun(N,M1),

verb_phrase (N, M2).

sentence([(L:- true)]) —--> proper_noun(N,X),

verb_phrase (N, X=>L).

verb_phrase(s,M) --> [is], property(s,M).

verb_phrase (p,M) —--> [arel], property(p,M).

property (N, X=>mortal (X)) ——> [mortal].

property(s,M) ——> noun(s,M).

property(p,M) ——> noun(p,M).

determiner(s, X=>B , X=>H, [(H:- B)]) ——> [every].

determiner (p, sk=>H1, sk=>H2, [(H1 :- true), (H2 :- true)]) —->[some].
proper_noun (s, socrates) --> [socrates].

noun (s, X=>human (X)) --> [human].

noun (p, X=>human (X)) —--> [humans].
noun (s,X=>living_being (X)) —-> [livingl, [being].
noun (p,X=>living_being (X)) ——> [living], [beings].




Interpretation of natural language:
shell for building up and querying rule base

grammar
for queries

question(Q) ——> [who], [is], property(s,X=>Q)

question(Q) ——> [is], proper_noun(N,X), property(N,X=>Q)

question((Q1,Q2)) ——> [arel], [some]l, noun(p,sk=>Q1),
property (p, sk=>Q2)

nl_shell (RB) :- get_input(Input), handle_input (Input,RB).

o add new

- :

» handle_input (stop,RB) :— 1I. rule
handle_input (show,RB) :— !, show_rules(RB), nl_shell (RB).
handle_input (Sentence,RB) :—- phrase(sentence(Rule),Sentence),

nl_shell ([Rule|RB]).
handle_input (Question,RB) :— phrase (question(Query),Question),
: |
question that can be solved prove_rb (Query,RB), !
trans form (Query, Clauses),
transform instantiated query phrase (sentence (Clauses),Answer),
(conjuncted literals) to list of clauses show_answer (Answer), generate nl

with empty body nl_shell (RB).

handle_input (Error,RB) :- show_answer ('no’), nl_shell (RB).
|7



Interpretation of natural language:
shell for building up and querying rule base - aux

convert rule to natural

show_rules([]). language sentence
show_rules([R|Rs]) :-

phrase (sentence (R),Sentence),
show_answeP(Sentence),
show_rules(Rs) .

get_input (Input) :-
write(’? ’),read(Input).
show_answer (Answer ) :-
write(’! ’),write(Answer), nl.

show_answer (Answer) :— write(‘!’),nl.

get_input(Input) :— write('?’),read(Input).

convert query to list of

clauses for which natural
transform((A,B), [(A:-true)|Rest]):-!, language sentences can
transform(B,Rest).

be generated
transform(A, [(A:-true)]).



I:tﬁ;prefation of natural language:
shell for building up and querying rule base - interpreter

prove (true,RB) :- 1I.
prove ((A,B),RB) :— I,
prove (A,RB), prove (B,RB) .
prove (A,RB) :-
find_clause((A:-B),RB),
prove (B,RB) . h
anb,
o Wh
find_clause(C, [RIRs]) :- ! . e
copy_element (C,R) finds a cl | ot & g
 oopu-alens R). .  clause in the rule base, but withouF—
o lse c, [RIRs]) :- instantiating its variables (rule can be used
i . . use
quse (C, Rs) . multiple times, rules can share variables)

copy_element (X,Ys) :— element(X1,Ys),
copy—_term(X1,¥X).

copy_term(+ In, -Out)
Create a version if In with renamed (fresh) variables and unify it t0 Out.



Interpretation of natural language:
shell for building up and querying rule base - example

levery, human, is, mor tal]
socrates, is, a, human]

'who, is,mortal]
socrates,is,mortal]

some, 1iving,beings, are, humans]
lare, some, living,beings, mortal ]
some, 1iving,beings, are, mortal ]

Possible
built-in lzepeat/.1 idiom of f;".;Prove .
succeeds indefinitely avoiy 'Ul'e'driVen I Pply
m Mmor Oop to

shell :- repeat, get_input(X), handle_input (X~ Y Issygg
handle_input(stop) :— !.
handle_input (X) :— /* handle */, fail.

causes backtracking to

repeat literal
20



Declarative
Programming



Reasoning with incomplete information:

overview

reasoning that leads to conclusions that are plausible, but not
guaranteed to be true because not all information is available

default
reasoning

assume normal state
of affairs, unless
there is evidence to
the contrary

“If something is a bird, it
flies.”

abduction

choose between
several explanations
that explain an
observation

“I flipped the switch, but

the light doesn’t turn on.
The bulb mist be broken”

induction

generalize a rule
from a number of
similar observations

“The sky is full of dark

clouds. It will rain.”



Default reasoning:

Tweety is a bird. Normally, birds fly.
Therefore, Tweety flies.

has three models:

bird(tweety) is the only logical conclusion of the program
because it occurs in every model.

If we want to conclude flies(tweety) through deduction, we have
to state normal(tweety) explicitly. Default reasoning assumes
something is normal, unless it is known to be abnormal.



Default reasoning:

A more natural formulation using abnormal/1

bird(tweety) .

flies(X) ;3 abnormal (X) :— bird(X).

o indefinite
has two minimal models: clause

{bird(tweety), flies(tweety)}
{bird(tweety), abnormal (tweety)}

model 2 is model of the general clause:
abnormal (X) :—- bird(X), not(flies(X)). Jsing negation as tailure:
model 1 is model of the general clause: = tweety flies if it cannot be

proven that he is abnormal
flies(X) :-bird(X), not(abnormal (X)).

bird(tweety). | . -
flies(X):-bird(X), not (abnormal (X)) . tweety no ongf-:-r Ies, .e Is an ostrich: the
ostrich (tweety) . default rule (birds fly) is cancelled by the

abnormal (X) :— ostrich(X). more specific rule (ostriches)



Default reasoning:
non-monotonic form of reasoning

new information can
invalidate previous
conclusions:

Not the case for deductive reasoning,
which is monotonic in the following sense:

Thp = Thu{g}+p

Closure(Th) ={p | Th - p}
Th1 ¢ Th2 = Closure(Th1) ¢ Closure(Th2)

5



Default reasoning:
without not/1, using a meta-interpreter

problematic: e.g., floundering but also
because it has no clear declarative semantics

Distinguish regular rules (without exceptions)
from default rules (with exceptions.)

Only apply a default rule when it does not
lead to an inconsistency.




Default reasoning:
using a meta-interpreter

prove (true,E,E) :— I.
E explains F: lists the rcue((a,B),E0,E) - 1,

explain(F,E) :- rules used to prove F prove (A,EQ,E1),

explain(F, []1,E). prove (B,E1,E).
explain(true,E,E) :— I. prove (A,EQ, [rule((A:-B))|E]):-
explain((A,B),EQ,E) :- I, rule((A:-B)),

explain(A,EQ,E1), prove (B,E@Q,E).

explain(B,E1,E).
explain(A,EQ,E):=  prove using regular rules

prove (A,EQ,E).
explain(A,EQ, [default((A:-B))|E]) :-
default((A:-B)),

explain(B,E@,E), prove using default rules
not (contradiction(A,E)).

contradiction(not(A),E) :— I,
do not use a default to prove (A,E, _).
prove A (or not(A)) if you contradiction(A,E) :-
can prove not(A) (or A) prove (not(R),E,_).

using regular rules



Default reasoning:
using a meta-interpreter, Opus example

default((flies(X) :— bird(X))).
rule((not(flies(X)) :— penguin(X))).
rule((bird(X) :— penguin(X))).
rule ((penguin (tweety) :- true)).
rule((bird(opus) :- true)).

?7- explain(flies(X),E)

X=0puUs

E=[default((flies(opus) :- bird(opus))),
rule((bird(opus) :- true))]

?7- explain(not(flies(X)),E)

x=tweetly

E=[rule((not(flies (tweety)) :- penguin(tweety))),
rule ((penguin (tweety) :- true))]

default rule has
been cancelled



Default reasoning:
using a meta-interpreter, Dracula example

default((not(flies(X)) :— mammal (X))).

default((flies(X) :— bat(X))).

default((not(flies(X)) :— dead(X))).
rule ((mammal (X) :— bat(X))).
rule((bat (dracula) :- true)).
rule((dead (dracula) :— true)).

?-explain(flies(dracula),E)
E=[default((flies(dracula) :- bat(dracula))), h allv f
rule ((bat (dracula) :- true))] 2L Lfeeellyy iy

dracula flies because

?-explain(not(flies(dracula)),E)
E=[default((not(flies(dracula)) :- mammal (dracula)))
rule ((mammal (dracula) :- bat(dracula))),

rule ((bat(dracula) :- true))l
E=[default((not(flies(dracula)) :- dead(dracula)))
rule((dead(dracula) :- true))] dracula doesn’t fly
because dead things

typically don’t

dracula doesn’t fly
because mammals
typically don’t



Default reasoning:
using a revised meta-interpreter

need a way to cancel particular defaults in certain
situations: bats are flying mammals although the default
is that mammals do not fly

1

name associated with
default rule

defaul t (mammals_dont_fly(X), (not(flies(X)):—-mammal (X))).
default (bats_fly(X), (flies(X):-bat(X))).
defaul t (dead_things_dont_fly(X), (not(flies(X)):—dead(X))).
rule ((mammal (X) :—bat(X))).
rule ((bat (dracula) :—true)).
rule ((dead(dracula) :—true)).
rule ((not (mammals_dont_fly(X)):-bat(X))).
rule((not (bats_fly(X)):—dead(X))).



