
Vrije Universiteit Brussel
Faculteit Wetenschappen

Departement Informatica en Toegepaste
Informatica

V
R

IJ
E

UNIVERSITEIT BRUSSE
L

S
C

IE
N

TIA VINCERE TENEBR
A

S

Incorporating Dynamic Analysis and
Approximate Reasoning in Declarative

Meta-Programming to Support Software
Re-engineering

Proefschrift ingediend met het oog op het behalen van de graad van Licentiaat in de
Informatica

Door: Coen De Roover
Promotor: Prof. Dr. Theo D’Hondt

Begeleider: Kris Gybels
Mei 2004

c© Vrije Universiteit Brussel, all rights reserved.

Abstract

Software re-engineering is a complex process in which a maintainer is confronted with
the challenging task of understanding the design of an existing application of which
the documentation is often non-existent or no longer up-to-date.

To support the software engineer in this precarious undertaking, many design recovery
tools based upon declarative meta-programming techniques have been proposed, but
most of them are only able to reason about a program’s structural architecture instead
of about the exhibited run-time behaviour. This document explores how behavioural
analysis can complement structural source code analysis in the detection of software
patterns in the broadest sense.

Furthermore, interesting software patterns often describe inherently vague concepts
which cannot be expressed efficiently in classical logic programming languages. Many
software patterns are in addition described by such overly idealised logic rules that
real-life variations on the implementation of these abstract patterns can no longer be
detected. In this dissertation, we will therefore also study the use of approximate rea-
soning techniques to overcome these common problems.

ii

Acknowledgements

I would like to take this opportunity to express my gratitude towards all the people
who supported me tremendously throughout the writing of this dissertation and with-
out whose help I would have never finished it:

Prof. Theo D’Hondt for promoting this thesis.

Kris Gybels who came up with the subject and guided me along every step through
implementation and writing to proofreading which must have consumed much of his
valuable time. The excellent advice and helpful comments always kept me on the right
track even when I didn’t longer believe I would be able to finish on time. I have also
very much enjoyed the various related discussions we had.

Wolfgang De Meuter and Roel Wuyts for their input during my initial presentation on
approximate reasoning techniques.

Johan Brichau and Andy Kellens for proofreading the first drafts.

The researchers at the Programming Technology Lab for enduring my colourful pre-
sentations.

The people from Infogroep for providing an abundance of tempting distractions.

My parents for their never-ending support and for providing the opportunity to obtain
a higher education at the excellent facilities of the Vrije Universiteit Brussel.

iv

Contents

1 Introduction 1
1.1 Thesis . 1
1.2 Context . 1
1.3 Motivation . 2
1.4 Validation . 4
1.5 Organisation of the Dissertation . 4

2 DMP for Software Re-engineering 5
2.1 Introduction . 5

2.1.1 Software Re-engineering . 5
2.1.2 Declarative Meta-Programming 6

2.1.2.1 Definitions . 6
2.1.2.2 Declarative paradigms 6

2.1.3 Dynamic and Static Program Analysis 7
2.2 Survey Of Existing Declarative Approaches9

2.2.1 Declarative Reasoning about the Structure of Object-Oriented
Systems . 9
2.2.1.1 Motivation . 9
2.2.1.2 Approach . 10
2.2.1.3 Source Model . 10
2.2.1.4 Smalltalk Open Unification Language11
2.2.1.5 LiCoR: a Library for Code Reasoning12
2.2.1.6 Evaluation . 14

2.2.2 A Query-Based Approach to Recovering Behavioural Design
Views . 15
2.2.2.1 Motivation . 15
2.2.2.2 Approach . 16
2.2.2.3 Source Model . 16
2.2.2.4 Concept View Recovery18
2.2.2.5 Collaboration View Recovery19
2.2.2.6 Evaluation . 21

2.2.3 Using Design Patterns and Constraints to Automate the Detec-
tion and Correction of Inter-class Design Defects22
2.2.3.1 Motivation . 22
2.2.3.2 Approach . 22
2.2.3.3 Source Model . 23
2.2.3.4 Declarative Framework26
2.2.3.5 Transformation Rules27

v

CONTENTS vi

2.2.3.6 Evaluation . 27
2.3 Conclusions .29

3 Approximate Reasoning 30
3.1 Introduction . 30

3.1.1 Approximate Reasoning .30
3.1.2 Uncertainty and Vagueness30

3.2 Fuzzy Sets and Logic .32
3.2.1 A Generalised Characteristic Function32

3.2.1.1 Fuzzy Extension32
3.2.1.2 Assigning Membership Degrees33
3.2.1.3 Common Membership Functions33
3.2.1.4 Common Vocabulary35

3.2.2 Set-Theoretic and Logical Operations36
3.2.2.1 Fuzzy Extensions of Conventional Set Operations .37
3.2.2.2 Logical Algebra with Triangular Norms and Co-norms38
3.2.2.3 Implication Operators40
3.2.2.4 Deductive Systems of Many-Valued Logics41
3.2.2.5 Fuzzy Set Product and Fuzzy Relational Composition42
3.2.2.6 Linguistic Hedges 42

3.2.3 Fuzzy Process Control .43
3.2.3.1 Process Control44
3.2.3.2 Fuzzy Control Reasoning System44
3.2.3.3 Inference for Approximate Reasoning45
3.2.3.4 Combining Individual Rule Results45

3.3 Fuzzy Logic Programming .46
3.3.1 Fuzzy Logic Programs .46

3.3.1.1 Syntax . 46
3.3.1.2 Model Semantics47
3.3.1.3 Fix-point Semantics48
3.3.1.4 Operational Semantics48

3.3.2 Similarity-Based Unification 49
3.3.2.1 Classical Unification 49
3.3.2.2 Weak Unification 50
3.3.2.3 Fuzzy Unification Based on Edit-Distance50
3.3.2.4 Alternative Fuzzy Unification Methods52

3.3.3 A Mini-Survey of Fuzzy Logic Programming Systems54
3.3.3.1 Fuzzy Ciao Prolog54
3.3.3.2 More Conventional Systems and Their Extensions .55

3.4 Conclusion .56

4 Extending SOUL’s Declarative Framework 57
4.1 Library for Dynamic Program Analysis57

4.1.1 Logic layer . 57
4.1.2 Representational Layer .57

4.1.2.1 Source Model . 58
4.1.2.2 Meta-Model . 60
4.1.2.3 Reifying the Source Model61
4.1.2.4 Simple Queries over the Representational Layer . .64

4.1.3 Basic Layer . 68

CONTENTS vii

4.1.3.1 Object Instantiation68
4.1.3.2 Object State Tracking Using Variable Assignments .69
4.1.3.3 Binary Class Relationships70

4.1.4 Design layer .71
4.2 Declarative Language for Approximate Reasoning71
4.3 Conclusion .76

5 Supporting Software Re-engineering 77
5.1 Idealisation of Pattern Detection Rules77

5.1.1 Static Detection of the Visitor Design Pattern79
5.1.2 Dynamic Detection of the Visitor Design Pattern80
5.1.3 Using Approximation in Overly Idealised Rules83

5.2 Expressing Vague Software Patterns86
5.2.1 Detecting Bad Smells .86

5.3 Overcoming Small Discrepancies .89
5.3.1 Detecting the Visitor Design Pattern89
5.3.2 Detecting Accessor Methods90

5.4 Other Applications of Approximate Reasoning91
5.4.1 Weighting Different Heuristics 91

5.4.1.1 Combining Static and Dynamic Information91
5.5 Conclusion .93

6 Conclusions 94
6.1 Summary .94
6.2 Conclusions .95
6.3 Future Work . 98

A Extracting Run-time Events 100
A.1 Method Wrappers .100
A.2 Aspect-Oriented Programming .101
A.3 Parse Tree Rewriting .102

A.3.1 Description .102
A.3.2 Selecting the Appropriate Compiler103
A.3.3 Rewriting the Parse Trees104

B Implementation of Declarative Object State Tracking 105

C Example Execution Trace 107

Bibliography 109

List of Figures

2.1 Example sequence diagram and corresponding run-time events17
2.2 Definition of a perspective .19
2.3 Example concept view .20
2.4 Overview of the classes in the Pattern Description Language meta-model.23
2.5 Prolog predicates used to describe execution events in Caffeine25
2.6 Interaction with the PTIDJ tool .27

3.1 Plot of the open right shoulder membership functionΓ(x,2,6) 34
3.2 Plot of the open left shoulder membership functionL(x,2,6) 35
3.3 Plot of the triangular membership function∆(x,2,4,6) 36
3.4 Plot of the trapezoidal membership functionΠ(x,0,2,4,6) 37

4.1 Example of a source model represented as a sequence diagram60
4.2 UML diagram of the run-time events class hierarchy61
4.3 Schematic representation of the ad-hoc analysis process.64
4.4 Double dispatching sequence diagram65

5.1 The architecture of the Visitor Design Pattern [GHJV94].78
5.2 The sequence diagram of the Visitor design pattern [GHJV94].79
5.3 An annotated sequence diagram demonstrating the recursive nature of

the Visitor design pattern .81
5.4 Example of a complete visitation on a composite tree82
5.5 Example of an incomplete visitation on a composite tree84

A.1 A method wrapper installed on theOrderedCollection>>removeFirst
method [BFJR98]. .101

viii

Chapter 1

Introduction

1.1 Thesis

In this dissertation, we will support two claims. First of all, the application of declara-
tive meta-programming to the detection of software patterns which are inherently vague
to describe or expressed in an overly idealised manner requires appropriate language
support for approximation by the declarative technique that is applied.

Furthermore, behavioural information obtained through a dynamic analysis of a pro-
gram’s execution complements structural information obtained through a static analysis
of a program’s source code. Each specific analysis has its own benefits and deficits, but
combined they provide a wealth of information which allows more complex patterns to
be expressed that are of use in the entire software re-engineering process.

1.2 Context

The research context for this work is situated in the domain of software re-engineering
which covers the analysis of existing applications in order to recover a lost design from
existing source code or locate deficits in its implementation. After the initial design
recovery and deficit identification phase, the program maintainer performs source code
refactorings which transform the application to an equally functional state where bugs
have been resolved and the system’s design has been improved. An application often
endures several iterations of the re-engineering process.

Automatic detection of well-known software patterns for which a common vocabulary
has been developed by the software engineering community, can significantly improve
a maintainer’s understanding of the application under investigation:

• Design patterns [GHJV94] are prototypical examples of software patterns de-
scribing elegant architectural building blocks which often recur in proven soft-
ware designs.

• Tools supporting software pattern detection can also be employed in the verifi-
cation and enforcement of minimalistic software patterns capturing an organisa-
tion’s programming style and conventions.

1

CHAPTER 1. INTRODUCTION 2

• The complexity of the identification phase of the software re-engineering process
can be greatly reduced by the automatic detection of software patterns describing
proven indicators of suboptimal design and bad implementation practices also
known as “bad smells” [FBB+99].

• Behavioural collaborations and interactions through messages sent between in-
stances are, together with the classification of the UML binary class relationships
based on object lifetime and exclusiveness properties, examples of software pat-
terns that go beyond syntactical properties of the system under investigation to
improve a maintainer’s understanding of its run-time properties.

Software maintainers often want to define additional software patterns to describe and
verify particular aspects of the mental model they individually developed of the appli-
cation’s inner workings. Declarative meta-programming, in which one writes programs
reasoning about other programs using a declarative programming language, allows a
flexible specification of various software patterns in a powerful domain-specific lan-
guage.

1.3 Motivation

There are however two problems with current declarative meta-programming approaches
to software re-engineering. First of all most tools are limited to software patterns de-
scribing structural properties of an application’s source code while many interesting
patterns describe the run-time interactions between instances. A second problem com-
prises the use of crisp all-or-nothing declarative reasoning schemes while humans em-
ploy a much more forgiving way of thinking as evidenced by the vague classification
boundaries exhibited by most software patterns.

We will begin our discussion with the kind of problems for which the solution we pro-
pose comprises introducing behavioural information obtained through dynamic analy-
sis in the software re-engineering process.

Inability to Capture Behavioural Aspects The use of static information implies that
only the structural aspect of a software pattern can be expressed. This is fine
for patterns that are very architecture-centric and thus can be easily described in
terms of class hierarchies and methods. However, it is much harder to express
a programming pattern that primarily describes how its entities collaborate with
each other.

Patterns are Strongly Tied to Source CodeWhen exclusively relying on a static source
code analysis, declarative rules can often only find one particular implementa-
tion of a pattern. Additional rules will have to be defined for other common
implementations of the same pattern. This is particularly clear when expressing
the “accessor method” software pattern which verifies whether a class accesses
its instance variables only through accessor methods. In addition to simply re-
turning the variable’s value, there are getting method implementations which
incorporate lazy initialisation of the accessed variable. While static rules must
explicitly handle multiple implementation possibilities, dynamic rules could sim-
ply check whether the getting method returned the value of the instance variable
it was supposed to wrap.

CHAPTER 1. INTRODUCTION 3

Control and Data Flow Information is Difficult to Obtain Due to the nature of static
source code analysis some information is difficult to obtain. This includes life-
time and exclusiveness properties of instances encountered during a program’s
execution. Polymorphism, late binding and inheritance in object-oriented lan-
guages make it even difficult to predict the actual method that will be invoked
following a message send.

As dynamic analysis techniques reason about execution traces of an application, their
most notable downside can be quickly identified. The easily obtained control and data
flow information is only correct with respect to one particular execution history. Static
analysis techniques on the other hand provide incomplete information that is correct for
every execution of the program. A more detailed and balanced overview of the benefits
and disadvantages of both analysis techniques is presented in section 2.1.3.

The problems we describe below are shared by all declarative meta-programming ap-
proaches whether they incorporate run-time information or not. Although these prob-
lems can be overcome by clever engineering of the declarative rules with flexibility in
mind, it is in the interest of clarity that rules are kept as succinct and expressive as pos-
sible. Therefore, support for approximate reasoning is needed in the base declarative
programming language. After all, domain specific languages need to be tailored to the
domain in which they are applied.

Vague conceptsIt can be verified that many software patterns expressed in a declar-
ative meta-programming language describe inherently vague concepts Typical
examples of vague software patterns are the aforementioned bad smells such as
“too many instance variables”or “too many parameters”where classification
boundaries are vague: when the user sets a boundary limit of 10 variables, he
will likely consider a class with 9 instance variables almost as bad as a class with
10 instance variables.

Overly idealised pattern descriptions Another frequently recurring problem is that
most rules describing software patterns are overly idealised. They work fine for
direct translations of the abstract models they describe, but often fail on real-life
concrete implementations of the same models.

Intolerance for small discrepanciesA related problem comprises tolerance for small
discrepancies between a wanted solution and the program facts at hand. If we are
searching for a method calledacceptVisitor: we should also tolerate method
selectors with small typing errors such asaccceptVisitor: or selectors that
are semantically equivalent such asvisitorAccept:.

Approximate reasoning also allows the discovery of software patterns using different
different heuristics that are each weighted by the certainty we have in it. In our ap-
proach where dynamic and static information can be combined, this feature allows us
to select the source of information that is most appropriate for solving the problem at
hand. For instance, when a rule needs to know when a class gets instantiated, it can
obtain this information from a dynamic and a static analysis source. A dynamic anal-
ysis can provide this information with high fidelity unless no instance of the class was
created in a particular program run. In that case, the static analysis can verify that there
are no instance creation methods sent to the class. Solutions to a pattern thus often
need to be weighted on a case-per-case basis.

CHAPTER 1. INTRODUCTION 4

1.4 Validation

We will validate our claim about the complementary relation between static and dy-
namic analysis in software re-engineering by implementing a library for reasoning
about a program’s behaviour which complements the existing library for structural
source code reasoning developed at the Programming Technology Laboratorium of the
Vrije Universiteit Brussel.

We have also implemented an extension of the base declarative meta-programming
language supporting approximation in rules and program facts. We will demonstrate
with an example of each of the commonly occurring problems in declarative meta-
programming how approximate reasoning provides a solid background to overcome
each problem. These examples represent only an initial exploration of the applicability
of approximate reasoning to support the software re-engineering process, but they are
encouraging nonetheless.

1.5 Organisation of the Dissertation

We will begin with a detailed overview of the background information on each of the
two pillars of our approach.

Declarative meta-programming and its application in static and dynamic software anal-
ysis is discussed in chapter 2 together with recent developments in software re-engineering
approaches incorporating this technique.

Chapter 3 consists of theoretical background on modelling vague concepts and of an
overview of existing approximate reasoning techniques.

In chapter 4, we will describe how we incorporated dynamic analysis and approximate
reasoning into SOUL, an existing tool for program reasoning based on structural source
code analysis.

The benefits in a software re-engineering setting of our new dynamic analysis model
together with our new logic programming language supporting approximate reasoning,
will be detailed in chapter 5.

Chapter 6 contains the conclusions of our work.

Chapter 2

Declarative Meta-Programming
Approaches to Software
Re-engineering

As we will investigate in this chapter, software re-engineering is a complicated process
in which humans can be assisted in each of the different steps it comprises by programs
capable of reasoning about other software systems.
We will start this discussion by detailing the software re-engineering process and con-
tinue our investigation with an overview of systems for automated re-engineering em-
ploying a declarative domain-specific programming language suitable for reasoning
about other programs.

2.1 Introduction

2.1.1 Software Re-engineering

We will first identify the different phases in the software re-engineering process in
which declarative meta-programming can be of help.

Software systems continue to evolve even after their shipment day. Bugs need to be
fixed and new functionality has to be introduced to cope with new or changed require-
ments. An extremely large amount of an application’s lifetime is dedicated to software
maintenance.

This immense maintenance task is an iterative process in which the maintainer is first
confronted with the challenging task of understanding a program’s behaviour and its
structure even when documentation is non-existent or no longer up-to-date.

The process in which the high-level design concepts of a software system are rediscov-
ered from source code and other low-level program artefacts is calleddesign recovery.
It goes beyond reverse engineering an application to study its components and their in-
teractions with the outside world. It is an inherently challenging task since the original
abstract concepts of the design are diffused throughout the implementation. Further-

5

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 6

more, it often involves massive and complex systems. Therefore it should come as no
surprise that many techniques have attempted to facilitate and automate this process.

When the maintainer has formed a mental model of the high-level design concepts by
abstracting away from implementation details and as such has formed a basic under-
standing of the program, he still has to identify the locations in the source code which
have to be modified. This phase centres around the detection ofdesign defects.

It is not until this point that relatively safe modifications to the source code can be
applied. These modifications ideallytransforma system from one working state to an-
other while introducing new functionality or fixing existing shortcomings.

2.1.2 Declarative Meta-Programming

We will now discuss the concepts involved in declarative meta-programming and the
various declarative programming paradigms that can be used to reason about other
programs.

2.1.2.1 Definitions

Meta-Programming Meta-programsare regular applications able to manipulate and
reason about other programs. Examples of such programs are compilers, pro-
gramming style checkers and tools that extract design information from an exist-
ing applications.

Meta-programmingthus involves the implementation of said programs. As al-
ways, more expressive domain-specific languages can be created to facilitate
this process with special language constructs and higher-level features. These
are calledmeta-programming languages.

Declarative Programming In classicalproceduralprogramming languages, program-
mers specify exactlyhow the solution to a problem is to be found in step-by-step
algorithmic descriptions.

In contrast,declarativeprogramming languages allow the problem itself to be
specified so programmers can concentrate onwhat the problem is. The pro-
gramming language will find a solution by itself, depending on the declarative
programming paradigm incorporated by the language.

Declarative Meta-Programming As declarative languages are highly expressive medi-
ums, they are particularly suited for meta-programming purposes in which one
usually has to reason about a fair amount of application date.

2.1.2.2 Declarative paradigms

The following is an overview of the declarative techniques used in the meta-programming
approaches to software re-engineering discussed in this chapter.

Logic programming In the logic programming paradigm, a query is considered a the-
orem of which a proof has to be found. A proof is constructed by logically infer-
encing new facts from the already available facts in the information base using

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 7

rules specified by the programmer. These rules are multi-directional in nature as
they define mathematical relations between variables: a single rule defining the
<-relation can be used to verify thata < b, but also to generate for instance all
a < 5 and even all 2< b.

More information about the prototypical implementation, Prolog, can be found
in [Fla94].

Constraint programming A constraint satisfaction problem (CSP) is defined by three
groups of entities:

• a set of variables

• a set of finite or infinite domains associated with each variable

• a set of constraints restricting the values variables can take on instanta-
neously

A solution to a CSP assigns each variable a value from its domain while respect-
ing the restrictions defined by the constraints. Constraint satisfaction solvers
often use logic programming languages to describe these constraints.

An introduction to programming with constraints can be found in [MS98]

Pattern matching Pattern matching languages aren’t exactly programming languages
as they aren’t even remotely Turing complete, but they can be used to describe
information very succinctly or to find recurring patterns in large data. Therefore,
this are also often used in meta-program contexts.

A well-known pattern matching language is the regular expressions language
[MY60].

2.1.3 Dynamic and Static Program Analysis

Tools can rely on static information, dynamic information or a combination of both to
aid a maintainer in the re-engineering process. In [Ric02], an overview of the problems
associated with each type of analysis is given.

Static analysis In a static program analysis, only information extracted from the pro-
gram’s source code is considered. This kind of information is best suited for the
retrieval of structural information like the basic object-oriented entities forming
the application’s architecture.

There are however drawbacks associated with this technique. First of all, cor-
rectly identifying collaborations between classes is hard as the receiver’s class
type determines exactly which method is invoked. Often, there are many pos-
sible candidates due to polymorphism and dynamic binding in object-oriented
programming. Inheritance poses another problem: parts of a method’s behaviour
may be defined in superclasses. This is even more serious in dynamically typed
languages (such as Smalltalk) where even the base type of methods and variables
is only known at run-time. Statically obtained information about the control flow
in an object-oriented system is thus bound to be incomplete.

The granularity of the obtained information restricts the types of reasoning that
are possible. We can distinguish information pertaining to classes, ancestor and
associative relations between classes, method names and full parse trees of the

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 8

statements in individual methods. It may be more difficult to generate code us-
ing only coarse-grained information. It is possible to use high-level UML-like
[Fow97] meta-models1 [AACGJ01], but also to rely only on the basic structural
object oriented entities like class, superclass and defined methods [Ric02]. Other
techniques incorporate entire parse trees in their source models [Wuy01].

Dynamic analysis In a dynamic analysis, information is obtained from program exe-
cution traces. This information is best suited to model an application’s behaviour
such as the interactions between class instances. This information can help in
understanding the relationship between an application’s source code and its run-
time behaviour.

The data obtained by dynamic analysis is always correct: the type of objects is
unambiguous and so is the identity of the method that is executed upon a certain
message invocation. It also provides information that is impossible to obtain
statically such as the number of class instances or the amount of times a method
was invoked.

When interpreting dynamically-obtained information, the maintainer should how-
ever always be aware of the fact that this information is only valid for one of
many different program executions. The control flow in an application might
change drastically when other user input is provided.

This problem can also be seen as a certain advantage over static analysis. Very
often, it is not necessary to know everything about the application at once. An
engineer rather wants to understand instead how the interaction between run-
time instances supports a particular functionality. Through careful selection of
the classes about which run-time information is to be gathered2 and by restrict-
ing a program’s execution to a well-defined scenario that must be analysed, one
can successfully focus the investigation on specific program parts. This doesn’t
necessarily imply that the maintainer already knows everything about the ap-
plication under investigation since, at the end of each iteration of the design
recovery phase, he is able to refine the mental model he formed about the inner
workings of the application by limiting his investigation to those parts that aren’t
clear yet.

When it is in contrast necessary to reason about the entire program’s run-time
behaviour, the relevance of the executed scenario can be verified with a code
coverage analysis to make sure that the invoked methods cover a minimal per-
centage of a program’s source code. Unit test programs (whose use is advocated
in Extreme Programming) of larger software frameworks define excellent sce-
nario’s for this purpose.

As with static analysis, the granularity of the source meta-model restricts the
possible software engineering uses of dynamic information. Fine-grained mod-
els [GDJ02] contain information about variable assignments, returned values and
object lifetime and can therefore be used to debug a program’s on the control flow
level. Coarse-grained models [Ric02] only contain method invocation informa-
tion and are better suited to reason about the higher-level collaborations in large
systems.

1In this context, a meta-model defines how the static information is modelled.
2In general, the chosen classes are altered on a byte code or source code level so that their execution can

be traced. This process is calledinstrumentation

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 9

Finally, there are mainly two variants of dynamic analysis. In the first one, the
application is executed entirely during which trace information is collected in
an execution trace history. When the program has finished, all events recorded
during its execution can be reasoned about. This form of analysis is calledpost-
mortemanalysis and is for instance used in [Ric02]. Its major drawback is the
enormous amount of information that is generated, especially when fine-grained
meta-models are used.

The other form of analysis isad-hocanalysis in which the reasoning process
steers the execution of the analysed program. The program is paused and control
is given to the analysing process when a particular execution event (such as a
method invocation) is encountered. The entire execution trace is never available.
Only the current event can be reasoned about, but future events can be requested.
This technique is used in [GDJ02].

2.2 Survey Of Existing Declarative Approaches

This section gives an overview of the existing techniques that can be used in the entire
reverse engineering process and especially focuses on declarative meta-programming
techniques which also incorporate dynamic information obtained from program execu-
tion traces.
We will start with a discussion of the on static information relying SOUL, followed by a
discussion of the work of Tamar Richner which is based solely on dynamic information.
We will end with the work of Gúeh́eneuc which combines both types of information.

2.2.1 Declarative Reasoning about the Structure of Object-Oriented
Systems

This section summarizes and discusses the logic meta-programming work of Roel
Wuyts, Kim Mens, Isabel Michiels, Theo D’Hondt and others performed at thePro-
gramming Laboratory of the Vrije Universiteit Brusselin Brussels.

It was one of the first works to introduce a logic language for meta-programming
purposes in the object-oriented programming paradigm. It provides meta-programs
written in SOUL the entire application’s source code to perform a static analysis on
which can then be used in all phases of the re-engineering process from pattern detec-
tion to source code generation. Interested readers may consult [DDVMW00, Wuy98,
MMW01, Wuy01] and [WD01].

2.2.1.1 Motivation

We will use SOUL in our program understanding setting for expressing logic rules
which describe the architecture of design patterns, but it was initially conceived to
keep co-evolving software artefacts such as design, implementation and documenta-
tion synchronised.

After the initial shipment of an application, the link between the artefacts describing
its architecture and the actual implementation often weakens (when modifications to
the source code aren’t reflected in the documentation) or even dissolves (when legacy

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 10

documentation is lost).

This makes it harder for maintainers to correctly understand the implications of a lo-
cal implementation change –will it not affect other vital parts of the system?– or to
correctly identify all parts in the source code that will have to be modified when a ma-
jor architectural change has been introduced. Furthermore, little tools exist to enforce
programming patterns (like a company’s coding conventions) throughout the entire
program in a consistent way.