Default reasoning:
using a revised meta-interpreter

need a way to cancel particular defaults in certain
situations: bats are flying mammals although the default
is that mammals do not fly

1

name associated with
default rule

defaul t (mammals_dont_fly(X), (not(flies(X)):—-mammal (X))).
default (bats_fly(X), (flies(X):-bat(X))).
defaul t (dead_things_dont_fly(X), (not(flies(X)):—dead(X))).
rule ((mammal (X) :—bat(X))).
rule ((bat (dracula) :—true)).
rule ((dead(dracula) :—true)).
rule ((not (mammals_dont_fly(X)):-bat(X))).
rule((not (bats_fly(X)):—dead(X))).

rule cancels the
mammals_dont_fly default



Default reasoning:
using a revised meta-interpreter

explanations keep
track of names rather
than default rules

explain(A,EQ, [defaul t (Name) |E] ) :-
defaul t (Name, (A:— B)),
explain (B, EQ, E? ’ default rule is not cancelled in this
not (contradiction (Name,E)), situation: e.g., do not use default
not (contradiction(A,E)) . named bats_fly(X) if you can prove
not(bats_fly(X))

dracula can not fly after all

?7-explain(flies(dracula),E)

no

?7-explain(not(flies(dracula)),E)

E=[defaul t (dead_things_dont_fly(dracula)),
rule ((dead (dracula) :— true))]



Default reasoning:
Dracula revisited

using meta-interpreter

using naf

defaul t (mammals_dont_fly(X), (nhot(flies(X)):-mammal (X))).

defaul t (bats_fly(X), (flies(X):-bat(X))).

defaul t (dead_things_dont_fly(X), (not(flies(X)):—dead(X))).
rule ((mammal (X) :—bat(X))).

rule ((bat (dracula) :—true)). typical case is a clause
rule ((dead (dracula) :—true)). that is only applicable
rule ((not (mammals_dont_fly(X)) :-bat(X))). when it does not lead to
rule((not(bats_fly(X)):-dead(X))). inconsistencies;
applicability can be
notflies(X) :—-mammal (X),not(flying_mammal (X)) . restricted using clause

flies(X) :-bat (X),not(nhonflying_bat(X)).
notflies(X) :—dead(X),not(flying_deadthing(X)).
mammal (X) :—bat (X) .

names

pattdracuia). typical case is general
dead (dracula). Yﬁ ) g
flying_mammal (X) :—bat (X) . clause that negates

nonflying_bat (X) :—~dead (X) . abnormality predicate



Abduction:

given a theory T and an observation O,
find an explanation E such that TUE=O

El
E2 an abnormgq| bird)

another possibility, but abductive explanations are
usually restricted to ground literals with predicates

that are undefined in the theory (abducibles)

| 4



Abd UC'l'ion: Theory u Explanation = Observation

) Try to prove Observation from theory,

deUChVe = when a literal is encountered that

_1 3 cannot be resolved (an abducible),
meta ,nferprefer % add it to the Explanation.

abduce (0,E) :-
abduce (0, [],E).

abduce (true,E,E) :— I.

abduce((A,B),EQ,E) :— !, likes (peter,S) :— student_of (S,peter).
abduce (A, EQ,E1), likes(X,Y¥) :— friend(X,VY).
abduce (B,E1,E).

abduce (H, EQ, E) O ?—abduce (1 1kes (pe ter‘, pCIU]. ) ’ E)
clause (A,B), A already E = [student_of (paul,peter)];

qbZE::i:fE:E?:E)- assumed E = [friend(paul,peter)]
element (A,E).

abduce (A, E, [A|E]) :-
not (element (A,E)), A can be assumed if it
abducible (R). was not already assumed

abducible(R) :- and it is an abducible.

not (clause(A,B)).



Abduction:

abductive meta-interpreter and negation

flies(X) :—- bird(X), not(abnormal (X)).

@ abnormal (X) :- penguin(X).

§ bird(X) :- penguin(X).

© bird(X) :- sparrow(X).

O

2 7?-abduce(flies(tweety),E)

o E = [not(abnormal (twee ty)),penguin(tweety)]; inconsistent with
E = [nhot(abnormal (tweety)), sparrow (tweety)];

theory as penguins
are abnormal

abnormal/1 not an

abducible

Since no clause is found for not(abnormal(tweety)), it is added to the explanation.



Abduction:

first attempt at abduction with negation

extend abduce/3 with negation as failure:

abduce (not(A),E,E) :-
not (abduce (A,E,E)).

do not add negated literals to the explanation:

abducible(R) :—
A \= not(X),
not (clause(A,B)). flies(X) :- bird(X), not(abnormal (X)).
abnormal (X) :— penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?—-abduce (flies (tweety),E)
E = [sparrow(tweety)]



Abduction:
first attempt at abduction with negation: FAILED

any explanation of bird(tweety) will also be an
explanation of flies1(tweety):

fliesl (X) :— not(abnormal (X)),bird(X)
abnormal (X) :— penguin(X).

bird(X) :- penguin(X).

bird(X) :— sparrow(X).

reversed order
of literals

the fact that abnormal(tweety) is to be considered false,
is not reflected in the explanation:

?—- abduce (not (abnormal (tweety)), [1, [1)
true .

abduce (not (A),E,E) :—
not (abduce (A,E,E)). assumes the explanation
is already complete



Abduction:

final abductive meta-interpreter: abduce/3

abduce (true,E,E) :— I. abducible (A) :-
abduce ((A,B),EQ,E) :— I, A \= not(X),
abduce (A, EBQ,E1), not(clause(A,B)).
abduce (B,E1,E).
abduce (A,EQ,E) : - A alread
clause (A, B), elletefehy
abduce (B, E@,E) . assumed
abduce (A,E,E) :-
element (A,E). A can be assumed if
qbduie( (T’ E, [T LE] é); it was not already,
ngd = ETE?H) St it is abducible,
dbELEEDIeNT E doesn’t explain not(A
not (abduce_not(A,E,E)). P (A)
abduce (not(A),EQ,E) :-
not (element(A,E@)), only assume not(A) if A was not already assumed,

abduce_not (A,EQ,E) . ensure not(A) is reflected in the explanation



Abduction:

final abductive meta-interpreter: abduce_not/3

disjunction: a negation

abduce_not((A,B),EQ,E):~  conjunction can be explained by
L explaining A or by explaining B
abduce_not(A,EQ,E) ;
abduce_not (B,EQ,E).

not(A) is explained by explaining

abduce_not (A, EQ,E) :- not(B) for every A:-B

setof (B,clause(A,B),L),
abduce_not_list(L,EQ,E).
abduce_not (A,E,E) :- not(A) already assumed
element (not (A),E).
abduce_not(A,E, [not(A)|E]) :-
not(element (not(A),E)),
abducible(A),
not (abduce (A,E,E)).
abduce_not(not(R),EB,E) :-
not(element (not(A),EB)),
abduce (A, EQ,E) .

assume not(A) if not already so, A is abducible
and E does not already explain A

abduce_not_list([],E,E).
abduce_not_list([B|Bs],EQ,E) :-
explain not(not(A)) by abduce_not (B,E@,E1),

explaining A abduce_not_list(Bs,El,E).
20



Abduction:

final abductive meta-interpreter: example

flies(X) :— bird(X),not (abnormal (X)).
fliesl (X) :- not(abnormal (X)),bird(X).
abnormal (X) :— penguin(X).

abnormal (X) :— dead(X).

bird(X) :- penguin(X).

bird(X) :- sparrow(X).

?—- abduce(flies(tweety),E).

E = [not(penguin(tweety)),
not (dead (tweety)),
sparrouw (tweety)]

?- abduce(fliesl (tweety),E).
E = [sparrow(tweety),

not (penguin (tweety)), now abduces as
not (dead (tweety))] expected

21



Abduction:

diagnostic reasoning

Ob

X
G ®

3-bit adder . \ 5

yrl .

Theory; S

G .
usually what o . —
has to be
carried on

from previous

computation

ystem descri
Servation: ;

EXPlanaﬁon;

Theory describing normal operation

adder (X,VY,Z,Sum, Carry) :-
xor (X,Y,S),
xor (Z,S, Sum),
and (X,Y,C1),and(Z,S5,C2),
or(C1,C2,Carry).

22

xor (0,0,0) .
xor (@,1,1).
xor (1,0,1).
xor (1,1,0).

and (0,0,0) .
and(0,1,0).
and(1,0,0).
and(1,1,1).

ption

or(0,0,0).
or(@,1,1).
or(1,0,1).
or(1,1,1).



Abd . . describes how

uction: each component

can behave in a
faulty manner

diagnostic reasoning - fault model

correct behavior
faul t (NameComponent=State) xorg(N,%X,Y,Z2) :—- xor(X,Y,2).
xorg(N,8,0,1) :— fault(N=sl1).
xorg(N,0,1,08) :— fault(N=s0).

adder (N, X, Y, Z,Sum,Carry) :—- xorg(N,1,0,8) :- fault(N=s@). faulty behavior

xorg (N-xor1,X,Y,S), xorg(N,1,1,1) :—= fault(N=sl1).
xorg (N-xor2,2,S, Sum),

andg (N-and1,X,Y,C1), xandg (N, X,Y,2) :— and(X,VY,2).
andg (N-and2,X,S,C2), xandg(N,0,0,1) :— fault(N=sl1).

org(N-or1,C1,C2,Carry). xandg(N,@,1,1) :- fault(N=sl1).
xandg (N, 1,0,1) :— fault(N=sl1).
xandg(N,1,1,08) :— fault(N=s0)

sO: output stuck at O,
org(N,X,Y,2):— or(X,¥Y,2). s1: output stuck at 1
org(N,0,0,1) :— fault(N=sl1).
org(N,0,1,08) :— fault(N=s@).
org(N,1,0,0) :— fault(N=s0).
org(N,l”é,@) :— fault(N=s0).

can be nested:
subSystemName-
componentName



Abduction:

diagnostic reasoning - diagnoses for faulty adder

diagnosis (Observation,Diagnosis) :—
abduce (Observation,Diagnosis) .

adder(N,X,Y,Z,Sum,Carry): both
Sum and Carry are wrong obvious diagnosis: outputs

f add tuck
?-diagnosis (adder (a,0,0,1,0,1),D). ol adder are stuc

= [fault(a-orl=sl), fqult(q xor2=s0) 1] ;

faul t (a—and2=s1), faul t (a-xor2=s0)];

faul t (a—andl=s1), faul t (a-xor2=s0)];

faul t (a—and2=s1), faul t (a—andl=s1), faul t (a-xor2=s0)];
faul t (a—orl=s1), fault(a-and2=s0), fault(a-xorl=s1)];
faul t (a—andl=s1), faul t (a-xorl=s1)];

faul t (a—and2=s0), faul t (a—andl=s1), fault(a-xorl=sl)];
(faul t (a-xorl=s1)]

DDDDDDDD\J
I

most plausible as only one faulty
component accounts for entire fault

24



Declarative semantics for incomplete information:

" " Semany;
completing incomplete programs jemen Moot g,
n
can no longer express be discusseq Z,a clause v
Now
§ characteristic
= of indefinite clauses
© which had two minimal models
.
definite clause
containing not
w first model is minimal model of general clause
a to prove that
_g someone is d
- bachelor, prove
= R that he is a man
% second model is minimal model of general clause and an adult, and
=) prove that he is not

a bachelor

25



Declarative semantics for incomplete information:
completing incomplete programs

A program P is “complete” if for every (ground) fact f,

either P E f or P E f unique
minimal

, , model
Transform an incomplete program into a complete one,

°E that captures the intended meaning of the original program.

closed world assumption predicate completion

ok for general clauses

traightf d
straighttorwar (with negation in body)

ok for definite clauses may lead to inconsistencies if
(without negation) the program is not stratified

possible transformations

26



Completing incomplete programs: everything that is not

known to be true,

closed world assumption must be false

\L do not say something is not true,
g simply say nothing about it

27



Completing incomplete programs:  everything that is nof

known to be true,

closed world assumption must be false
CWA(P) = P U {-A|AcBp A PiA] the claste “false :-A” s only true
under interpretations in which A

is false

CWA-complement of a program P (i.e, CWA(P)-P):
explicitly assume that every ground atom A that
does not follow from P is false

28



Completing incomplete programs:
closed world assumption - example

only the black atoms are relevant
for determining whether an

Interpretation i | of
), likes (peter,paul) Inferpre .CI Ion is g anode o ,every
Bp ilikes(peter,peter ground instance o every clause
student_of (peter,peter)
student_of (paul, peter)

' ter, paul )
ul,peter), likes (peter, | -~
mocels Stujen:_g:EEZUI:Eeter),likes(peter,pqul),11kes(peter,pe
student_ |
student_of (paul,peter), likes(peter,paul),

there are still 4 orange
i ter
student_of (peter,peter), likes (peter,peter) atoms remaining which can

each be added (or not)

freely to the above
. | Y
in total: 3*2”4=48 models for such a simple program! interpretations

likes (peter,paul)

PFA student_of (paul,peter)

29



Completing incomplete programs:
closed world assumption - example

P likes(peter,S) :- student_of(S,peter).
student_of (paul,peter).

Bp {likes(peter,peter),likes(peter,paul),
likes (paul, peter), likes (paul, paul ),
student_of (peter,peter),student_of (peter,paul ),
student_of (paul,peter),student_of (paul,paul)}

pr A Llikes (peter,paul)
student_of (paul, peter)

CWA(P) likes(peter,S) :- student_of (S,peter).
student_of (paul,peter). is a complete program:

:= student(paul,paul). every ground atom from Bp
:— student (peter,paul).

:— student (peter,peter). | hasonly 1 model: {student_of(
:— likes(paul,paul). which is declared the inten
:— likes(paul,peter). (also obtain
:— likes(peter,peter).

30



Completing incomplete programs:
closed world assumption - inconsistency

when applied to :ndeﬁnite
| "t and general clauses
i :i:::ti?;qgnormal(X) :— bird(X). g

Br {bird(tweety),abnormal (tweety), flies (tweety)}
P

' ' tweety)}
bird(tweety), flies(
models Ebir\d(tweetg),abhor‘mdl(tlllee'tg)} es (tueaty)]
{bird (tweety), abnormal (tweety), flies (tw

PFA bird(tweety)

A(P) bird(tweety). . | |
CWALP) flies (X);abnormal (X) :— bird(X)
:—abnormal (tweety) .

:—flies (tweety)

CWA(P) is inconsistent

no longer has a model because, in order for the second

clause to be true under an interpretation, its head needs to be
frue given that its body is already true due to the first clause

31



Completing incomplete programs:
predicate completion - idea

regard each clause as part of the eir Q,,d_complefing
complete definition of a predicate

only clause defining likes/2:
P

its completion:

vXvS likes(X,S)—X =peterastudent(S,peter)

in clausal form:

Comp(P)

32



Completing incomplete programs:
predicate completion - algorithm

. add literals
1 ensure each argument of each clause head is a distinct variable  Var=Term 1o body

use disjunction in implication’s
body if there are multiple clauses
for a predicate

5 if there are several clauses for a predicate,
combine them into a single formula

vXvY likes(X,Y)— X=peterrstudent_of(Y,peter))

vXvY student_of(X,Y)— X=paulrY=peter it a predicate without
definition is used in g
3  turn the implication into an equivalence body (e.g. p/1),

add vX —.p(X)
vXvY likes(X,Y)— X=peterastudent_of(Y,peter))

vXvY student_of(X,Y) & X=paulrY=peter

Clausal Logic:

4  convert to clausal form .



Completing incomplete programs:
predicate completion - algorithm

3  turn the implication into an equivalence

vXvY likes(X,Y)— X=peterastudent_of(Y,peter))
vXvY student_of(X,Y) & X=paulrY=peter

4  convert to clausal form

X=peter:-likes(X,S).
student_of (S,peter):-likes(X,S).

X=paul :-student_of (X, VY) .

if a predicate without
definition is used in q

bOdy (eg p/"),
add vX —.p(X)

Clausal Logic:

. an “almost equi:ralanr” sot’of :lausas.
conversion from first-order predicate logic (6)

for definite clauses,
CWA(P) and Comp(P)

have same model

Y=peter:—-student_of (X,V¥). has the single model
{student_of(paul,peter), likes(peter,paul)}

34



Completing incomplete programs:
predicate completion - existential variables

if a predicate without
definition is used in g
3  turn the implication into an equivalence oy leg fo

add vX —.p(X)

careful with variables in a body that do not occur in the head

vXvY ancestor(X,Y)~ (parent(X,Y) v
(3Z parent(X,Z)rancestor(Z,Y))))

use second form because
all clauses must have the

same head
vXvYVZ ancestor(X,Y)—parent(X,Z) nancestor(Z,Y)

vZ:q+p(Z) vXvY ancestor(X,Y)+ 3Z parent(X,Z)rancestor(Z,Y))
vZ:q v -p(Z)
q Vv VZ:-p(Z)
q viZ:p(Z)
35



Completing incomplete programs:
predicate completion - existential variables

3  turn the implication into an equivalence

vXvY ancestor(X,Y)~ (parent(X,Y) v
(3Z parent(X,Z)rancestor(Z,Y))))

Clausal Logic:

4  convert to clausal form

parent (X,VY);parent (X,pa(X,¥Y)) :—ancestor (X, V).
parent (X,Y);ancestor (pa(X,¥Y),Y) :—ancestor (X,VY).

Skolem functor
vX3Y : loves(X,Y)
vX:loves(X,person_loved_by(X))

36

aaaaaaaaaaaaaa



Completing incomplete programs:
predicate completion - negation

1  ensure each argument of each clause head is a distinct variable

5 if there are several clauses for a predicate,
combine them into a single formula

vX bird(X) < X=tweety.

vX flies(X) « bird(X)r~abnormal(X) it a predicate without
definition is used in g
3  turn the implication into an equivalence body (e.g. p/1),

add vX -p(X
vX bird(X) < X=tweety. PX)

vX flies(X) < bird(X)A-abnormal(X).

vX =~abnormal(X) .



Completing incomplete programs:
predicate completion - negation

if a predicate without
definition is used in a

bOdy (eg p/]),
3  turn the implication into an equivalence

vX bird(X) & X=tweety.

vX flies(X) < bird(X)A-abnormal(X).

vX ~abnormal(X)

Clausal Logic:

st order sentence, there exists
an “almost equivalent” set of clauses.

conversion from first-order predicate logic (6)

4  convert to clausal form

X=tweety:-bird(X).
has the single model
: Sl 9. |
bl;? fz; EX;I;;ic()P;QI (X) . {bird(tweety), flies(tweety)}
O ’
:—abnormal (X) .

38



Completing incomplete programs: Comp(P) is

inconsistent for

predicate completion - inconsistency - certain unstratified P

if a predicate without
definition is used in q

3  turn the implication into an equivalence body (e.g. p/1),
add vX —.p(X)
vX wise(X) < ~teacher(X)

vX teacher(X) & X = peter A wise(peter) Clovsl Logic

. an “almost equivalent” set of clauses.
conversion from first.order predicate logic (6)

4 convert to clausal form

:—wise (X), teacher (X).

X=peter :-teacher (X) .
wise (peter) :—teacher (X).

inconsistent!