In [Wuy98] the common source of these problem is identified to be the“incapability
to express high-level structural information in a computable medium that is used to
extract implementation elements”.

2.2.1.2 Approach

A system’s architecture is described at the meta-level using a logical programming
language called SOUL [WD01]. It can be applied in the software development process
by allowing users to search for code that matches user-defined programming patterns,
to specify other rules which can be used to detect violations of these patterns and to
generate code for a specific pattern. The proposed techniques can be used to keep
co-evolving software artefacts synchronised.

2.2.1.3 Source Model

Static information from full-fledged parse trees is used to model the system’s imple-
mentation. However, instead of having large logic repositories filled with facts mimick-
ing the application’s source code, thesymbiosisbetween the meta-model’s implemen-
tation language and the implementation language of the analysed source code –which
fully supportsreflection– enables the direct use of source code objects in the applica-
tion’s model.

a) Meta-Model Smalltalk parse trees arereified to the declarative meta-level by
mapping them to logical predicates (not facts) defined by the meta-model:

• class(?class): represents classes in source code

• superclass(?super, ?sub): states that ?superis the superclass of ?sub3

• instVar(?class, ?iv): represents instance variables in a class

• method(?class, ?m): represents a class’ methods whose parse trees are modelled
themselves using predicates representing literals, variables, assignments, return
statements, message sends and block statements

b) Extraction As mentioned already before, the source model isn’t explicitly stored
in the logic repository. Therefore, the constructs described by the meta-model aren’t
simple facts but implemented as logic rules which use SOUL’s symbiosis with Smalltalk
to reify source code entities on demand.

3Variables in SOUL are preceded by question marks

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 11

An example of such a rule is the predicateclass(?c) which, due to the multi-way direc-
tionality of logic languages, can be used to either obtain a list of classes in the system
or to verify whether a given class is present in the system:

class(?c) if
var(?class),
generate(?class, [SOULExplicitMLI current allClasses]).

class(?c) if
atom(?class),
[SOULExplicitMLI current isClass: ?class]).

This approach allows an analysis of a program’s implementation without keeping track
of an explicitly reified duplicate of the source code. Combined with the reflexive ca-
pabilities of the base language, it is possible to analyze every aspect of the Smalltalk
system.

The ability to execute arbitrary Smalltalk code is essential in the definition of these
predicates so this and other features of SOUL will be discussed in the following section.

2.2.1.4 Smalltalk Open Unification Language

A variant of Prolog, called SOUL, is used as the declarative meta language. This logic
programming language provides a symbiosis with the object-oriented Smalltalk which
allows arbitrary Smalltalk code to be executed within logic rules. As a result, a form of
symbiotic reflectionwhere both the meta-language and the base language (which can
be implemented in different programming paradigms) are able to analyze and alter the
other’s implementation is created.

The language construct providing this symbiosis is called thesymbiosis term, or in the
context of SOUL, thesmalltalk term. This logic construct allows the execution of arbi-
trary Smalltalk expressions –which may contain logic variables for parameterisation–
during a logic proof. Therefore, it is necessary to define a transformation between the
entities in each language.

To evaluate asmalltalk termin a logic rule written in SOUL, each logic variable used
in the term has to be transformed to a Smalltalk object. After this substitution, the
smalltalk termcan then be evaluated as a regular Smalltalk expression (actually, a block
closure) whose result will have to be wrapped in a logic entity again so it can be used
in a logic proof. Theclasspredicate defined in the previous section is an example of
the usage of thesmalltalk term.

As SOUL can be used to reason about any Smalltalk object, it can also reason about its
own implementation classes. This property is calledintrospection. However, since the
logic repository and the current set of logic variable bindings of a smalltalk term are
accessible during the evaluation, smalltalk terms can in addition influence their own
evaluation. This property is calledreflection.

Reflection allows an interpreter to extend its own implementation and as such is used
in SOUL to implement higher-order logic constructs like theassertpredicate which
adds a clause to the logic repository:

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 12

assert(?clause) if
[?repository addClause: ?clause]

2.2.1.5 LiCoR: a Library for Code Reasoning

SOUL’s library for code reasoning, called LiCoR, is organized as a layered set of rules
where each layer only uses the predicates defined in the layers below it. Four layers
can be identified:

Logic layer This layer defines the lowest-level logic programming constructs which
are normally provided by the implementation’s libraries. It is in the interest of
reflection that as many core functionality as possible is defined in the language
itself: predicates for arithmetic, list handling and repository control are thus de-
fined in this layer. Examples are thegreaterThan, groundandappendpredicates:

ground(?X) if
[?X isGround]

greaterOrEqual(?N,?M) if
comparable(?N,?M),
[?N >= ?M]

append(<>,?List,?List).
append(<?ElFirst|?RestFirst>,?Second,<?ElFirst|?Rest>) if

append(?RestFirst,?Second,?Rest)

Representational layer This layer defines the predicates used to reify the object-
oriented entities of the base-language to the logic meta-level. It contains defini-
tions for the predicates discussed in the section about the meta-model. Methods
are reified as a logic representation of their entire parse tree:

$method(?class,
?name,
arguments(?paramlist),
temporaries(?varlist),
statements(?stats))

The layer thus supports predicates for describing each base-level statement that
may occur in the source code such as literals, message sends and blocks.

Basic layer This level provides a level of abstraction over the low-level predicates of
the representational layer. It contains among others accessing predicates like
methodName, methodStatementsand predicates for common parse tree traver-
sals likereturnStatementsandclassesUsed.

implementedSelectors(?class,?selectors) if
findall(?selector,classImplements(?class,?selector),?selectors)

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 13

It also contains the definition of general predicates supporting code generation
of whichgenerateMethodInProtocolis the cornerstone. The ?quotedTermrepre-
sentation of a method’s parse tree may be retrieved using themethodSource(?methodParseTree,
?source)predicate.

generateMethodInProtocol(?quotedTerm, ?class, ?protocol) if
atom(?protocol),
existingClass(?class),
sound(?quotedTerm),
[(?class compile: ?quotedTerm sourceString classified: ?protocol) = nil]

Design layer The top-most layer is used to store the logic rules (created by the main-
tainer or already included with the system) describing programming patterns
such as coding conventions and design patterns. This application of the declara-
tive meta-programming language will be the next topic of discussion.

a) Declaratively Codifying Programming Patterns In general, the programming
patterns that are declaratively codified in the design layer support the software engi-
neering process in three distinct ways. This will be illustrated with examples4 using
theGetting Methodbest practice pattern [Bec96]:

How do you provide access to an instance variable?Provide a method
that returns the value of the variable. Give it the same name as the variable.

In each of the following use cases for a declaratively codified pattern, certain build-
ing blocks can be reused. In case of thegettingMethodpredicate this is true for the
gettingMethodStats< return(variable(?V)) >,?V) fact which states that a getting
method consists of a single statement returning a variable. To support more com-
plicated getting method implementations (which could for example use lazy initialisa-
tion), other basic method statements building blocks have to be defined.

Pattern detection The pattern rules can be used in a straightforward manner to check
whether some given classes comply with a pattern, but also –due to the multi-
directionality property of logic predicates – to search for pattern occurrences in
the source code.

The Getting Methodpattern detection rule below states that the method must
have the same name as the instance variable it is wrapping and that its statements
must match those defined by thegettingMethodStatsfact:

gettingMethod(?C,?M,?V) if
classImplementsMethodNamed(?C,?V,?M),
instVar(?C,?V),
gettingMethodStats(?Stats,?V),
methodStatements(?M,?Stats).

Pattern violation detection Pattern violations rules must be hand-coded which means
that a maintainer has to think of every possible way in which a pattern can be
violated. In the case of theGetting Methodbest practice pattern, this is the

4Taken from [MMW01]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 14

case when a class directly sends messages to an instance variable without using
accessor methods wrapping that variable. The rule that checks for this kind of
violation is given below:

accessingViolator(?C,?M,?V,?Msg) if
instVar(?C,?V),
method(?C,?M),
not(gettingMethod(?C,?M,?V)),
isSendTo(?C,?M,variable(?V),?Msg).

Pattern code generationThe pattern’s building blocks also support code generation
for programming patterns using the symbiosis with Smalltalk and the latter’s
reflexive powers to compile methods on the fly.

generateAccessorCode(?C,?V) if
instVar(?C,?V),
not(classImplements(?C,?V)),
gettingMethodStats(?Stats,?V),
generateMethod(method(?C,?V,<>,<>,?Stats)).

The rule first checks whether an instance variable with the given name exists in
the class definition and whether a method with that name exists not yet. It then
uses thegenerateMethodpredicate discussed in the previous section to compile
the new method using the source code provided by thegettingMethodStatsfact.

2.2.1.6 Evaluation

a) Use of Static And Dynamic Information The DMP techniques implemented
with SOUL rely only on static information. Also, they do not model an application’s
design, but instead use the actual source code of the system to reason about its imple-
mentation and especially about the structure of its source code.

As Smalltalk is a dynamically typed programming language, obtaining type infor-
mation for expressions is hard. Special typing rules are defined in the basic layer
which guess the type of an expression by looking for classes whose method dictio-
nary matches all messages invoked on the expression but these are hardly satisfac-
tory as many Smalltalk classes implement methods with the same selector such as
initialize, do: andaccept:.

b) Use of Logic Programming The techniques are implemented using a logic pro-
gramming language called SOUL. The author argues that logic programming lan-
guages offer distinct benefits over other techniques (pattern matching, for example)
used in reasoning about meta-information [Wuy01]:

• Logic programming languages have pattern matching abilities built-in which
makes them very suitable for finding specific nodes in abstract syntax trees.

• Predicates in logic programming languages describe relations between their ar-
guments. A solution will be found for omitted arguments due to the multi-
directionality of these relations.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 15

• Logic programming languages are Turing-complete and support many powerful
programming constructs like recursion. This in contrast to techniques which use
SQL.

c) Use of Language Symbiosis The symbiosis between the meta-level and base-
level language in which SOUL is implemented, allows both to reason and use entities
from the other. It also removes the need for a separate logic representation of the enti-
ties from an analysed program at the meta-level and allows a straightforward manipula-
tion of the program’s source code. This already sets soul apart from more conventional
techniques.

d) Use of Reflection Smalltalk’s reflective capabilities [FJ89] enable SOUL to rea-
son about any component in the entire system while a form of lightweight reflection
is used by SOUL itself to allow the logic repository and binding environment in the
evaluation ofsmalltalk termsto be modified from within SOUL predicates.
SOUL can be extended naturally using this reflective capability as is shown in the im-
plementation of its higher-order predicates.

e) Scalability Industrial experiments were conducted to check whether the used
techniques scale up well. From these experiments it was concluded that querying
the source code using a logic meta-programming language is feasible although some
queries might take longer than an hour. The performance can however be improved
since the system was originally designed with extensibility in the head.

2.2.2 A Query-Based Approach to Recovering Behavioural Design
Views

This section summarises and discusses the recent reverse engineering-oriented work
of Tamar Richner-Hanna and Stéphane Ducasse of theInstitut für Informatik IAM in
Bern.
It is one of the first works demonstrating the feasibility of declarative event analysis
from program execution traces. It uses dynamic information to aid in the first phase of
the re-engineering process: understanding a program’s behaviour. Interested readers
may consult [RDW98, RD99] and [RD01] for further reading.

2.2.2.1 Motivation

Most of the preexisting tools that rely on dynamic information for the recovery of be-
havioural models only offer verbose, fine-grained views of information gathered during
a program’s execution. Most of them simply plot on a time line all the message invo-
cations that occurred during the application’s lifetime which often results in massive
sequence diagrams that are hard to interpret.
In order to present the large amounts of low-level information in a more abstract form
that is of help to programmers trying to understand a program’s behaviour, these ap-
proaches primarily have to rely on visualisation, navigation and clustering techniques.
Most tools furthermore only offer a fixed set of views. However, not all kinds of views
are equally apt at aiding in specific phases of the program understanding process. Com-
pact high-level views, for instance, aid in forming general concepts about a program’s

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 16

run-time behaviour at large. Focused low-level views, on the other hand, are invaluable
for understanding object interactions supporting specific program functionality.
In order to overcome the above problems, a new approach is proposed which enables
maintainers to tailor the generated views to the software re-engineering task at hand.

2.2.2.2 Approach

The proposed approach is query-based: in order to understand a program, the devel-
oper iteratively launches queries about the program’s behaviour and by interpreting the
obtained results either refines or reviews its conceptions.
The following definitions play a vital role in this iterative process:

Source model The dynamic and static information base about the software system that
is being reverse engineered.

Perspective A declarative specification of the aspects from the source model the en-
gineer is interested in. Engineers query the source model using perspectives to
obtain a new view.

View A view of the source model consists of those elements which meet the declar-
ative specification of a given perspectives. A view represents the response to a
query.

The analogy with photographing a scene is used to explain the relationship between
perspective and view: the reverse engineering tool can be thought of as a camera, a
perspective as a camera lens, a view as a photograph and a source model as the scene
that is to be photographed. Different lenses can be mounted to obtain different effects.

2.2.2.3 Source Model

The source model contains both static and dynamic information about the program’s
behaviour. This data is modelled using the constructs provided by the meta-model and
saved as Prolog [Fla94] predicates defined in the representation layer of the declarative
framework.

a) Meta-Model

Static Meta-Model Static information is modelled using the FAMIX [TDDN00] meta-
model. It provides a language-independent extensible representation of object-
oriented code and is used by a variety of refactoring tools. There is also plug-in
support for language-specific extensions. As a sufficient base for testing and
performing refactorings is provided, the meta-model is quite rich: classes, meth-
ods, attributes, inheritance, method invocation and attribute access candidates5

are all supported. Only the basic object-oriented concepts ofclass, superclass
andmethodare however used in the experiments, so a much simpler meta-model
probably suffices.

Dynamic Meta-Model A program execution is modelled as a list of run-time events
which are numbered according tosequence order (SN)and stack level (SL).
There are two event types: method invocation events and method exit events.

5One-to-many relationships due to polymorphism

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 17

Figure 2.1: Example sequence diagram and corresponding run-time events

As shown in Table 2.1, method exits aren’t represented as facts in the represen-
tational layer of the declarative framework since they can be deduced from the
stack level (SL).

send(SequenceN, StackLevel, Class1, Instance1, Class2, Instance2, Method)an
instance Instance1 of Class1 invokes Method on instance Instance2 of Class2.
SequenceN is the sequence number of the event, and StackLevel is the stack level
of the method call.

indirectsend(SequenceN, StackLevel, Class1, Instance1, Method1, Class2, Instance2,Method2)
an instance Instance1 of Class1 sends the message Method1, which is unob-
served. The next observed invocation is the execution of method Method2 on
instance Instance2 of Class2.

Table 2.1: Dynamic meta-model entities as predicates

Figure 2.16 shows an example sequence of method invocation events.

We must instrument the source code of interesting methods so that their exe-
cution will be observed and logged in the execution trace. A call to an unin-
strumented method will not be observed. As the used instrumentation method
[BFJR98] allows selective instrumentation of single methods, this implies that
there are two kinds of send events: direct sends and indirect sends. A direct send
event occurs when an instrumented method is invoked by another instrumented
method while an indirect send event occurs when an instrumented method is
invoked by an uninstrumented method.

6Taken from [Ric02]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 18

b) Extraction Both static and dynamic information is stored as Prolog [Fla94]
facts. Static information is obtained by a static analysis of the program’s source code
using the tools provided by the FAMIX [TDDN00] meta-model, while dynamic infor-
mation is extracted by instrumenting the interesting methods using the Method Wrap-
pers technique discussed in [BFJR98] and running a typical scenario to obtain an exe-
cution trace.

2.2.2.4 Concept View Recovery

The following definition is given [Ric02]:

Concept views present the user with a view of the software as a set of com-
ponents and connectors. The semantics of the components and the connec-
tors are defined by the engineer: components are created by grouping to-
gether static elements of the software, such as classes or methods; connec-
tors are defined by expressing a dynamic relationship between these static
elements, such as invocation or creation relationships. Concept views thus
accommodate a range of different views.

a) The Declarative Framework The declarative framework, supporting the defi-
nition of perspectives, is organised as a layered structure where each layer makes use
of the layers below it like in [Wuy01]. The following layers can be identified:

Representation layer This layer consists of the static and dynamic information gath-
ered about the program and is modelled after the source meta-model. It corre-
sponds to a declarative description of the source model as Prolog facts.

Base layer Rules making use of the dynamic and static information provided by the
representation layer are defined in this layer. They can be roughly divided into
two categories:

• rules giving semantics to the connectors in a view by defining a relation-
ship between two source model entities: inheritance relationships, method
invocations, . . .

• rules clustering source model entities into components: class categories,
. . .

Auxiliary layer The auxiliary layer contains all rules defined by the user who is it-
eratively trying to obtain a view that answers his question. It may contain
application-specific predicates (a clustering predicate which groups all classes
within a certain class category, for example) and general reusable predicates (like
design pattern[GHJV94] detection rules).

Perspective layer In this layer the predicates required for creating concept views are
defined. Although querying the source model with the above predicates may
already reveal some interesting information, a more global understanding of the
system can be obtained by interpreting these high-level views.

A view V is a set of componentsC and connectorsRcorresponding to a directed
graph. There will be a directed edge from componentC1 to componentC2 if there
is at least one elemente1 in C1 and one elemente2 in C2 for which a relationship
r holds.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 19

Prolog is used to declaratively specify the predicateC which induces a parti-
tioning of the source model and to specify the binary relationshipr which needs
to hold between two source elements in order for an edge to be drawn between
the components each element is assigned to. These two predicates completely
describe the perspective through which the developer wants to view the source
model.

Views can then be shown by using the second-order predicatecreateView7.

For understanding the invocations between class categories in the HotDraw[Joh92a]
[Joh92b] framework, a view8 can be created by invokingcreateView(invokesClass,
allInCategory). The perspective is then defined as show in Figure 2.2.

Figure 2.2: Definition of a perspective

The resultant view is shown in Figure 2.3. Each node in the graph corresponds
to a HotDraw class category and each directed edge fromA to B means that at
least one instance of a class in category inA invokes a method on an instance of
a class in categoryB.

b) Implementation The above approach is implemented in a Tool called “Gaudi”
which uses Prolog for declarative reasoning and DOT (a graph layout tool part of the
open source Graphviz project) for displaying the calculated views.

2.2.2.5 Collaboration View Recovery

Since in this technique the source model is directly used and collaborations within it are
discovered by pattern matching, little logic reasoning is performed so we will describe
it only briefly.
The following definition is given [Ric02]:

Such a view presents the dynamic information as a collection of class col-
laborations. The goal here is to understand how instances collaborate at
runtime to carry out a certain functionality by abstracting from similar ex-
ecution sequences to a collaboration. These abstractions are created by
applying pattern matching to the execution trace the role of the engineer
here is to specify what he or she considers to be similarity in execution se-
quences by modulating the pattern matching criteria. This gives semantics
to the notion of collaboration.

7 Different predicates are provided for the creation of labelled views, ordered views, . . .
8Taken from [RD99]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 20

Figure 2.3: Example concept view

A developer searches for collaborations in a program’s execution trace by modulat-
ing the pattern matching parameters of the tool. Each method invocation event (which
records the basic information about the sender, receiver and method name) in the exe-
cution trace gives rise to a sequence of method invocations from the beginning of the
invocation to its final return. These call trees are calledcollaboration instances.
Searching forcollaboration patternsboils down to a search for equivalent collaboration
instances. These patterns can be seen as an approximation of the high-level design
concept of collaboration while the methods involved in such a collaboration pattern
correspond, to a degree, to the high-level design concept of a role.
A developer can query the system for particular collaborations by using the multi-way9

predicate:sendInCollab(Sender, Receiver, Method, Collabwhich holds when a collab-
oration instance in the collaboration patternCollab invokesMethodon an instance of
Receiver.
A graphical front-end is provided for this query in the form of a tool which also al-
lows for an collaboration instance to be displayed as an interaction diagram using the
“Interaction diagramming-tool” from [BFJR98].

a) Pattern matching Pattern matching settings determine how the system abstracts
from acollaboration instanceto acollaboration patternand can thus determine what
collaboration instancesare considered similar enough to be grouped together intocol-
laboration patterns.
Three modulation options are offered:

Information about an event The following matching options can be chosen for the
information conveyed by a single event:

• sender: ignore, match on object identity, match on sender class

9Meaning that a solution will be found for uninstantiated variables in the query

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 21

• receiver: ignore, match on object identity, match on receiver class, match
on name of class defining method

• invoked method: ignore, match on method name, match on method cate-
gory name

Events to excludeEvents can be excluded from the trace whenever their depth of in-
vocation with respect to the entire execution trace or with respect to the first
invoked method of the collaboration pattern are above a given limit. Self sends
–often of little importance– can be ignored too.

Structure of the collaboration instance It is possible to ignore the ordering and nest-
ing of collaboration instancesby treating them as sets of events instead of trees.

Richner concludes that the best results are obtained when the execution trace is treated
as a set since matching on tree structure appears to be too restrictive for design recovery.
The most useful modulation parameters are the maximum invocation depth and single
event information which allows for polymorphism likes the class defining a method.

b) Implementation The pattern matching is based upon hashing: the call tree is
traversed bottom-up and each invocation event node in the tree is assigned a hash-
value.

2.2.2.6 Evaluation

In [Ric02], Richner concludes the following about concept view recovery:

Our work on concept view recovery showed that perspectives provide
for simple view specification, and that the logic programming framework
supportsextensible view specification. The case studies described showed
that the views obtained aresuccinct, and that they enable us to answer
manybehavioural questionsat both ahigh-levelof component relations
and alow-levelof object interactions. The case studies also demonstrated
an iterative recovery processguided by the developer.

a) Use of Static And Dynamic Information An experiment in concept view re-
covery was conducted in which the connectors of views only used static information
from the program’s source code. More specifically, the static invocation information
from the FAMIX model was used instead of the dynamically retrieved method invoca-
tion events. This resulted in cluttered views since the number of candidate receivers of
a message send is very large due to polymorphism.
Also, in general, very few static information is needed: only the basic object-oriented
concepts like class hierarchies and methods are needed to obtain meaningful high-level
views.

b) Use of Logic Programming This work has shown that logic programming can
be used to describe and reason about dynamic information and as such can form a basis
for design recovery tools.

c) Use of Pattern Matching Pattern matching is used to group together similar,
but not necessary identical, method invocations in order to detect a form of large-scale
collaborations.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 22

d) Scalability Generating views of the queries about the moderately-sized use cases
presented in [Ric02] all had response times well under 5 minutes.
Although the tool has not been tested on large systems, it is expected that it will scale
quite well under the assumption that the developer will never want to know everything
about the system, but rather only needs information about how a specific functionality
is supported by the program’s behaviour.
Focusing the investigation is thus extremely important and already begins in choosing
which methods to instrument and which to leave uninstrumented. A good choice can
be made by browsing through the source code. This focused program-slicing is inher-
ent to systems using dynamic analysis. The approach also handles large amounts of
information by letting the developer choose the size of the wanted view of the source
model by specifying perspectives with a coarser component clustering.

2.2.3 Using Design Patterns and Constraints to Automate the De-
tection and Correction of Inter-class Design Defects

This section summarises and discusses the recent re-engineering-oriented work of Yann-
Gäel Gúeh́eneuc, Herv́e Albin-Amiot, Rémi Douence and Narendra Jussien of the
École des Mines de Nantes.
The work relies on a combination of no less than 3 declarative meta-programming
paradigms and aspires to assist in all phases of the re-engineering process. It combines
the use of coarse-grained static information with a dynamic analysis of binary class
relationships.
The interested reader can consult [GDJ02, GJ01, Gué02, GAA01, AACGJ01] and
[Gué03] for further reading.

2.2.3.1 Motivation

Design patterns can not only be used to describe the architecture of (legacy) applica-
tions, but also to detect and modify parts of the implementation that differ slightly from
these well-known micro-architectures. As distorted versions may be indications of a
poor implementation or the unfitness for the given problem, the authors make a case
for the relationship between design patterns and design defects.

2.2.3.2 Approach

This work tries to aid in the entire re-engineering process by applying various declar-
ative meta-programming techniques. A meta-model is proposed in which design pat-
terns and program source code can be formally described. In order to help in rediscov-
ering a program’s architectural design, these models can be visualised. A constraint
satisfaction problem (CSP), whose domain covers the application’s architecture and
whose constraints correspond to the entities in a given pattern and the relationships be-
tween them, is formulated. The solution to this problem is generated by an explanation-
based constraint solver indicating which constraints needed to be relaxed in order for
a solution to be found and thus identifies the shortcomings in the implementation. As
each relaxed constraint is related to a transformation rule, the respective source code
can then by transformed to better comply with the architectural design prescribed by
the pattern in order to improve its quality.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 23

Figure 2.4: Overview of the classes in the Pattern Description Language meta-model.

2.2.3.3 Source Model

The generic micro-architectures of the design patterns given in [GHJV94] address re-
occurring problems in object-oriented programs and do this in a manner independent
from possible application domains. The model describing the entities in the design
patterns’ architecture is called anabstract modelsince none of the classes, methods or
relationships have been applied to a specific problem yet. Models representing the ap-
plication’s architecture are calledconcrete modelsinstead. Both models are described
using the same set of constructs defined in the meta-model that is discussed in the next
section.

a) Meta-Model A fully reifyable meta-model called the Pattern Description Lan-
guage (PDL), is used to model the participants and their relations in a design pattern
or an application’s architecture as first-class Java entities which can be manipulated as
are ordinary classes.
In order to create a model defining the semantics of a design pattern, one has to in-
stantiate the classes provided by the meta-model. A partial overview of the available
classes is given in Figure 2.410.

Pattern Design patterns are instances of this class’ descendants. It keeps track of a
collection of entities, which correspond to the participants in the design pattern’s
description, and also provides general code generation and constraint formu-
lating services to its subclasses. As such, the meta-model uniformly handles
instantiation and detection.

PEntity Entities, which are either classes or interfaces, consist in turn ofPElement
instances.

PElement The PElement class represents collaborating instance variables, methods
and associations in the pattern.

10Taken from [GAA01]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 24

The following source code is an excerpt from an example given in [GAA01]. It declares
the Componentparticipant in theCompositedesign pattern. This declaration takes
place in the constructor of thePatternsubclass.

component = new PInterface("Component")
operation = new Pmethod("operation")
component.addPElement(operation)
this.addPEntity(component)

The abstract model of the design pattern is concretised to the application’s needs by in-
stantiating thePatternsubclass and assigning each pattern participant its corresponding
name in the application. This is handled by thePatternsBoxtool.

b) Extraction

Static analysis Static information is extracted with the now discontinued CFParse bi-
nary class file parser toolkit from IBM. Extracting architectural information from
the program’s binaries is possible due to the one-to-one relationship between the
JVM bytecodes and Java class definitions.