39



Completing incomplete programs: = ifPis stratified then

Comp(P) is consistent

Sh’dﬁﬁed programs sufficient but not Necessary:

there are non-stratified p’

! s for
which Comp(P) is consis

tent

organize the program in layers (strata);
do not allow the programmer to negate a predicate
& that is not yet completely defined (in a lower stratum)

A program P is stratified if its predicate symbols can be partitioned into disjoint
sets So, . . ., Sn

such that for each clause p(...) « Lj,...,Li where p € Sk, any literal L; is such that
if Li =q(...) then geSou...uSk

if Li ==q(...)then qeSou...uSk-1

40



Completing incomplete programs:
soundness result for SLDNF-resolution

P +sione g = Comp(P) F g

completeness result only holds for a subclass of programs

4]



Declarative
Programming



I nd UChve reasoni ng : infer general rules from
Overview specific observations

Given

B: background theory (clauses of logic program)
P: positive examples (ground facts)
N: negative examples (ground facts)

Find a hypothesis H such that

H “covers” every positive example given B

vpeP:BuHFp

H does not “cover” any negative example given B

vneN:BuHUEn




Inductive reasoning:
relation to abduction  “iu. e

given a theory T and an observation O,
find an explanation E such that TUE=O

Try to adapt the abductive meta-interpreter:
inducible/1 defines the set of possible hypothesis

%

induce(E,H) :- induce (A, HB,H) :- clause already
induce (E, []1,H). element ((AR:-B),HB), assumed

induce (true,H,H) . induce (B, HO,H) .

induce ((A,B),HB,H) :- induce (A,HB, [(A:-B)|H])
induce (A, HO, H1), inducible((A:-B)), assume clause if
induce (B, H1,H). not(element ((A:-B),Hn)), it's an inducible and

induce (A,HB,H) :- induce (B,HB, H) . not yet assumed
clause(A,B),

induce (B, HO,H) .



IndUC'l'ive reqsoning: bird(tweety).

has_feathers (tweety).

relation to abduction  Pirdeliv.
has_beak (polly).

inducible((flies(X) :-bird (X),has_feathers(X),has_beak (X))).
inducible((flies (X) :-has_feathers (X),has_beak (X))).
inducible((flies(X) :-bird(X),has_beak (X))).
inducible((flies(X) :-bird(X),has_feathers(X))).
inducible((flies(X):-bird(X))).

inducible((flies(X) :—-has_feathers(X))).
inducible((flies (X) :—has_beak (X))) .
inducible((flies(X) :—true)).

enumeration of
possible hypotheses

probably an overgeneralization
?-induce(flies (tweety),H).
H = [(flies(tweety) :-bird(tweety),has_feathers (tweety))];
H = [(flies(tweety) :-bird(tweety))];
H = [(flies(tweety) :-has_feathers (tweety))];
H = [(flies(tweety) :—true)];
No more solutions

Listing all inducible hypothesis is impractical. Better to systematically search the
hypothesis space (typically large and possibly infinite when functors are involved).

Avoid overgeneralization by including negative examples in search process.
4



Inductive reasoning:

a hypothesis search involving successive
generalization and specialization steps of a current hypothesis

ground fact for the predicate of which a definition is to be induced that is
either true (+ example) or false (- example) under the intended interpretation

example action hypothesis . .
this negative example

precludes the previous

hypothesis’ second
specialize argument from unifying with
the empty list

add clause

specialize

add clause



Generalizing clauses:
O-subsumption

cl is more general than c2

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢186 ¢ ¢c2

B-subsumes

using 6 ={V — [Y|Z]}

- 'v'”vH*;n = B1,...,.Bm
. V=BTl v.. v oBm
clauses are seen as sets
of disjuncted positive
(head) and negative
(body) literals

B-subsumes

using 6 = id



Generalizing clauses:

O-subsumption versus k

H1 is at least as general as H2 given B «

H1 covers everything covered by H2 given B
vpeP:BUH2rp=BuHIlEp

BuHIEH2

clause c1 O-subsumes c2 = c1 k c2

The reverse is not true:

c1 k c2, but there is no substitution 0 such that c10 ¢ ¢2



Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢10 ¢ ¢2

no variables substituted by 0 in c2:
testing for B-subsumption amounts to testing for subset relation
(allowing unification) between a ground version of ¢2 and c1

prove Goal, but without
creating bindings



Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢10 ¢ ¢2

bodies are lists of atoms

?7—- theta_subsumes ((element (X,VU):— []),

(element (X,V) :— [element(X,2Z2)])).
yes.
?7- theta_subsumes((element(X,a):— []),

(element (X,VU):— [])).
no.



Generalizing clauses:
generalizing 2 atoms

A clause c1 O-subsumes a clause ¢2
< 3 a substitution 8 sych that c10 ¢ ¢2

al a2
% O N
N ér(/ S_}O\t\:\&
/f/—/be @ A\
-, NR
“L S
7,9 S
/4/ a3 Q° first element of second argument (a non-

empty list) has to be the first argument

happens to be the least general (or most specific) generalization
because all other atoms that 6-subsume al and a2 also 6-subsume a3:

only requires second argument to

be an arbitrary non-empty list
no restrictions on
either argument



Generalizing clauses:
generalizing 2 atoms - set of first-order terms is a lattice

/ \ anti-unification
T~ | _—

unification

t1 is more general than t2 < for some substitution 0: 110 = 12

greatest lower bound of two terms (meet operation): unification
specialization = applying a substitution
least upper bound of two terms (join operation): anti-unification

generalization = applying an inverse substitution (terms to variables)



Generalizing clauses:

anti-unification computes the least-general
generalization of two atoms under 0-subsumption

dual of unification

compare corresponding argument terms of two atoms,
T replace by variable if they are different
- replace subsequent occurrences of same term by same variable

remaining arguments: inverse substitutions for
6-LGG of first two arguments each term and their accumulators

will not compute proper inverse substitutions: not clear which

occurrences of 2 are mapped to X (all but the first)
BUT we are only interested in the 0-LGG

clearly, Prolog will generate a new anonymous
variable (e.g., _G123) rather than X



Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under 0-subsumption

same terms not the same terms, but each
has already been mapped to

the same variable V in the
respective inverse substitutions

equivalent compound

term is constructed if both

original compounds have if all else fails, map

the same functor and arity both terms to the
same variable



Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under B-subsumption

anti_unify_args (@, Terml, Term2, Term,51,51,52,52). anﬁ-unify first N
anti_unify_args(N, Terml, Term2,Term,510,51,520,52) :- corresponding
N>B, arguments

N1 1is N-1,

arg(N, Terml,Argl),

arg (N, Term2,Arg2),

arg (N, Term, ArgN),
anti_unify(Argl,Arg2,ArgN,S10,S11,520,521),
anti_unify_args (N1, Terml, Term2, Term,S11,51,521,S2).

subs_lookup ([T1<-VU|Subsl], [T2<-V|Subs2],Terml, Term2,V) :-
Tl == Terml,
T2 == Term2,
I,

subs_lookup ([S1|Subsl1], [S2]|Subs2],Terml, Term2,V) :-
subs_lookup (Subs1, Subs2, Terml, Term2,V).

|4



Generalizing clauses:
set of (equivalence classes of) clauses is a lattice

A

4// l\ anti-unification and/or

removing literal

/ \ unification and/or
adding literal

C1 is more general than C2 < for some substitution 6: C16 C C2

greatest lower bound of two clauses (meet operation): 6-MGS

specialization = applying a substitution and/or adding a literal

least upper bound of two clauses (join operation): 8-LGG
generalization = applying an inverse substitution and/or removing a literal

|5



Generalizing clauses:
computing the 0 least-general generalization

similar to, and depends on, anti-unification of atoms
but the body of a clause is (declaratively spoken) unordered

=} therefore have to compare all possible pairs of atoms (one from each body)

obtained by anti-unifying obtained by anti-unifying

obtained by anti-unifying J d
an el

original heads



Generalizing clauses:

computing the 0 least-general generalization

theta_lgg((H1:-B1), (H2:-B2), (H:-B)) :- anti-unify girwise ant
anti_unify(H1,H2,H, [],S10, []1,520), heads P . f
theta_lgg_bodies (B1,B2, []1,B,S10,S1,520,52). AbEElen

atoms in bodies
theta_lgg_bodies([],B2,B,B,S1,51,52,S2).

theta_lgg_bodies ([Lit|B1],B2, B@,B, S1@,S1, S208,S2):- atom from
theta_lgg_literal (Lit,B2, B@,B@@, S18,S11, S28,S21), frst bod
theta_lgg_bodies(B1,B2, B@#O,B, S11,S1, S21,S52). e ey

theta_lgg_literal (Litl, [], B,B, S1,S1, S2,52).
theta_lgg_literal (Litl, [Lit2]|B2],B®@,B,S10,51,520,52) :- atom from
samg_pr‘gdlca’.ce (L11c1,L1ic2), second body
anti_unify(Litl,Lit2,Lit,S10,511,520,521),
theta_lgg_literal (Lit1,B2, [Lit|B®],B, S11, S1,521,52).
theta_lgg_literal (Litl, [Lit2]|B2],B@,B,S18,51,520,52) :-
not (same_predicate(Litl,Lit2)),
theta_lgg_literal (Lit1,B2,B8,B,518,51,520,52) . <{n or e
same_predicate(Litl,Lit2) :- :
functor (Litl,P,N), pair
functor(Lit2,P,N).



Generalizing clauses:
computing the 0 least-general generalization

?- theta_lgg((reverse([2,1], [3], [1,2,3]):-[reverse(][1l], [2,3], [1,2,3])]),
(reverse(l[al, [1, [a]l):-[reverse(I], [al, [a]l)]),
C).