Dynamic analysis Maintainers using the PTIDJ (Pattern Trace Identification, Detec-
tion and Enhancement For Java) part of the re-engineering tool set can invoke
the Caffeine tool to query the system to check their conjectures about its run-
time behaviour. Example uses involve counting the number of times a specific
method invocation pattern is encountered and checking whether a particular class
is a singleton. Such queries are formulated in the logic programming language
Prolog.

Furthermore, dynamic information is automatically used in the verification of
the exact nature of binary class relations; an analysis often too costly or difficult
to perform statically since instance lifetime and exclusiveness are involved. A
composition relationship, for example, defines a subsumption constraint between
the lifetime of instances of the whole and instances of the part. Instances of the
part must also be exclusively contained by the whole alone.

Trace model A program’s execution is modelled with execution events –covering
both the control and data flow in the application – described by the Prolog
predicates shown in figure 2.511. The program’s data flow is registered by
thefieldAccess, fieldValueand the return value awaremethodExitevents.

Binary class relationship information obtained from the dynamic analysis
is added to the architecture’s model described by in the Pattern Description
Language.

In contrast to the work discussed in section 2.2.2, Caffeine does not perform
apost-mortem trace: it knows the current event and can request information
about possible future execution events, but doesn’t keep track of previously
encountered events.

11Taken from [GDJ02]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 25

Figure 2.5: Prolog predicates used to describe execution events in Caffeine

Implementation The Prolog engine JIProlog runs in a separate thread along-
side the application that is being traced. Using the Java platform Debug
Infrastructure (JDI), Prolog queries steer the program’s execution with the
nextEventpredicate which resumes the analysed program’s execution until
the next desired event is encountered.
Events are generated by wrapped entities in the instrumented code: return
values are replaced by calls to theCaffeineWrapper.methodReturnedValueWrapper
method which simply records and returns any given value while final-
izer calls to theSystem.exit(int)method are replaced by calls to theCaf-
feineWrapper.caffeineUniqueExitmethod.
Instrumentation is once again performed with the CFParse tool. Because
of the importance of correct lifetime information in the classification of bi-
nary class relationships, a separate thread is continuously making calls to
the Java garbage collector to make sure instances are destroyed from the
moment they are no longer needed in the application.

Usage In [Gué02], the following simple example illustrates the use of thenex-
tEventpredicate in counting the number of times a certain “startTest” method
is invoked:

query(N, M) :-
nextEvent([generateMethodEntryEvent], E),
E = methodEntry(_, startTest, _, _, _),
N1 is N + 1,
query(N1, M).

query(N, N).

main(N, M) :- query(N, M).
main(N, N).

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 26

The analysed program is allowed to continue until amethodEntryevent is
encountered whose method name is then required to be “startTest”. This
will increment the counter.

2.2.3.4 Declarative Framework

PaLM [JB00], an explanation-based constraint satisfaction problem (CSP) solver, is
used to solve a problem consisting of the following parts:

Variables Each problem has a set of variables associated which represent the object-
oriented entities in the design pattern’s abstract model.

Constraints A set of constraints is used to describe the relationships between the en-
tities in the design pattern.

Domains The domain of each variable covers the entities in the application’s concrete
model.

The problem itself is described in the high-level CSP Claire [CL96] programming lan-
guage.

A solution to this problem identifies in a program’s source code architectural entities
identical or similar to the micro-architecture put forth by a design pattern. Distorted
solutions to the problem identify source code entities whose relationships only satisfy
a subset from the problem constraints. The minimal subset of constraints to which
an architecture must adhere is determined either by the user or by the weights associ-
ated with each constraint. Unsatisfied constraints are pointers for design defects which
should be remedied.

The built-in constraints govern relationships ranging from inheritance (StrictInheri-
tanceConstraint A< B, stating that classA must be the superclass of classB), over in-
vocation knowledge (RelatedClassesConstraint A.B stating classA invokes a method
of classB) to instance variable types (PropertyTypeConstraint B: A. f = B stating that
the field f in class A must be of type B).

In [GAA01], a CSP definition for the Composite design pattern is given, of which the
following declaration of the problem’s variables is an extract:

[problemForCompositePattern() : PalmEnumProblem ->
...
let pb := makePalmEnumProblem("Composite Pattern",

length(listC),
length(listC)),

leavesTypes := makePtidejIntVar(pb, "LeavesType", ...
leaves := makePtidejIntVar(pb, "Leave", ...
composites := makePtidejIntVar(pb, "Composite", ...
components := makePtidejIntVar(pb, "Component", ...

A new problem is declared whose domain is the number of entities in the program ar-
chitecture (length(listC)) since classes are enumerated. This is immediately followed
by the declaration of the variables representing the three entities in the design pattern:
Leaf, Composite, Component.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 27

Figure 2.6: Interaction with the PTIDJ tool

A number of constraints are then posed to the problem. Amongst others is theStrict-
InheritanceConstrainton the composite and component variables to which a weight of
50 is attached:

post(pb,
makeStrictInheritanceConstraint("Composite,Component |

javaXL.XClass c1,
javaXL.XClass c2 |
c1.setSuperclass(c2.getName());",

composites, components),
50)

JavaXL [AA01] transformation rules are associated along with each constraint to cor-
rect the source code of the classes that failed to comply.

2.2.3.5 Transformation Rules

JavaXL or Java Extended Language [AA01], a source-to-source Java transformation
engine, takes care of the source code modifications suggested by the explanations pro-
vided by a distorted CSP solution.
Figure 2.612 shows the interactions with the graphical front-end to the tool set with on
the left the original application’s architecture. In the center a solution to the Composite
problem with a 50% compliance is shown together with the proposed transformation
rules. The right side of the figure presents the application’s architecture when the pro-
posed refactoring is performed.
When making modifications to the code, JavaXL always tries to make only the most
necessary alterations so the original author’s coding conventions and comments are
preserved. If a single field’s visibility needs to be changed, no other modifications are
performed in contrast to most transformation tools which regenerate the entire pro-
gram’s code.

2.2.3.6 Evaluation

a) Use of Static and Dynamic Information As the design patterns are detected
mostly on the basis of static information, this approach is best for detecting design
patterns which rely heavily on the structural definition of their micro-architecture. The
behavioural aspect of design patterns is minimised which may limit this technique’s

12Taken from [GAA01]

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 28

generic applicability with respect to the detection of behavioural design patterns which
require statically undecidable information.

Dynamic information is however used for a detailed classification of binary class rela-
tionships based on lifetime and exclusiveness properties. A clear distinction is made
between associations, aggregations and compositions. This dynamic information is
incorporated in the application’s model, but isn’t really used in a stand-alone fashion.

b) Use of Logic Programming Though it is possible for a user to query a system’s
dynamic behaviour using the Caffeine tool, the possibilities are somewhat limited since
it is based on a ad-hoc trace instead of a post-mortem trace where information about
past events is available too. This kind of information may however not be required
in an investigation of isolated, local program behaviour. As such, letting Prolog steer
the execution of the analysed program can still bring other interesting information to
attention.

c) Use of Reifyable Meta-Models The Pattern Description Language provides a
unified way to code generation for and detection of design patterns. Using this meta-
model, design patterns can be formalised as first-class programming entities which can
further be manipulated. Models using PDL however only incorporate relationships
between structural entities such as classes and interfaces, not between instances at run-
time.

d) Use of Explanation-based Constraint Programming This approach has proven
that constraint satisfaction problems offer, in combination with an explanation-based
constraint solver, a user-friendly way of detecting even distorted versions of design
patterns.

The explanations of the system can be used to exactly pin-point the differences in the
source code and even to refactor design defects. The latter is in contrast to techniques
which use logic programming (like [Wuy01]) where all possible ways in which a pat-
tern may be violated have to be explicitly coded in advance in a separate logic rule.
Such (unmodified) systems cannot explain why there’s no solution to the logic rule
either.

e) Use of Transformation Rules It may not always be possible to associate a sim-
ple transformation rule to every constraint. Furthermore, small deviations from a de-
sign pattern may be due to domain-specific requirements. Therefore, the proposed
transformations may not always improve the actual source code.

f) Scalability In [GAA01] it is stated that mapping the meta-model over a large
application is a slow and fragile process which requires a large amount of memory.
The detection of the design patterns once the meta-model has been created is however
quite fast as constraint satisfaction problems are already in industrial use.

CHAPTER 2. DMP FOR SOFTWARE RE-ENGINEERING 29

2.3 Conclusions

This chapter introduced the software re-engineering process and compared the benefits
of dynamic and static analysis therein. It also provided an overview of the recent (circa
2000) declarative meta-programming approaches to software re-engineering. The pre-
sented works were selected because of their original solutions to the problems in the
field.

They differ on the use of dynamic versus static information, how this information is
extracted, the source meta-models describing this information and their granularity.
Another axis of comparison is the incorporated declarative programming paradigm,
and how well it deals with distorted or violated programming patterns, the amount of
language symbiosis offered, and the extensibility and expressiveness of the meta-level
and last but not least the phases of the re-engineering process that are supported.

Meta-programming applications developed in SOUL have proven that logic meta-programming
can indeed be used to reason about a program’s source code and by doing so aid in the
software engineering process. These applications are limited to statically obtained in-
formation and are primarily used to reason about an application’s architecture. SOUL
itself will serve as the basis for our experiments with dynamic program analysis as its
existing library for structural code reasoning can be used to check whether both are
complementary in a software re-engineering setting. The symbiosis with Smalltalk
will furthermore allow advanced reasoning and inspection of the run-time instances
involved in the execution of the program under investigation.

Richner’s work is very interesting as it is one of the first dynamic analysis tools that
go beyond mere visualisations of a program’s run-time behaviour and as such presents
a major contribution to the field of behavioural reverse engineering using declarative
languages and dynamic information.

Guéh́eneuc’s work is interesting from two perspectives. It is a largely statical approach
to software re-engineering, but can optionally incorporate dynamic information to re-
fine binary class relationships in UML diagrams. It also proposes explanation-based
constraint logic programming to overcome the semantic gap between implementations
in a specific domain and abstract models of design patterns. A fully automated process
will probably never be available, but the proposed techniques are however a major step
towards that end. We will tackle the same problems in our work using dynamic analysis
and approximate reasoning in contrast.

Chapter 3

Approximate Reasoning and
Fuzzy Logic Programming
Techniques

3.1 Introduction

3.1.1 Approximate Reasoning

As our world is pervaded with vague and uncertain information, incorporating some
form of human-like common sense reasoning is necessary for automated reasoning
systems. In real-life situations, formal logical deduction seems unable to draw intelli-
gent conclusions from axiomatically stored information. Indeed, it seems impossible
to model statements such as“Peter is possibly quite tall”in classical systems that only
allow crisp and absolutely correct information to be processed.

A more intuitive, but still well-defined and machine implementable, method for con-
ceptualising and solving real world problems is thus required. Instead of using a two-
valued logic where the only possible truth values are absolute truth and absolute false-
hood, it seems natural to develop a many-valued logic where propositions with varying
degrees of truth are allowed. This chapter will explore some of the various techniques
that emerged over the last decades to facilitate approximate reasoning under vague and
uncertain information.

3.1.2 Uncertainty and Vagueness

In general, a source of information gives rise to two kinds of uncertainty: the subject
of the information can be fuzzy or vague, and the statements about the subject can
be uncertain. The outcome of a throw with a die is uncertain, but it will always be a
precise number. On the other hand, outcomes might not always be sharply defined in
the real world: “sunny” and “clouded” are vague specifiers and the distinction between
these two concepts is blurry.

Uncertainty Uncertainty exists when we’re unable to determine whether a statement
is entirely true or false. This is most often due to a lack of information about

30

CHAPTER 3. APPROXIMATE REASONING 31

the state of the world. An example of an uncertain statement is “The next throw
of this die will be 4”. This can be considered as a crisp proposition which may
either be true or false, but we can only bet on which will be the case.

We might however be able to provide an estimate of the truth of such a statement
in a numerical form, or try to produce sensible conclusions even when we’re
lacking certain information.

In this chapter we will concentrate on the former approach in which we will try
to associate a probability or degree of belief in the statement that the sentence
is true. More formally, the probability of a crisp statementφ can be seen as the
truth-value of the vague statement “φ is probable”. [HG]

We will concentrate on techniques for modelling uncertainty other than the purely
probabilistic techniques since associating correct probabilities to facts modelling
a program’s source code and determining their interdependency doesn’t seem to
bring us closer to goal of introducing common-sense reasoning techniques.

VaguenessVagueness is introduced when a statement contains a gradual predicate
whose meaning is vague and depends on the context. In other words, we have an
imprecise statement under complete information. An example of such a predi-
cate is “warm”. Clearly, what a person perceives as warm weather in mid-winter
differs from warm weather in mid-summer and even then it is a very subjec-
tive and individual assessment of a given temperature. Therefore, a statement
involving vague predicates is often not entirely true nor false and thus uncertain.

As we will see, determining the truth degree of a statement “X is Y” can be approached
from two different mathematically sound viewpoints. On one hand, the value ofX can
be entirely known at which point we can determine the degree of truth by measuring
how well it matches the concept defined byY. On the other hand, the only information
available aboutX may be the fact that it isY. In that caseY can be considered as
constraining the actual possible values ofX.
Considering the certainty of a statement as a vague predicate in se is more close to the
first viewpoint while the second viewpoint lends itself to treating uncertainty more as in
a flexible probability-like theory coined possibility theory whose proponents insist that
uncertainty and vagueness need to be considered as completely different phenomena.

The concept of truth-functionality or truth-compositionality provides another dimen-
sion to catalogue fuzzy systems: can we determine the truth value of a formula by the
truth of its constituents?
It can be argued that uncertainty intuitively doesn’t behave compositional. Given a
formula ϕ with the same uncertainty as¬ϕ and a fixed functionF which determines
the uncertainty of a conjunction, the uncertainty T of a formulaϕ∧ϕ is T(ϕ∧ϕ) =
F(T(ϕ),T(ϕ)) = F(T(ϕ),T(¬ϕ)) = T(ϕ∧¬ϕ) under the assumption of composi-
tional uncertainty, which isn’t very intuitive.
The inapplicability of truth-functionality for handling uncertainty is well-known in
probability theory where it is impossible to determine the probability of two events
happening concurrently when we have no information about the independence of the
individual events. Thus, we should never interpret degrees of truth as probabilities.
The truth degree of vagueness can however be seen as a truth-functional concept. In
the most popular choices for truth-functional valuation functionsτ this might mean that
τ(ϕ∧¬ϕ) >= 0 which covers statements such as “It is warm: yes and no” where the

CHAPTER 3. APPROXIMATE REASONING 32

truth degree of the constituents is for example 0.5.

Handling the concepts of uncertainty and vagueness equally well in one formalism is
rather difficult. We will only be able to associate a degree of truth to the proposition
“Peter is rather tall” when a precise (and some might argue artificial) meaning has
been associated with the vague concept “rather tall”. This exemplifies why most of the
systems discussed in this chapter are either better suited for handling uncertainty or for
handling vagueness depending on the particular viewpoint from which they originated.

3.2 Fuzzy Sets and Logic

Fuzzy sets were proposed by Zadeh [Zad65] in the mid-sixties as a mathematical
framework for capturing fuzzy concepts without sharp boundaries that originate from
human-like descriptions of systems. It provides a mathematical foundation for spec-
ifying and reasoning about imprecise information. As such, fuzzy set theory can be
considered as the inspiration for most of the systems described in this chapter.

The problem of conceptualising vague information isn’t new and in fact has been dis-
cussed in antiquity as testified by the Sorites paradox, derived from the Greek word
soresmeaningheap, which originally referred to the following puzzle attributed to Eu-
bulides of Miletus: “Would you describe a single grain of wheat as a heap? No. Would
you describe two grains of wheat as a heap? No. You must admit the presence of a
heap sooner or later, so where do you draw the line?”. The problem can be situated in
the inapplicability of classical induction to a vague conceptϕ: the classical interpreta-
tion of the implicationϕ(x)→ ϕ(x+ 1) causes the paradox. In [Hyd02] an extensive
historical and philosophical treatment is given of this entire family of paradoxes.

Fuzzy set theory offers one solution to this paradox by allowing various degrees of
“being a heap” through its extension of the classical all-or-nothing binary-valued set
membership function to a gradual real-valued one.

3.2.1 A Generalised Characteristic Function

3.2.1.1 Fuzzy Extension

Apart from the extensional enumeration of all elements ({0,2,4}) and the intensional
definition of the common properties of the elements ({2x∈ℵ|x < 3}), a conventional
crisp setA is defined by its characteristic functionµA which associates 1 to elements of
the universeU belonging toA and 0 to the elements out ofA:

µA : U → 0,1

µA(x) =
{

0↔ x 6∈ A
1↔ x∈ A

The characteristic functionµAof a fuzzy setA takes on values in the real interval[0,1]
for every element in the universeU thus admitting intermediate membership values.
The valueµA(x) represents the degree of membership of the elementx to the fuzzy
setA and can also be seen as the degree of truth that the propositionx ∈ A is true.
As the endpoints of the interval[0,1] still represent respectively full set exclusion and
inclusion, this is an extension of the characteristic function of conventional sets.

CHAPTER 3. APPROXIMATE REASONING 33

µA : U → [0,1]

µA(x) =

 0↔ x 6∈ A
1↔ x∈ A
0 < α < 1↔ x∈ A to the extentα

A fuzzy set is still considered as a collection of elements sharing a common feature
and thus it still describes a certain concept. However, a fuzzy set doesn’t introduce a
complete dichotomy in the universe. In addition to being completely compatible or in-
compatible with the concept defined by the set, elements of the universe can also share
the features described by the set to a certain degree. The fuzzy set OLD, for example,
assigns a high membership degree to 70-year olds and a low membership degree to
toddlers.

The intensional definition of a fuzzy setA with respect to the universeU is then for-
mally defined as the set of tuples:{(x,µA(x))|x ∈ U,µA(x) ∈ [0,1]}. A fuzzy set is
described as the union of all the elements in the universe graded by the membership
function, or in Zadeh’s original notation for a finite universe:A = x1/µA(x1)+ . . . +
xn/µA(xn) = ∑n

i=1xi/µA(xi) where+ stands for union.

3.2.1.2 Assigning Membership Degrees

We may now interpret the values ofµA as membership degrees or equivalently degrees
of truth, but we haven’t considered yet what it means to assign a membership degree
of only 0.7 instead of 0.8.

Fuzzy sets and the derived fuzzy logic have been particularly successful in the domain
of control systems where one has to react in a fuzzy manner to changes in input read-
ings. In such a setting with exact sensory input, a precise meaning can be associated
with the membership degrees of, for example, a certain temperature to the fuzzy set
WARM. Examples of such membership functions are given in the next section.

In expert systems which model and reason with human-originated information, this is
however often impossible and numbers might seem to be assigned rather arbitrarily to
truth degrees. To overcome this problem, the unit interval[0,1] (inspired by the fact
that crisp membership functions have a range{0,1}) can be simply interpreted as an
ordinal scale instead which may also be more abstract, with the single constraint that it
is a totally ordered set in order to ensure a smooth membership grade.

One might still object that this approach makes it difficult to compare values assigned
by different persons, but one should keep in mind that vagueness is context-dependent
and subjective in se. Also, as not all objects in the real world can be compared with
each other, the same is true for fuzzy concepts. To overcome this problem, an L-
fuzzy set variant (L from lattice) has been proposed [Gog67] for handling incomparable
information where the range of the membership function is a partially ordered set.

3.2.1.3 Common Membership Functions

In most control applications, it is sufficient to specify the general shape of the mem-
bership function together with some parameters (notation from [DP80]):

CHAPTER 3. APPROXIMATE REASONING 34

Open right shoulder

Γ(x,α,β) =

 0 x < α
(x−α)/(β−α) α≤ x≤ β
1 x > β

This function is shaped as the left side of a trapezium with the right side open.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7 8

right_shoulder(x,2,6)

Figure 3.1: Plot of the open right shoulder membership functionΓ(x,2,6)

Open left shoulder

L(x,α,β) =

 1 x < α
(β−x)/(β−α) α≤ x≤ β
0 x > β

This function is shaped as the right side of a trapezium with the left side open.

Triangular shape

∆(x,α,β,γ) =

0 x < α
(x−α)/(β−α) α≤ x≤ β
(γ−x)/(γ−β) β≤ x≤ γ
0 x > γ

The shape of this function is a triangle centred aroundβ with the left and right
endpoints situated atα andγ respectively. Its support (see the vocabulary sec-
tion) is the triangle’s base minus the endpoints:(α,γ). In a way, it models the
approximate neighbourhood ofx to β.

Trapezoidal shape

Π(x,α,β,γ,δ) =

0 x < α
(x−α)/(β−α) α≤ x≤ β
1 β≤ x≤ γ
(δ−x)/(δ− γ) γ≤ x≤ δ
0 x > δ

CHAPTER 3. APPROXIMATE REASONING 35

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7 8

left_shoulder(x,2,6)

Figure 3.2: Plot of the open left shoulder membership functionL(x,2,6)

The shape of this function is a trapezium with the top horizontal defined byβ
andγ while its left (right) endpoint is defined byα (δ). In a way, it models the
approximate neighbourhood ofx to the interval[β,γ].

Other examples of often used member functions are sigmoidal and gaussian shaped
membership functions offering even more gradual transitions.

Although the above functions have well-understood mathematical properties, one isn’t
obliged to use any of them. In fact, many membership functions are defined in a simple
relational manner:µaround2(0) = 0.2,µaround2(1) = 0.7,µaround2(2) = 1,µaround2(3) =
0.7, . . .

3.2.1.4 Common Vocabulary

The following are definitions of re-occurring vocabulary in fuzzy set literature.

Empty set The empty fuzzy set/0 is defined as the set with∀x∈U : µ/0(x) = 0. It is a
subset of ever fuzzy set.

Largest set The largest fuzzy set 1 in the universe U is defined as the set with∀x∈U :
µ1(x) = 1. Every fuzzy set is a subset of 1.

Core The core of a fuzzy setA is the crisp set{x|µA(x) = 1}.

Bandwidth The bandwidth of a fuzzy setA is the crisp set{x|µA(x)≥ 0.5}.

Support The support of a fuzzy setA is the crisp set{x|µA(x) > 0}.

α-cut Theα-cut of a fuzzy setA is the crisp setAα = {x|µA(x)≥ 0}. If α1 > α2 then
Aα1 ⊂ Aα2.

Normality A fuzzy setA is called normal iff∃x∈U : µA(x) = 1.

SubsetsA fuzzy setA is a subset of a fuzzy setB iff ∀x∈U : µA(x)≤ µB(x).

CHAPTER 3. APPROXIMATE REASONING 36

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7 8

triangular(x, 2, 4, 6)

Figure 3.3: Plot of the triangular membership function∆(x,2,4,6)

Equality Two fuzzy setsA and B are equal iffA ⊂ B and B ⊂ A or, equivalently,
µA(x) = µB(x).

Linguistic variables A linguistic variable is a variable whose value is a linguistic ex-
pressions modelled as a fuzzy set. An example is the variable ’temperature’
whose value (given a precise input) can be one of the following: very cold, cold,
moderate, warm, very warm.

They play an import role in the fuzzy control sub-domain, where they feature in
fuzzy if-then rules of which the antecedent and the conclusion consist of linguis-
tic variables.

The original definition by Zadeh is the following quintuple[Zad75a]:

〈X,T(X),U,G,M〉

• X is the name of the variable

• T(X) is the term set ofX e.g.{verycold,cold,moderate,warm,verywarm}
• U is as usual the universe of discourse

• G is the syntactic rule (or grammar) generating terms fromT(X)

• M is the semantic rule assigning a fuzzy set to each term fromT(X)

Hence, we can also consider a linguistic variableA as a function with a crisp
domainDA of input values that will be mapped to a fuzzy set.

Fuzzy relation Given two universes of discourseU andV, a fuzzy relationR is a
fuzzy set in their product spaceU ×V with an associated membership function
µR(u,v).

3.2.2 Set-Theoretic and Logical Operations

By now we are able to model expressions such as ”Temperature is High”, but we would
also like to combine fuzzy sets in order to model expressions like “(Temperature is

CHAPTER 3. APPROXIMATE REASONING 37

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7

trapezoid(x,0,2,4,6)

Figure 3.4: Plot of the trapezoidal membership functionΠ(x,0,2,4,6)

High) and (Pressure is Low)”. By the natural analogy of sets and propositions, we will
introduce many-valued logics at the same time.

3.2.2.1 Fuzzy Extensions of Conventional Set Operations

As we introduced fuzzy sets as an extension of conventional crisp sets (or alternatively
conventional sets are special cases of fuzzy sets), we would like our set-theoretic oper-
ations to behave in the conventional way meaning they need to be closed (their results
are again a fuzzy set) and their results coincide at least on the boundaries of the unit
interval[0,1].

In the next section we will introduce the general class of operations which conform
to these requirements, but we will start our discussion with the operations originally
proposed by Zadeh as these are still the most popular choices:

• Intersection:µA∩B(x) = min(µA(x),µB(x))

• Union: µA∪B(x) = max(µA(x),µB(x))

• Complement:µĀ(x) = 1−µA(x)

These definitions coincide with the natural set operations for the boundaries of the unit
interval, but one can object that intersection is pessimistically modelled since augment-
ing the truth value of the largest of the two operands doesn’t change the outcome of the
operation at all.

Obviously, since we are now allowing intermediate values between absolute truth and
absolute falsity, the classical law of theexcluded middlecan no longer be valid:A∩Ā=
/0 is only true whenA = /0 andĀ = 1. Similarly, the (fuzzy variant) of the law of non-
contradictionµA∪Ā = 1 is only true under the same conditions. As pointed out before,
these deviations are necessary to handle truth degrees. De Morgan’s laws are still valid.

CHAPTER 3. APPROXIMATE REASONING 38

3.2.2.2 Logical Algebra with Triangular Norms and Co-norms

The requirements on the set-theoretic operations (logical connectives) can be sum-
marised in the notions of a triangular norm (t-norm) and triangular co-norm (also called
an s-norm) [SS63] which correspond to intersection (conjunction) and union (disjunc-
tion) respectively. They are in effect generalisations of the original set-theoretic opera-
tions put forth by Zadeh.

T-norm A t-norm is a function∗ : [0,1]× [0,1]→ [0,1] which is commutative, asso-
ciative, non-decreasing in both arguments with 1 as the unit element and 0 as the
zero element. It is used to model intersections and conjunctions.

1. Commutativity: x∗y = y∗x

2. Associativity:(x∗y)∗z= x∗ (y∗z)
Associativity allows t-norms to be extended to multiple arguments.

3. Non-decreasing monotonicity:∀x < x′,y < y′ : x∗y≤ x′ ∗y′.
This requirement expresses the requirement that if we augment the degree
of truth of one of the constituents of a logical formula its degree of truth
should at least be as large as that of the original formula. In addition, a
t-norm is called strict when it is strictly increasing in both arguments.