C = reverse([X|Y], 2, [U|V]) := [reverse(Y, [X|Z], [U|IV])]

rev([2,1],[31,01,2,3]):-rev([1],[2,3],[1,2,3])
N N 4 I N
X Y Z U Vv Y X Z UV
NV N I VA V4

rev([a] l[] l[a] ):—rev([] l[a] l[a] )

18



Bottom-up induction:
specificto-general search of the hypothesis space

generalizes positive examples into a hypothesis
rather than specializing the most general hypothesis as long as it covers negative examples

relative least general generalization rlgg(e1,e2,M)
of two positive examples el and e2
relative to a partial model M is defined as:

rigg(el, e2, M) =Igg((e1 :- Conj(M)), (e2 :- Conj(M)))

conjunction of all positive
examples plus ground facts for
the background predicates



Bottom-up induction:

relative least general generalization

M
el gppend(I1,2], [3,4], [1,2,3,4]).
e2 append(l[al, [1, [a]).

append([], [I, [1).
append ( [2], [3,4], [2,3,4]).

rigg(e1,e2,M)

?7- theta_lgg((append(I[1,2], [3,4], [1,2,3,4]) :-
[append ([1,2], [3,4], [1,2,3,4]),
append( [al, [I, [al), append(I], [I, [1),
append ( [2], [3,4], [2,3,4])1),

(append([al, [], [a]):-

[append ([1,2], [3,4], [1,2,3,4]),
append( [al, [], [a]l),append(I], [1, []1),
append( [2], [3,4], [2,3,4])]),

C)

20



Bottom-up induction:
relative least general generalization - need for pruning

rigg(e1,e2,M)

remaining ground facts from
M (e.g., examples) are
redundant: can be removed

intfroduces variables that do not
occur in the head: can assume that
hypothesis clauses are constrained

head of clause in body = tautology:
restrict ourselves to strictly
constrained hypothesis clauses

variables in body are proper
9] subset of variables in head



Bottom-up induction:
relative least general generalization - algorithm

to determine vars in
head (strictly rlgg(E1,E2,M, (H:— B)):-
constrained restriction)  onti_unify(El,E2,H, [],510, [],520),
varsin(H,V),
r1gg_bodies (M,M, [],B,S1@,S1,528,52,U) .

~1gg_bodies (B@,B1,BR@, BR,S10,S1,528,52,U) : rlgg
all literals in BO with all literals in B1, yielding BR (from
accumulator BRO) containing only vars in V

rlgg_bodies([],B2,B,B,S1,S1,52,S2,U).

rlgg_bodies([L|B1],B2,B0,B,S10,S1,520,52,U) :-
rlgg_literal (L,B2,B0,B00,510,S11,520,521,U),
rlgg_bodies (B1,B2,B00,B,S11,S1,5S21,52,U).

22



Bottom-up induction:
relative least general generalization - algorithm

rlgg_-literal (1, [],B,B,51,51,52,52,U).

rlgg_literal (L1, [L2]B2],B@,B,S10,S1,520,52,U) :-
same_predicate(L1,L2),
anti_unify(L1,L2,L,510,511,520,521),
varsin (L, Vars), strictly constrained (no new

var_proper_subset (Vars, V), variables, but proper subset)

Ly

~lgg_literal (L1,B2, [L|B@],B,S11,5S1,521,52,U).

rlgg_literal (Ll, [L2|B2] ,B0,B,510,S1,520, 52, U):— otherwise, an
r1gg_literal (L1,B2,B9,B,510,51,520,52,U) . e EeEle pel

of literals

23



Bottom-up induction:
relative least general generalization - algorithm

var_proper_subset([],Ys) :- var_remove_one (X, [Y|Ys],Ys) :-
Ys \= []. X == V.
var_proper_subset ( [X|Xs],Ys) :- var_remove_one (X, [Y|Ys], [VIZs) :-
var_remove_one (X, Ys,Zs), var_remove_one (X, Ys,Zs) .

var_proper_subset (Xs,Zs) .

varsin(Term,Vars) :— varsin_args (@, Term,Vars,Vars) .
varsin(Term, [],U), varsin_args (N, Term,U0,VU) : -
sort (U,Vars) . N>,

varsin (U,Vars, [U|Uars] ) :- N1 is N-1,
var (V). arg (N, Term,ArgN),

varsin (Term,VU0,U) :- varsin (ArgN,uo,uUl),
functor (Term,F,N), varsin_args (N1, Term,VU1,U).

varsin_args (N, Term,U0,V).

24



Bottom-up induction:
relative least general generalization - algorithm

?- rlgg(append([1,2], [3,4], [1,2,3,4]),
append( [a], [1, [al),
[append ([1,2], [3,4], [1,2,3,4]),
append( [a], [], [al),
append([], [1, [1),
append ( [2], [3,4], [2,3,4])],
(H:- B)).
append ( [X|Y], 2, [X|U])
[append ([2], [3, 4], [2, 3, 4]),
append (Y, Z, U),
append([], [l, [I),
append([a], [], [al),
append([1, 2], [3, 4], [1, 2, 3, 4])]

25



Bottom-up induction:
main algorithm

construct rlgg of two positive examples

remove all positive examples that are

< extensionally covered by the constructed clause

further generalize the clause by removing literals

as long as no negative
examples are covered

26



Bottom-up induction:
main algorithm

, split positive from
induce_rlgg(Exs,Clauses) :- . |
pos_nheg (Exs,Poss,Negs), negative examples
bg_model (BG),
append (Poss, BG, Model ), include positive examples
induce_rlgg(Poss,Negs, Model,Clauses) . in background model

induce_rlgg(Poss,Negs,Model,Clauses) :-
covering (Poss,Negs,Model, [],Clauses).

pos_neg([], [1, [1).

pos_neg([+E|Exs], [E|Poss],Negs) :-
pos_neg (Exs,Poss,Negs) .

pos_neg([-E|Exs],Poss, [E|Negs]) :-
pos_neg (Exs,Poss,Negs) .

27



BOHIO m'Up indUCHOn: consfruct a new

main algorithm - covering hypothesis Tllql;st: that
covers ail o e

positive examples and

covering (Poss, Negs,Model, Hyp@, NewHyp) :- .
none of the negative

construct_hypothesis (Poss,Negs,Model,Hyp),

l
© )

remove_pos (Poss, Model , Hyp, NewPoss),

covering (NewPoss,Negs,Model, [Hyp|Hyp@], NewHyp) .

covering(P,N,M,HO,H) :-

append (H2,P.H) - \when no longer possible to construct new hypothesis clauses,
add remaining positive examples to hypothesis

remove covered
positive examples

remove_pos ([],M,H, [1). covers_ex ((Head:- Body),
remove_pos ( [P|Ps],Model, Hyp, NewP) :- Example, Model) :-
covers_ex (Hyp,P,Model), verify((Head=Example,
l, forall (element (L,Body),
write(’Covered example: '), element(L,Model)))).

write_ln(P),

remove_pos (Ps, Model, Hyp, NewP) .
remove_pos ( [P|Ps],Model,Hyp, [P|NewP]) :-

remove_pos (Ps, Model, Hyp, NewP) . 78



Bottom-up induction:
main algorithm - hypothesis construction

this is the only step
in the algorithm
that involves
negative examples!

construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :-
write(’RLGG of '), write(El),
write(’ and ’), write(E2), write(’ is’),

rlgg(El,E2,Model,Cl), remove redundant literals
reduce (Cl,Negs,Model,Clause), and ensure that no negative
s examples are covered

nl, tab(5), write_ln(Clause).
construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :-

write_ln(’ too general’),

construct_hypothesis([E2|Es],Negs,Model,Clause).

if no rlgg can be constructed for these
two positive examples or the constructed
one covers a negative example
1 will be considered

another example in @
£ covering/?

note that E

2 different iteration O



Bottom-up induction:
main algorithm - hypothesis reduction

setof@(X,G,L) :-
: setof (X,G,L),!.
remove redundant literals
: setof@(X,G, []). e wi
and ensure that no negative SLI',Ccee s with empty
examples are covered ist of no solutions
can be found
reduce ((H:-B@),Negs,M, (H:-B)) :-
setof@ (L, :
(element (L,BB), not(var_element(L,M))), removes literals from
B1), the body that are
reduce_negs (H,B1, [],B,Negs,M). already in the model
var_element (X, [Y|Ys] ) :- e'e’."e"f/2 using
W == U, syntactic identity rather
var_element (X, [Y|Ys] ) :- than unification

var_element (X, Ys) .

30



Bottom-up induction:
main algorithm - hypothesis reduction

B is the body of the reduced clause: a
subsequence of the body of the original clause
(second argument), such that no negative example
is covered by model U reduced clause (H:-B)

reduce_negs (H, [L|Rest],B@,B,Negs,Model ) :-
append (B@, Rest,Body),

not (covers_neg((H:-Body),Negs,Model,N)),

|

X

reduce_negs (H,Rest,B0,B, Negs, Model ).
reduce_negs (H, [L |Rest],B0@,B,Negs,Model ) :- [Ncannol belremoved

reduce_negs (H,Rest, [L|B@],B,Negs,Model).
reduce_negs (H, [],Body,Body,Negs,Model) :-

not (covers_neg((H:- Body),Negs,Model,N)).

try to remove L from the
original body

fail if the resulting clause
covers a negative example
covers_neg(Clause, Negs,Model,N) :-

element (N, Negs), a negative example is
covers_ex (Clause,N,Model) . covered b), clause U model



?—- induce_rlgg([

Boﬂom-up induction: +append([1,2], [3,4], [1,2,3,4]),

example

+append ( [al, [], [al),

+append ([], [I, [1),

+append ([1, [1,2,3], [1,2,3]),
+append ( [2], [3,4], [2,3,4]),
+append ([], [3,4], [3,4]),
_GPPend([G]’ [bls [b])s
—append ([c], [b], [c,a]),
-append ([1,2], [], [1,3])

], Clauses).

RLGG of append([1,2], [3,4], [1,2,3,4]) and append(l[al, []1, [a]l) is

append ( [X|Y],2Z, [X|U]) :-
Covered example: append/(
Covered example: append/(
Covered example: append/(

RLGG of append([], [1, []1)
append ([]1,X,%X) :— []

Covered example: append([]
Covered example: append([]
Covered example: append([]

[append (Y, Z,U)]
1,21, [3,4]1, [1,2,3,4])
al, [1, [al)

2], [3,4], [2,3,4])
and append([], [1,2,3], [1,2,3]) is

1, [1, [1)
1, [1,2,3], [1,2,3])

1, [3,4], [3,4])

Clauses = [(append([],X,X) := []), 32

(append ([X|VY],2Z, [X[U])

:— [append (Y,Z,U)])]



Bottom-up induction:

example

RLGG of listnum(
listnum(
RLGG of listnum(
listnum(

1, [1) and
2, three, 4], [two, 3, four]) is too general
2, three, 4], [two, 3, four]) and

4], [four]) is

bg_model ( [num (1, 0ne), num(2, two),
num 3 three),

num 4 fourg

num five ])
?-1nduce_rlg
+11stnum %
+1istnum three 4%,[two , 3, fourl]),
+11stnum 41 [four]
+]listnum three 4] [3 fourl ),
+1listnum two] [ 5
—listnum 1, four]),
—listnum three. 4], [twol ),
-1listnum fer],[%,5]) ],

Clauses).

listhnum ( [X]|Xs], [Y]Ys]) := [hum(X,¥),listhum (Xs,Ys)]

listnum([2, three,4], [two,3, four])

listnum([4], [four])

RLGG of listnum([], []) and listnum([three,4], [3, four]) is too general
RLGG of listnum([three,4], [3, four]) and listnum([two], [2]) is
listhnum([V|Us], [W|Ws]) := [num(W,V),listhum (Us, Us)]

Covered example:
Covered example:

Covered example:

listnum([three, 4], [3, four])

Covered example:

Clauses =[(listhnum([V|Us], [W]|Ws]
(listnum ([X|Xs], [Y]|VYs]

listnum([two],

2])

) := [num Elz'l,U), listnum(Us,Ws)]),
)= [num(X,¥Y),listnum(Xs,¥Ys)]),listnum([], []) 1



programming with quantified truth
programming with qualified truth

programming with constraints on integer domains

Declarative
Programming

only to whet your appetite,

will not be asked on exam
implicit parallel evaluation

software engineering applications



Logic programming with quantified truth:

reasoning with vague (rather than incomplete) information

characteristic function generalised _
to allow gradual membership HA - U— [07 1]

D—x¢A
l—x€eA
O<a<l+«+ x¢€Atothe extent «

=

>

¥
]

fuzzy set [Zadeh 1965]

— tall

. . 1 X
TIm20 1mS0 1m80 2m10




Logic programming with quantified truth:

operations on fuzzy sets

classical settheoretic operations

> Intersection: pang(x) = min(pa(x), ps(x))

> Union: paus(x) = max(pa(x), us(x))

> Complement: pz(x) =1 — pa(x) original ones by Zadeh,
later generalized

linguistic hedges
take a fuzzy set (e.g., set of tall people) and modify its membership function

modelling adverbs: very, somewhat, indeed

compositional rule of inference

premise if X1sAandY i1s Bthen Z1s C
fact XisA"andY is B’

consequence | Zis C’




Logic programming with quantified truth:

killer application: fuzzy process control

Fuzzy Logic Rice Cooker Reviews

®ono

[i >J FI- R¢‘<;http:/IW\.\,'w.rice-cooker-guide.com/fuzzy—Iogic-rice-cooker.html

0 =2 WSNThesis vakantiev cultuurv spaansy geekyv referencev nieuws

v artsyv vubv e-lifev remember

Home

About This Site

Sanyo Cookers
Tiger Cookers
Zojirushi Cookers
Panasonic Cookers
Aroma Cookers
Cuisinart Cookers
Black & Decker

Rival Cookers

Best 3 Cup Cookers

Best 4 Cup Cookers

- Rice Cooker Guide.com

-Performance Reports
-Pros & Cons & R o e
Visitor Reviews .

»
ﬁ t
P/

:

:

:

:

:

:

:

i

Best Fuzzy Logic Rice Cooker Brands

we have added this Fuzzy Logic rice cooker reviews

a specific brand/model. Fuzzy Logic rice
and always comes out better than older
ker choice on the market.

To help categorize,
page to help folks narrow down

has better flavor, great texture,
basic cookers and remain the best rice CoO0

‘‘‘‘‘ & new units become avallable)

Zojirushi Fuzzy Logic Rice Cookers

Being the most elite in the industry,
Zojirushi rice cookers make a fine
line of fuzzy logic cookers and offer
came of the best models around.



Logic programming with quantified truth:

killer application: fuzzy process control

IF temperature=cold THEN turn knob to 6
IF temperature=warm THEN turn knob to 3

t cold warm t
1 1
________________ h
i
________________ h
: .39
O A temp;rature 0 I:nob

3 ¢

measured'temperature 6
: > “weighted average™ 5 ! .

easier and smoother operation than classical process control

5



Logic programming with quantified truth:

killer application: fuzzy process control

rule if X 1s A thenY 1s By
rule» if X 1s A> then Y is B>
fact X 1s A
consequence | Y is B

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.



Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

many
variations
possible

confidence
in conclusion g given absolute

trUth Of qll e o o ,qn

LP with quantified truth

sold(flowers, 15).
attractive packaging(chips) : 0.9.
well advertised(chips) : 0.6.

popular product(?product) if
sold( ?product, ?amount),
famount > 10.

popular product (?product) : 0.8 if
attractive packaging( ?product),
well advertised(?product).

7



Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

X! SOUL Querybrowser

wearsLargeShoes{?p) : 7t

Te¢ Lookupin:| default

Evaluator ;| Evaluator

—
—

4 solutions in 3 ms

Configure |

<

X SOUL Clause Browser

All Results All Results Int
MNext Result Basic Inspect
~Variable VYiew Ordering
7t FAY
p

Apply
J Clear

=) (81/100)
_I #tom
=) (27450)
ta L #harry
=) (18/23)
_I #j ohn

1|

l_lf] | -]

DEMO



Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

eNO SOUL Clause Browser

Tools Special Help

logic IsProvenToExtent:aboveThresholdZ | ({25 12 = isProvenListOiGoalsToExter

Lookup:| default 11 clause looku isProvenListOfGoalsToExtent:above <> isProvenListOfGoalsToExtent: ?in
T MO_ <&last> isProvenListOfGoalsToExten
A

@ IntensionalViewsLayer
.. VlsualQueryPredicatesForS

@ Vanillainterpreter

- WFuzzyinterprete

.. OtherJavaTemplateQueriesiy)

v

<&last> isProvenListOfGoalsToExtent: 7degree aboveThreshold: 7threshold runningMin: ?currentMin implicationStrength: &implication if
|
&lastisProvenToExtent: 7d aboveThreshold: ?threshold,
7min equals: [7currentMin min: 7d],
7degree equals: [7min * ?implication],
[?degree >= 7threshold]

DEMO



Logic programming with quantified truth:

reifying the characteristic function of a fuzzy set

+?r isEqualToOrGreaterThanButRelativelyCloseTo: +7?z.
+?z isEqualToOrGreaterThanButRelativelyCloseTo: +?2y : ?c 2f

[22 > 2?y],
?c equals: [(?y / ?z) max: (9 / 10)] associates a truth degree
[ 211
with numbers 2x that are
greater than 2y, but do not
deviate more than 10% from 2y

eSO SOUL Querybrowser
if | [19to:25] contains: 7x, (Al Results \ ( Debug \

7 isEquaIToOrGreaterThanButReIativerCIoseTo:20:?II “NextResult Y ( Basic Inspect )

£ Next x Results

Variable View Ordering
n (" Apply )
7X J—
Clear

Y
6 solutions in 3 ms

LTI
Configure

Lookup in: | JavaEclipse

LR RE N

Evaluator | FuzzyEvaluato

f Browser \newY Tree View Y Text View !
(10/11) 25
1

/10 2 DEMO

(20/21)



Logic programming with quantified truth:

quantifying over the elements of a fuzzy set

+?c contains: +%e if
[?c isKindOf: Soul.FuzzySet],
[ ?c membershipDegree0fElement: ?e]

e N O SOUL Querybrowser

additional contains:/2
clause for fuzzy sets
implemented in Smalltalk

if 7about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30},

[8 to: 32] contains: 7e,
7about20 contains: 7e : 7t

~

Next Result )  Basic Inspect

Lookup in:

Evaluator

JavaEclipse

FuzzyEvaluato

“ Next x Results

fBrowser \newY Tree View Y Text View )

1
(3/10)
(7/10)
(1/5)

(1/10)

(275)

(9/10)
(4/5)
(1/2)
(3/5)

14
26

linearly models
how close an

Variable View Ordering
2 7e P o 8 .
by element is to 20
" { Clear )
7about20 N
%
‘@
/\\ 0
&
G N
0\ 2
T (e
@ AN
NPy,
<) -
e Yo
& Y
PR
A T Ve
2~ N
}.