4. Boundary conditions:1∗x = x,0∗x = 0
This requirement gives the function its conjunctive semantics on the unit
boundaries.

We will primarily be interested in continuous t-norms as they are suitable for
modelling the gradual aspect of fuzzy logic.

As we will see in a moment, choosing a particular t-norm for conjunction se-
mantics actually also fixes the semantics for disjunction and implication. The
following basic t-norms are hence named after the multi-valued logic to which
they give rise:

• Gödel x∧y = min(x,y) This t-norm has the same operational semantics as
those proposed by Zadeh and is suitable for calculating upper bounds on
degrees of truth where one assumes the scenario in which one statement
subsumes the other.
This particular t-norm is the only idempotent one:x∧ x = x (a proof is
given below).

• Łukasiewicz x∧y= max(x+y−1,0) This t-norm is suitable for calculating
lower bounds on degrees of truth where one assumes the scenario in which
statements are unrelated.
For this t-norm we havec∧c < c(c 6∈ 0,1).

• Product x∧y = x ·y This is the classical product operator from probability
theory in which one assumes total independence of the arguments.
The multi-valued logic branch resulting from this t-norm has only recently
been studied in [HGE96].

These three t-norms are calledbasicsince a theorem [Lin65] states that all other
t-norms are either isomorphic to the Łukasiewicz and Product t-norms or equal
to the G̈odel minimum t-norm or a combination of the above.

CHAPTER 3. APPROXIMATE REASONING 39

There is a certain ordering among t-norms as∀ t-norms

t : t(x,y)≤min(x,y)

sincet(x,y) ≤ t(x,1) ≤ x follows from monotonicity and the boundary condi-
tion while we can derivet(x,y) = t(y,x) ≤ t(y,1) ≤ y in the same manner from
commutativity. Hence,t(x,y)≤min(x,y).

Whenevert1(x,y)≤ t2(x,y)∀x,y∈ [0,1] we say thatt1 is the weaker t-norm and
t2 is the stronger. The strongest t-norm is thusmin(x,y).

This result also allows us to prove that the Gödel conjunction is the only idempo-
tent t-norm asa = t(a,a) ≤ t(a,b) ≤min(a,b) at least fora < b. However, due
to commutativity we can also derivea= t(a,a)≤ t(a,a) = t(b,a)≤min(b,a) so
this statement is true for anya andb.

Moreover, it can also be shown that the t-normDrastic productis the weakest
t-norm. It is defined as follows:

a∧b =
{

min(a,b) if max(a,b) = 1
0 otherwise

Co-norm A t - co-norm or s - norm is a function+ : [0,1]× [0,1]→ [0,1] obtained
by De Morgan’s law (given a suitable negation operator) from a t-norm∗ in the
following way: x+y = x̄∗ ȳ = 1− ((1−x)∗ (1−y)) under the usual semantics
of negation.

Consequently, the same requirements for a t-norm are in order except for the
boundaries which are defined asx+ 0 = x,1+ x = 1. Co-norms are used to
model unions and disjunctions.

The basic co-norms are:

• Gödel x∨y = max(x,y)

• Łukasiewicz x∨y = min(1,x+y)

• Product x∨y = a+b−a·b

An ordering similar to the one in t-norms exists for co-norms:∀ co-norms
s : s(x,y) ≥max(x,y) sinces(x,y) ≥ s(x,0) ≥ x follows from monotonicity and
the boundary condition while we can derives(x,y) = s(y,x) ≥ s(y,0) ≥ y in the
same manner from commutativity. Hence,s(x,y) ≥ max(x,y) is the weakest t-
co-norm.

The strongest t-co-norm isDrastic Sumdefined as:

a∨b =
{

max(a,b) if min(a,b) = 0
1 otherwise

Negation In the above definition of a co-norm, we have already used the negational
semantics put forth by Zadeh. The minimal requirement for a negation operation
is however to switch the boundaries of the unit interval:¬(0) = 1 and¬(1) = 0
and to be non-decreasing in its argument.

This restriction is too relaxed for co-norms to be defined in terms of t-norms and
complementation since it doesn’t restrict semantics on the interval between the

CHAPTER 3. APPROXIMATE REASONING 40

unit endpoints. In light of this,¬ : [0,1]→ [0,1] can be demanded to adhere to
involutiveness constraint¬¬x = x.

The negation defined by Zadeh¬x = 1− x is thus a suitable choice and can be
seen in a more formal manner as the result of the formula:¬ϕ = ϕ→Ł 0 in which
→Ł is the Łukasiewicz implication. In contrast, the negation operator¬(0) =
1,¬(x∈ (0,1]) = 0 obtained from G̈odel’s implication→G doesn’t adhere to the
involutiveness restriction.

Implication will be the subject of the next section.

It can be proved [Kle82] that every t-normt is distributive to themaxco-norm operator:
t(max(a,b),c) = max(t(a,c), t(b,c)). If we thus want an idempotent t-norm as well as
distributivity, our choice is limited to G̈odel semantics.

3.2.2.3 Implication Operators

Many semantics can be given to the fuzzy variant of implication, but we will start
our investigation by recalling the truth table of the implication in binary propositional
logic:

ϕ ψ ϕ→ ψ
0 0 1
0 1 1
1 0 0
1 1 1

Standard strict implication This implication is based on the intuitive extension to
many-valued logics of the following observation:

ϕ→ ψ ⇐⇒
{

1 ϕ≤ ψ
0 otherwise

This operator is very sensitive to small changes in its input: given aϕ with a
truth degree of 0.4, ϕ→ ψ will be 1 whenψ is 0.4, but 0 whenψ is 0.39.

Residuated implication We also have the following residuation equation:

ϕ→∗ ψ≥ χ ⇐⇒ ϕ∗χ≤ ψ

where∗ is a continuous t-norm which now uniquely determines its residuated
implication→∗:

ϕ→∗ ψ = max{χ ∈ [0,1]|ϕ∗χ≤ ψ}

The residuated implications corresponding to the three basic t-norms are:

• Gödel

ϕ→ ψ ⇐⇒
{

1 ϕ≤ ψ
ψ otherwise

• Łukasiewicz

ϕ→ ψ ⇐⇒
{

1 ϕ≤ ψ
1−ϕ+ψ otherwise

CHAPTER 3. APPROXIMATE REASONING 41

• Product

ϕ→ ψ ⇐⇒
{

1 ϕ≤ ψ
y/x otherwise

Kleene-Dienes implication This operator is obtained from the equationϕ → ψ =
¬ϕ∨ψ using the definition of union and negation from Zadeh:

ϕ→ ψ = max(1−ϕ,ψ)

or from Łukasiewicz:
ϕ→ ψ = 1−x+y

Mamdani implication This one is often used in expert systems and is simply defined
as the minimum:

ϕ→ ψ = min(ϕ,ψ)

Larsen implication This implication is also primarily of use in expert systems and is
simply defined as the product:

ϕ→ ψ = ϕ ·ψ

Implication in two-valued logic can no longer be seen as a special case of a many-
valued logic when Mamdani or Larsen implication is chosen since 0→ 0 gives 0. They
can be considered primarily for engineering applications such as expert or control sys-
tems where performance matters and the case in which rule antecedents are false is
irrelevant.

3.2.2.4 Deductive Systems of Many-Valued Logics

The previous sections described the different possibilities for the truth valuations of
logical connectives. A basic many-valued propositional logic system based on con-
tinuous t-norms can now be developed using appropriate axioms and modus ponens
(given ϕ andϕ→ ψ we can deriveψ) as the deduction rule for constructing proofs.
The older G̈odel logic and Łuckasiewicz logic can be seen as extensions of this basic
fuzzy logic by H́ajek [H9́8].
We will omit axiomatisation and completeness proofs for these logics as they are be-
yond the scope of this document. A good overview is provided in [HG].

Basic fuzzy logic is completely based on a t-norm∗ and its residuated implication→∗
with the conventional logic connectives defined as follows:

• ϕ∧ψ = ϕ∗ (ϕ→∗ ψ)

• ϕ∨ψ = ((ϕ→∗ ψ)→∗ ψ)∧ ((ψ→∗ ϕ)→∗ ϕ)

• ¬ϕ = ϕ→∗ 0

• ϕ↔ ψ = (ϕ→∗ ψ)∗ (ψ→∗ ϕ)

The axiomatisation of basic fuzzy logic is the usual:

1. (ϕ→∗ ψ)→∗ ((ψ→∗ χ)→∗ (ϕ→∗ χ))

2. (ϕ∗ψ)→∗ ϕ

CHAPTER 3. APPROXIMATE REASONING 42

3. (ϕ∗ψ)→∗ (ψ∗ϕ)

4. (ϕ∗ (ϕ→∗ ψ))→∗ (ψ∗ (ψ→∗ ϕ))

5. (ϕ→∗ (ψ→∗ χ))→∗ ((ϕ∗ψ)→∗ χ)

6. ((ϕ∗ψ)→∗ χ)→∗ (ϕ→∗ (ψ→∗ χ))

7. ((ϕ→∗ ψ)→∗ χ)→∗ (((ϕ→∗ ψ)→∗ χ)→∗ χ

8. 0→∗ ϕ

It is interesting to note how the original Gödel (1933) [Goe33] and Łukasiewicz (1970)
infinitely-valued logics can be obtained from the corresponding basic continuous t-
norms:

Łukasiewicz In this logic system, we can add the axiom¬¬ϕ→∗ ϕ as a result of the
convolutiveness of the negation corresponding to this t-norm as we have seen
before.

Gödel We obtain G̈odel logic by adding the axiomϕ→∗ (ϕ∗ϕ) which states that the
Gödel t-norm is idempotent.

Product The axioms for a logic based on the product t-norm are the same as the basic
axioms extended by the axiom¬¬ϕ→∗ ((ϕ→∗ ϕ ·ψ)→∗ ψ · ¬¬ψ) which was
proved in [Cin01].

3.2.2.5 Fuzzy Set Product and Fuzzy Relational Composition

Fuzzy Set Product The product ofn fuzzy setsA1,A2 . . . ,An with eachAi a fuzzy
subset of their universe of discourseUi is defined by means of a t-norm∗ as
the fuzzy set on the universe of discourseU1×U2× . . .×Un with the following
membership function:

µA1,A2...,An = ∗(µA1,µA2, . . . ,µAn)

Fuzzy Relational Composition For crisp relationsS⊂ X×Y andR⊂Y×Z, compo-
sition is defined by

(x,z) ∈ S◦R ⇐⇒ ∃y∈Y|(x,y) ∈ S∧ (y,z) ∈ R

This definition is generalised to fuzzy sets by changing∧ to a t-norm∗ and∃ to
the supremum:

µS◦R(x,z) = supy∈Y ∗ (µS(x,y),µR(y,z))

3.2.2.6 Linguistic Hedges

The above many-valued logics can be considered as fuzzy logic in the narrow sense
which provides a formal background to reasoning with a graded truth. Fuzzy logic in
the broader sense concerns approximate reasoning techniques for drawing imprecise
conclusions from imprecise antecedents.

CHAPTER 3. APPROXIMATE REASONING 43

From this viewpoint, fuzzy set modifiers or hedges play an important role in the in-
terpretation of human-originated description of concepts as they allow modifying the
semantics of set membership functions by linguistic terms such asvery, fairly and
more or less. The following are the most important categories that can be distinguished
within fuzzy set modifiers (an overview is given in [KC99]):

Concentration µconcentration(A) = (µA)p wherep > 1. Often, one takesp = 2.

The membership function of a concentrated set will lie within that of the original
fuzzy set. They have a common support and they share the same membership
values on the boundaries of the unit interval. Overall, the vagueness of the re-
sulting set is decreased.

An example of a linguistic hedge that can be modelled by concentration is the
adverbvery.

Dilation µdilation(A) = (µA)p wherep∈]0,1[. A common value forp is 1/2.

The membership function of a dilated set will lie outside the one of the original
fuzzy set. They have a common support and they share the same membership
values on the boundaries of the unit interval. Overall, the vagueness of the re-
sulting set is increased.

Somewhatis an example of a linguistic hedge that can be modelled by dilation.

Intensification

p > 1,µintensi f ication(A)(x) =
{

2p−1(µA(x))p 0≤ µA(x)≤ 0.5
1−2p−1(1−µA(x))p otherwise

Intensification will increase the vagueness where it was already high and de-
crease it where it was low.

An example of a linguistic hedge that can be modelled by intensification is for
exampleindeed.

Fuzzyfication This fuzzy set operator has the opposite effect from intensification.

µf uzzy f ication(A)(x) =

{
(µA(x)

2)
1
2 0≤ µA(x)≤ 0.5

1− (1−µA(x)
2)

1
2 otherwise

Translation µtranslation(A)(x) = µA(x+α)

Translation provides an alternative way to model for example the adverbvery
with α = 0.5, given a fuzzy set with an increasing member function.

Recently, the study of linguistic hedges in L-fuzzy set theory (see the discussion in
section 3.2.1.2) has begun in [MDC01].

3.2.3 Fuzzy Process Control

One step further away from fuzzy logic in the narrow sense is approximate reasoning
with “fuzzier” inference rules than those of the many-valued logics described so far.
This notion has primarily flourished in our next topic of discussion: the domain of
fuzzy control systems.

CHAPTER 3. APPROXIMATE REASONING 44

3.2.3.1 Process Control

Fuzzy process control was the first practical application of fuzzy set theory and refers
to the modelling of mechanical processes as a collection of simple fuzzy if-then rules
with imprecise premises and imprecise conclusions.