Logic programming with qualified truth:

an executable linear temporal logic (informally)

O (always)
regular logic formulas qualified ¢ (sometimes)
by temporal operators: e (previous)
o (next)

evaluated against an . L
. o g Og is true if ¢ 1s true at all
implicit temporal context: moments in time.

we will assume a finite, non-branching timeline for our example
application: reasoning about execution traces of a program



Logic programming with qualified truth:

a meta-interpreter for finite linear temporal logic programming

the initial temporal context for all top-level
formulas is the beginning of the timeline

next(A) holds if A holds at

the next moment in time

next(C,A) holds if A holds C steps into the
future (possibly a variable)

#> and friends impose
constraints over integer domain:

use_module(library(clpfd)).



Intermezzo:
constraint logic programming over integer domains

X in integer domain

X in union of two domains

list of variables on the left is
in the domain on the right

ensures elements are assigned
different values from domain



Intermezzo:
constraint logic programming over integer domains

SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,0,R,E] [M,0,N,E,Y]) :-
Vars = [S,E,N,D,M,0,R,Y],
Uars ins @..9,
all_different (Vars),
S*¥1000 + E*100 + N*10 + D +
M*¥1000 + 0*100 + R*10 + E #=
M*10000 + 0*1000 + N*100 + E*10 + VY,
M #\= @, S #\= 0.

?7- puzzle(As+Bs=Cs). .

As = [9, _Gl@1@?, _Givli\@, _G1@113], deduced more stringent
Bs = [1, @, _G19128, _G1@107], constraints for variables
Cs = [1, @, _G1911@, _G1@1@?, _G1@152],

G19167 1in 4..7/,

1000*%9+91*_(G10107+ -90*%_G10110+_G10113+ —-9006*1+ —-900*0+160*_G10128+ —-1*_(G10152#=0,
all_different([_GiQl@?, _G1911@, _Gi@113, _Gi@i28, _Giwi52, @, 1, 9]),
G19110 1in S5..8,

G610113 1n 2..8,

610128 1n 2..8,

_G10152 in 2..8.



Intermezzo:
constraint logic programming over integer domains

SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,0,R,E] = [M,0,N,E,Y]) := ?- puzzle(RAs+Bs=Cs), label (As).
Vars = [S,E,N,D,M,0,R,Y], As = [9, 5, 6, 7],
Uars ins @0..9, Bs = [1, @, 8, 5],
all_different (Vars), Cs = [1, @8, 6, S5, 2] ;
S*¥1000 + E*100 + N*10 + D + false.
M*¥1000 + 0*100 + R*10 + E #=
M*10000 + 0*1000 + N*100 + E*10 + Y, labeling a domain variable

M #\= 8, S #\= @. systematically tries out values

P O e - for it until it is ground

As = [9, _G1@1@?, _Gl@il®, _G1@113],

Bs = [1, @, _G10128, _G1@107],

Cs = [1, @, _GlPl11@, _G1@10@7?, _G1B@152],

_G10107 in 4..7,

19090*9+91*_G10107+ —-90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ —-1*_G10152#=0,
all_different([_G1010?, _Gl@11@, _Gi®113, _Gi1@128, _Giwi52, @, 1, 9]),

_G1011@ in 5..8,
_G10113 in 2..8,
_G1@128 in 2..8,
_G10152 in 2..8.

deduced more stringent
constraints for variables



Logic programming with qualified truth:

a meta-interpreter for finite linear temporal logic programming

A holds sometime between
now and C steps in the future

A holds sometime between now
and C steps in the past

A holds

somewhere on the

limeline similar for always



Logic programming with qualified truth:

example application

(a) observed behavior

1 event(0,init).

2 event(1l,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
s event (4,pop(20,2)).

Execute
while

reasoning about execution traces

(b) source code

¢ intercepting

high-level

A

verified a‘gainst

events .

A

(c) documented behavior .

1 behavioralModel :-

2 until (stackInitialized,
3 O (when (push (S)

4 O (when (pop (S)

stackInitialized (S)
stackUsed (S) :— push(S)
stackUsed (S) :— pop(S).

stackOperation (S)
stackOperation (S)

O 0 N O W

10 push (S) :— event (push (_
11 pop(S) :— event (pop (_
12 init (0) :— event (init).

N\ estackOperation (S1l),
N\ estackOperation (S1),

:— 1nit (S).

:— stackUsed (S
:— stackInitialized(S).

;S
rS)

—stackUsed), .
S is S1 + 1)),

O o0 N O w»n B~ WD =

—
S

int =*stack;

int top;
void init (int size) {
top = 0;
stack = malloc(sizexsizeof (int));

}

void push (int element) {
stack [topt++]=element;

}

#define pop () stack[—--top];

(d) high-level events specification

S is S1 - 1)).

2

4

) .

6

1 intercept(after, stackPopOperation,
event (time, pop(stackTop,
3 intercept(after,
event (time, push(stackTop,
5 intercept (before,
event (time,

stackSize))).
stackPushOperation,
stackSize))).
stackInitOperation,
init)).

)) -
) o

(e) application-specific instances

1 stackPushOperation(Construct,Path)

2 functionCallHasName (Construct, ’‘push’).
3 stackPopOperation(Construct,Path) :-
4 macroCallHasName(Construct, ’'pop’).

5 stackInitOperation(Construct,Path)
¢ functionCallHasName(Construct, ’'init’).

|18

specific'fc‘:r this

application

\ (f) associated run-time values

1 keyword(stackSize, 'log("%i", top);’).
2 keyword(time, ‘log("%i", TIME++);’).
3 keyword(stackTop, 'log("%i",stack[top-1]);"').




Logic programming with qualified truth:

example application: reasoning about execution traces

(a) observed behavior (b) documentation as present in the source code
I oo 1 /e e e e e e */
2 event (60,cntEntered(’ASG’,13..1,[’ASG’, 'print’, ’‘exit’])). Execute » /% ASS */
3 event(61,cntExited('ASG’,13..1,[ 'print’, ’exit’])). g source code |3 /* expr-stack: [... ... ... ... DCT VAL] -> */
4 .. while 4 /% [eee eee eee eoe «.. VAL] x/
. . 5 /* cont-stack: [... evee eee ee. ... ASS] -> */
A Intercepting |, [eer oo e eee aee ] */
verified against ! L e x/
/ s static NIL TYPE ASG(_NIL TYPE )
(c) documented behavior ) o { ven}
| cntDocumented(’ASG’, [ 'ASG’ |R],R). y (d) high-level events specification
2 cntDocumented('REF’, [ 'REF’ |R], [ 'REF’, 'APL’ |R]). | intercept (before,continuationEntry,
3oeee > event(time,cntEntered(cntName,cntPtr,cntStack))).
4+ behavioralModel :- 3 intercept(after,continuationExit,
5 U(when(cntExecuted(Name,Before,After), 4+ event(time,cntExited(cntName,cntPtr,cntStack))).
6 cntDocumented (Name,Before,After))). >
specific for this application
7 cntExecuted(Name, StackBefore, Stackafter) :- (e) application-specific instances \ (f) associated run-time values
tExited(Name, ,StackAfter), , , - = : '
8 f? n;cElnte r( ;ml\;a' = asct kBerf) § 1 continuationEntry(Construct,Path) :- | keyword (cntName,C,P,Expansion) :-
? ¢ St (Rl e el Selsonsa | o 2 inConFinuation(Construct,Path), » continuationName(C,P,Name),
3 functlonEntry(Construct,Path) . 3 concat ([’ log( "’ , Name, " )i ] ,Expansion) .
4 continuationExit (Construct,Path) :-

s inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-

8 1isFunctionDefinition(Construct),

9 expressionIn(Construct,Expression, ),
10 picoStack(Expression).




Non-standard evaluation strategies:
a taste of implicit parallel evaluation

. speed up should be easier
multi-core . .
. sequential for declarative
revolution
programs programs
main :- X = f(Y,2), AL ILIL expose inherent  formal relatively
O parallelism foundation pure

Y = a, X, ® @  z

—_— X/ ® @ z17 _ W

W= g(K), 00 @ 0 &

—
X = fla,gm). FA0 0 FH 0O

BUT also complex datastructures with pointers ...
imagine executing these goals in parallel!

20 [hitp://clip.dia.fi.upm.es/ " logalg/slides/PS/A par.pdf]



http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

while (Query not empty) do

selectyry B from Query And-Parallelism
S |
select . (H :- Body) from ngfamé Or-Parallelism
R w— -
until ( unify(H,B): or no clauses left) Un’flcat/_on
if (no clauses Teft) then FAIL Farallelisrm
else .
6 = MostGeneralUnifier(H,B) o trivial: goals typically depen
Query = ((Query \ {B}) U Body)o on each O ency),
. e
endif (data and Comrobe S)F’)nchron'\zed
endwhile workers need 10

correctness (same solutions as sequential)
efficiency (no slowdown, speedup)

21 [hitp://clip.dia.fi.upm.es/ " logalg/slides/PS/A par.pdf]



http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

execute different
branches at choice point
simultaneously

there is no dependency between
the clauses implementing p/1

relevant for
much easier to implement than and-parallelism search problems
/

generate-and-test
issue: maintaining a different environment per

branch efficiently(e.g., sharing, copying, ...)

typical architecture:

set of workers, each a full interpreter

scheduler assigns unexplored branches to idle workers

22 [hitp://clip.dia.fi.upm.es/ " logalg/slides/PS/A par.pdf]



http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

speculative work should be avoided to gain speedup

X [
speculative
pl p2
left-based scheduling, immediate killing on cut A=g x=b
! a lot of work
main :- 1, s. from the past is
relevant again,
-~ parallel 1/0. BUT: distributed
1l :- large_work_a.
1 :- large_work_b. \£ Shared
memory
avoid incurring an overhead quh"e‘ff”res/
from fine-grained parallelism caching

23 [hitp://clip.dia.fi.upm.es/ " logalg/slides/PS/A par.pdf]



http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf

Logic programming in software engineering:
SOUL - symbiosis

symbiosis with base program languages

if ?c isCompilationUnit, € ordinaryterm
[7c types size > 1] «— symbiosis term

tototot

instance method method Iinstance

base program not reified as logic facts

changes are immediately reflected

query results easily perused by existing IDE’s

24



Logic programming in software engineering:

SOUL - symbiosis - demo

. Yo Yo SOUL Querybrowser

if = 7cisClassDeclaration, All'Results Debug . .
[?c getParent] equals:?parentl NextResuit ) (Basic mspect nice, bUf true power Of |09|C

Lookup in: | JavaEclipse

Evaluator | Evaluator

programming comes not only from

“ Next x Results

Variable View Ordering backtracking, but also from the
2 7parent “ Apply ) ole . .
1% ==st ability to unify with a user-

provided compound term to
quickly select objects one is
' interested in

fBrowser\ﬁewY Tree View Y Text View !

MethodCalledFromDifferentSites
Component
MPCompoundBox
Leaf3

Composite
SecondSecondInner
OnlyLoggingLeaf
AbstractBaseClass
MPAugmentedType
NullTest
FirstSecondIinner
MPFunctionPointer
Leaf4

lterationTest
MPFunctionObject
MPOutlineSubClass

L

a Composite.java

[

hold that thought
hmm .. strange:
the method’s name (a Java
Obiject) is unified with a
compound term?

LD



Logic programming in software engineering:
SOUL - symbiosis - demo

all subclasses of presentation.Component
should define a method acceptVisitor(ComponentVisitor)
that invokes System.out.printin(String) before
double dispatching to the argument

N
4
public class PrototypicallLeaf extends Component {
public void acceptVisitor(ComponentVisitor v) {
System.out.println("Prototypical.");
v.visitPrototypicallLeaf(this);

¥
¥

26



Logic programming in software engineering:
SOUL - symbiosis - demo

type isTypeWithFullyQualifiedName: ['presentation.Component],
?class inClassHierarchyOfType: ?type,

not(?class classDeclarationHasName: simpleName(['Composite)),
?class definesMethod: 7m,

7m methodDeclarationHasName: simpleName(['acceptVisitor]),
?m methodDeclarationHasParameters: nodelist(<?p>), yUk .. hot as
?p singleVariableDeclarationHasName: simpleName(?id), declarative as
?7m methodDeclarationHasBody: ?body, advertised!
7body equals: bIock(nodeLnst(<expressuonStatement( ?log), expessionStatement( 7dd)>)),
or(?so equals: qualifiedName(simpleName(['System]),simpleName(['outT)),

780 equals: fneldAccess(snmpleame([Syse)snmpleName([out’])))

°log equals: methodlnvocatnon("so 7. simpleName(['printin), nodeLust(<9string>)).
?7dd equals: methodIinvocation(simpleName(?id),?,? nodelList(<thisExpression([nil])>))

and | have to do this for all
implementation variants?
27



Logic programming in software engineering:
SOUL - code templates

Integrate concrete syntax of base program

1f jtStatement(?s) {
while(?iterator.hasNext()) {
2collection.add(?element) ;

}
s

jtExpression(?tterator){?collection.iterator()}

resolved by existential queries on control-flow graph

Is add(Object) ever invoked in the control-flow of a while-statement?

28



Logic programming in software

SOUL - code templates - demo

engineering:

e OO SOUL Querybrowser
it | itClassDeclaration(?c,controlflow) { AllResults ) " Debug )
class SumComponentVisitor { F—NextResult 3 {Basic lnspect)
7m = [?modList ?type visitLeaf1(?arg) { )
21; 782  Nextx Results )
W Variable View Ordering
i ?arg  Apply )
2 751
' 92 £ Clear )
’m N
?type
7modList
, — 7cC
Lookup in: | JavaEclipse [3" 153 solutions in 44 ms
AR AN ARAI AN
Evaluator | Evaluator :] " Configure )
7 )
f Browser \ﬁewY Tree View = Text View
SumComponentVisitor >> public visitLeaf1(Componer  |1.value sum=new Integer(sum.intValue() + I1.value);
new Integer(sum.intValue() + I1.value) Leafl I1=(Leafl)c1:
System.out System.out.printin(*A visitor is visiting a leaf1.”):

System.out.printin(“A visitor is visiting a leaf1.)
sum

(Leaf1)c

cl

sum.intValue() + 11.value

System.out.printin(“A visitor is visiting a leaf1.);

"A visitor is visiting a leaf1.”

sum.intValue()

super.visitLeaf1(c1);

super.visitLeaf1(c1)

Leaftl [1=(Leafl)c1:

c1

sum=new Integer(sum.intValue() + 11.value);
sum

sum
I1.value

sum.intValue() + I1.value

System.out

sum

sum.intValue()

c1

System.out.printin(“A visitor is visiting a leaf1.)
"A visitor is visiting a leaf1.”

sum=new Integer(sum.intValue() + I1.value)
(Leaf1)c1

new Integer(sum.intValue() + I1.value)




Logic programming in software engineering:
SOUL - code templates - demo

L)

&

ClassDeclaration(?class,?interpretation
it ( P R public class Super'LogLeaF extends OnlylLogginglLeaf

class 'Composite extends® presentation.Component { {
?modList ?type acceptVisitor(?t ?7p) { public void acceptVisitor(ComponentVisitor v) {
) . super.acceptVisitor(v);
System.out.printin(?string): v.visitSuperLoglLeaf(this);
?p.?m(this): ) ¥
}
}
} type isTypeWithFullyQualifiedName: ['presentation.ComponentT],

VS 2class inClassHierarchyOfType: ?type,
not(?class classDeclarationHasName: simpleName(['Composite)),
?class definesMethod: 7m,

?7m methodDeclarationHasName: simpleName(['acceptVisitorT),
?m methodDeclarationHasParameters: nodelist(<?p>),

7p singleVariableDeclarationHasName: simpleName(?id),

?7m methodDeclarationHasBody: 7body,

?body equals: block(nodeList(<expressionStatement(?log),expressionStatement(?dd)>)),
or(?so equals: qualifiedName(simpleName(['System),simpleName(['outT)),
750 equals: fieldAccess(simpleName(['System']),simpleName(['outT))),
?log equals: methodInvocation(?s0,? simpleName(['printin]),nodeList(<?string>)),
?7dd equals: methodinvocation(simpleName(?id),?,?7 nodelList(<thisExpression([nil])=))

JV



Logic programming in software engineering:
SOUL - code templates - demo

but still not in query results:

N/ N/
- =
public class MustAliasLeaf extends Component { public class MayAliasLeaF extends Component {
public void acceptVisitor(ComponentVisitor v) { public Object m(Object o) {
System.out.println("Must alias."); if(getInput() % 2 == @)
Component temp = this; return o;
v.visitMustAliasLeaf(temp); else
y } return new MayAliaslLeaf();
ks

public void acceptVisitor(ComponentVisitor v) {
System.out.println("May alias.");
v.visitMayAliasLeaf((MayAliasLeaf)m(this));

31



Logic programming in software engineering:

SO

UL - domain-specific unification

£
£

iInstance vs compound term

easily identify elements of interest

iInstance vs Qﬁ‘; instance
Incorporates static analyses: ensures query conciseness & correctness

semantic analysis
correct application of scoping rules, name resolution

points-to analysis
tolerance for syntactically differing expressions

if jtStatement(?s) {
can the value on which hasNext() is while(?iterator.hasNext ()) {

, , , 2collection.add(?element) ;
invoked alias the iterator of the }
collection to which add is invoked? },

jtExpression(?iterator){?collection.iterator()}

never, in at least one or in all possible executions
-> propagate this knowledge using logic of quantified truth

32



Logic programming in software engineering:
SOUL - domain-specific unification - demo

e NO SOUL Querybrowser
if | jtStatement(?s1) { return ?exp?}, € AnResuts )€ Debug )
jtStatement(?s2) { return 7exp:}, € Next Result ( Basic Inspect)
[751 ~~ 752] '
{ Nextx Results
Variable View Ordering
752 f Apply \
? —
bd £ Clear )
7exp i
Lookup in: | JavaEclipse ['5] 756 solutions in 9549 ms
Evaluator | Evaluator v ] { Configure *

f Browser ViewT Tree View | Text View |

return this.self().sum; A return o; 0
return arg1: T return (Integer)retrieved;

return indirectReturnOfArgument(o,delay - 1); return indirectReturnOfArgument(o,delay - 1);

return (Integer)indirectReturnOfArgument(sum, 14! | return (Integer)indirectReturnOfArgument(sum,1
return p1:
return p:
return;
return o.f;
return arg:
return p;
return result; -
return p;

return;

return p2;

return p2;
return p2; v

33



Logic programming in software engineering:
SOUL - domain-specific unification - demo

jtClassDeclaration(?class,?interpretation{
class 'Composite extends® presentation.Component {

?modList ?type acceptVisitor(?t 7p) {
System.out.printin(?string);

?7p.?7m(this);
}
}
}
4 ) Text Report
Tuples 1(1680 ms)

class -> (9 PrototypicalLeaf 0.9

class -> (9 MayAliasLeaf 0.36

class -> (9 SuperLoglLeaf 0.72

class -> (9 MustAliasLeaf 0.648

0.11

. )

34