It has had many successful commercial applications including air condition regulation,
cruise control and even motion detection in video camera’s where a distinction needs
to be made between moving objects and motion caused by instable cameraman hands.
The above examples all require gradual output changes when their input is altered and
their complexity often hinders a precise statement of the causal connection between
inputx and outputy values. If it was possible to describe the causal connection between
x andy as a functiony = f (x), we could useregular modus ponensto regulate the
process:

premise y = f (x)
fact x = x′

consequence y = f (x′)

When the causal relation between the input and the output is only partially or point-
wise known, fuzzy process control allows the system to be described as a collection of
fuzzy if then-rules with linguistic variablesX andY:

rule1 if X is A1 thenY is B1

rule2 if X is A2 thenY is B2

.
fact X is A
consequence Y is B

A typical example of the use of such fuzzy if-then rules is that of controlling the sway
of a crane transporting large containers: the experience built up by human crane oper-
ators can be translated effortlessly to rules while the it poses many problems from the
classical engineering perspective.

3.2.3.2 Fuzzy Control Reasoning System

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.

CHAPTER 3. APPROXIMATE REASONING 45

3.2.3.3 Inference for Approximate Reasoning

Zadeh identified [Zad75b] some inference rules common to human-like approximate
reasoning for the above scheme:

Entailment Choose forA the intensificationveryas an example.

premise X is A
fact A⊂ B
consequence X is B

Projection ChooseR(X,Y) = equal(7,4) for an example.

premise X,Y have a relationR(X,Y)
consequence X is ΠX(R)

premise X,Y are in a relationR(X,Y)
consequence Y is ΠY(R)

Compositional Rule of Inference This is the most important rule defined by Zadeh
and can be seen as a generalisation of classical modus ponens which is of prac-
tical use in forward inferencing systems for approximate reasoning:

premise if X is A andY is B thenZ is C
fact X is A′ andY is B′

consequence Z is C′

Herein, the fuzzy rule can be seen as the fuzzy relationA×B→C. Furthermore
C′ is a relation composed of a factual matching and an implication:

C′ = A′×B′ ◦ (A×B→C)

Which would give withmin as the t-norm of choice in the fuzzy set product and
fuzzy relational composition the following membership function:

µC′ = sup min{min(µA′ ,µB′),(min(µA,µB)→ µC)}

where we still have to choose an implication operator. As performance is impor-
tant in fuzzy control systems, popular choices are the Mamdani (min) and Larsen
(product) implication:

• General Modus Ponens with Mamdani Implication

µC′ = sup min{min(µA′ ,µB′),min(min(µA,µB),µC))}= sup min{µA′ ,µB′ ,µA,µB,µC}

• General Modus Ponens with Larsen Implication

µC′ = sup min{min(µA′ ,µB′),(min(µA,µB) ·µC)}

3.2.3.4 Combining Individual Rule Results

The overall behaviour of the system is modelled by taking an aggregation of the indi-
vidual rule results. Usually, union interpreted asmaxis chosen for this task.

CHAPTER 3. APPROXIMATE REASONING 46

3.3 Fuzzy Logic Programming

The axiomatised propositional many-valued logics presented in section 3.2.2.4 incor-
porated modus ponens as the notion of proof. We will now discuss an entirely different
kind of logics, denoted as fuzzy definite clausal logics, which embrace a resolution rule
as the notion of proof.
Extending the classical resolution rule to handle weighted clauses initiated a plethora
of “Fuzzy Prolog” systems which differ on the chosen form of fuzzification: some only
support fuzzy facts, while others allow fuzzy predicates and some support fuzzy rules
in addition.

The development of a satisfactory resolution rule for the predicate versions of the de-
ductive logics discussed in section 3.2.2.4 is the topic of much ongoing research. An
overview is given in the introduction of [Als01].
The generalisation of Herbrand’s theorem to these logics, one of the resolution princi-
ple’s foundations which states that a set of clauses is unsatisfiable if their ground ver-
sions are unsatisfiable in propositional logic, has only recently been proved in [NP00].
Another difficulty poses the non-distributiveness of conjunction and disjunction oper-
ators which hinders algorithmisation of the refutation procedure.
Therefore, we will only consider“Fuzzy Prolog” for our declarative meta-programming
system.

3.3.1 Fuzzy Logic Programs

3.3.1.1 Syntax

Generally, a fuzzy program is a setΠ of fuzzy clauses each weighted by a realϑ∈]0,1]:

α : ϑ← β

where the atomα is called the head of the clause and the bodyβ is a conjunction of
atomsβ1, . . . ,βn with n≥ 0.
It should be noted that some systems disallow clauses to be weighted. We will interpret
the weightϑ as the truth degree of the conclusion of the rule given the truth ofβ.
Furthermore,

• An atom p(t1, . . . , tn) consists of ann-narypredicatesymbolp andn terms ti .

• A predicatesymbol starts with a lowercase letter.

• A term is either avariable, aconstantor ann-ary functor f(t1, . . . , tn) consisting
of a function symbolandn termsti .

• A function symbolstarts with a lowercase letter.

• Traditionally avariable symbol starts with a capital while aconstantsymbol
starts with a lowercase letter. Free variables are considered to be universally
quantified.

While atoms and terms might look the same, there’s an important difference as atoms
can be assigned truth values while terms cannot. A fuzzy factα : ϑ← or α : ϑ. is a

CHAPTER 3. APPROXIMATE REASONING 47

fuzzy clause withn = 0. A fuzzy query is a clause of the form ? :ϑ← β whereϑ is
allowed to be instantiated.
In the following sections, the semantics and refutation procedure of this“Fuzzy Pro-
log” will be developed analogous to that of crisp Prolog.

3.3.1.2 Model Semantics

Herbrand universe U The Herbrand universeUΠ of programΠ is the set of all ground
terms (a grounded term doesn’t contain any variables) constructed from the func-
tors and constants in the program. An arbitrary constant can be chosen when the
program lacks constants.

Herbrand baseBΠ A Herbrand baseBΠ is the set of ground atoms constructed from
Π’s predicates with elements of Herbrand UniverseUΠ as arguments.

Herbrand interpretation I A Herbrand interpretationI is the tuple〈BΠI ,τI 〉 where
BΠI ⊂ βΠ is a subset of the Herbrand base andτI : BΠI →]0,1] is a truth valuation
function. Under this definition, elements ofBΠI are considered to be more or less
true.

Herbrand model of a program An interpretationI = 〈BΠI ,τI 〉 is a model of a pro-
gramΠ if it is a model of each clause inΠ.

Herbrand model of a clause An interpretationI = 〈BΠI ,τI 〉 is a model of a clause
α : ϑ← β if and only if

• α ∈ BΠI whenever∀0≤ i ≤ n : βi ∈ BΠI

Whenn = 0 we only requireα ∈ BΠI .
This means that each ground atomα ∈ BΠI is logically entailed by the
program.

• τI (α) =→ ((τI (β1, . . .βn),ϑ)
This definition is based on modus ponens (which is used backwards by the
resolution refutation):

β : b.
α : a← β
α : x

Given a query ? :x← α our operational semantics will be to use the above
backwards in order to obtain the quantifactionx of its answer:

x =→ (b,a)

The least Herbrand model captures a program’s meaning as it contains all ground
atoms from the Herbrand base which are logically entailed by the program.

Substitution θ A substitution is a mapping ofvariablesto terms. An example substi-
tution is{[X/1]}which substitutes 1 forX. A substitutionθ = {[X1/t1], . . . [Xn/tn]}
is applied to a formulaϕ by simultaneously replacing all variablesXi by the right
componentti of their corresponding equation[Xi/ti] resulting in a new formula
ϕθ.

Query Answer A substitutionθ is a correct answer to a query ? :x← α with respect
to a programΠ if and only if every model I ofΠ (I |= Π) is also a model ofαθ
(I |= αθ).

CHAPTER 3. APPROXIMATE REASONING 48

3.3.1.3 Fix-point Semantics

The least Herbrand model of a programΠ is the fix-point of the immediate consequence
operatorTΠ applied on a startingI = 〈BΠI = /0,τI (x) = 0〉, that isI is the least Herbrand
model if and only if:

TΠ(I) = I = TΠ(. . .(TΠ(TΠ(〈BΠI = /0,τI (x) = 0〉))))

where the immediate consequence operatorTΠ is defined as:

TΠ(〈BΠI ,τI 〉) = 〈B′ΠI
,τ′I 〉

B′ΠI
= {αθ : θ is a grounding substitution,

∃α : ϑ← β1, . . .βn ∈Π,∀1≤ i ≤ n,βiθ ∈ BΠI

or ∃α : ϑ.}

τ′I (x)=
{

max(sup{→ (τI (βi),ϑ) : α is a clause},sup{ϑ : α is a fact}) x = αθ
τI (x) otherwise

3.3.1.4 Operational Semantics

We are now ready to define the operational semantics which are equivalent to the se-
mantics we discussed earlier.
An SLD-resolution tree for a programΠ and a query goal ? :ϑ← α consist of nodes
〈A,σ,τ〉 whereA represents a possibly empty goal set,σ is the set of substitutions
applied so far andτ is a truth assigning function.
Then, given a node〈a∪A,σ,τ(x)〉, its successor is defined as:

• 〈Aθ,σ◦θ,τ(a) = ϑ〉
iff a′ : ϑ←∈Π andθ is the most general unifierMGU(a′,a)

• 〈(A∪B)θ,σ◦θ,τ(a) =→ (τ(B),ϑ)〉
iff a′ : ϑ← B∈Π andθ is the most general unifierMGU(a′,a)

• ε
iff none of the above rules apply

Solutions to the query ? :ϑ← α consist of branches in the SLD-resolution tree starting
from the root node and ending in the empty goal node containing the correct answer
substitutions:

{: τ(ασ)← ασ|〈α,ε, true〉 →∗ 〈 /0,σ,τ(x)〉}

The above inference procedure is a conservative extension of regular SLD-resolution
(i.e. their solutions collapse on the boundaries of the unit interval) in which S stands
for theselection rulewhich selects from a goal set the goal which will be resolved in
the next step (Prolog uses a left-to-right selection rule). L emphasises thelinear shape
of the obtained proof trees while D stands fordefiniteclauses.

As the described inference method might give rise to infinite trees (for instance in the
advent of recursive predicates), resolution and fuzzy resolution aren’tcomplete. This
means that not every logical consequence of a Prolog program can be derived using

CHAPTER 3. APPROXIMATE REASONING 49

resolution.

Regular Prolog issoundunder the condition that unification incorporates an occur
check which will be discussed in greater detail in the following section. This means
that every conclusion derived by resolution is a logical consequence of the program.
Lee [Lee72] was the first to prove the equivalent soundness of fuzzy resolution using
only clauses whose truth value lies within the interval[0.5,1] for inference.

3.3.2 Similarity-Based Unification

Until now, we have mainly concentrated on expressing uncertainty present in the do-
main knowledge. Approximate reasoning adds to this some fuzziness in the reasoning
process itself, possibly by extending the unification procedure to allow partial matches.

3.3.2.1 Classical Unification

The above resolution procedure relies for its resolvents on a functionMGU which
returns the most general unifier between two clause heads if it exists. We will need
some additional definitions:

More General Substitution A substitutionθ is more general than a substitutionσ if
and only if their exists a substitutionλ for which θλ = σ.

Unifier A substitutionθ is a unifier for two atomsϕ andψ if and only if ϕθ = ψθ.

Most General Unifier A unifier θ of two atomsϕ,ψ is the most general unifier ofϕ,ψ
if and only if it is more general than any other unifier ofϕ andψ.

The most general unifier (MGU) of two atoms (starting with the same predicate symbol
and of the same arity)p(t1, . . . , tn) and p(s1, . . . ,sn) can be calculated from the set of
equationsS= {t1 = s1, . . . , tn = sn} with the following algorithm:

Choose non-deterministically one equation from Si and apply one of the following
rules depending on the form of the equation until the algorithm fails or no more
changes are applied to Si+1:

• f (t1, . . . , tn) = f (s1, . . . ,sn) . replace equation by the equations{ti = si : ∀0 <
i ≤ n}

• f (t1, . . . , tn) = g(s1, . . . ,sm), f 6= g,m 6 n . stop with failure

• x = x . remove the equation

• t = x, t is not a variable. replace by x= t

• x = y,x is a variable different from y and x occurs at least once more in Si . we
perform an occurrence check by failing whenever X occurs in y and otherwise
we replace all occurrences of x by y in every other equation

The above algorithm either fails to unify two atoms or returns their most general unifier.

CHAPTER 3. APPROXIMATE REASONING 50

3.3.2.2 Weak Unification

A natural extension of the unification algorithm above allows for two atoms to be uni-
fied even when they are syntactically different, but can be considered semantically or
syntactically similar up to a certain degree.

Similarity can be expressed by a similarity relationR : U×U→ [0,1] which is a binary
fuzzy relation defined on the universeU for which the following properties are required
to hold (generalisation of the concept of an equivalence relation):

• reflexive∀x∈U : R(x,x) = 1

• symmetric∀x,y∈U : R(x,y) = R(y,x)

• transitive∀x,y,z∈U : R(x,z)≥ supR(x,y)∗R(y,z) where∗ is a t-norm with the
definition of fuzzy relational composition from section 3.2.2.5 in mind.

A similarity relationR between function and predicate symbols is used in [Ses02] to
allow approximate inferences when the exact unification procedure fails.
The following algorithm finds a weakλ-unifier for two atomsp(t1, . . . , tn),q(s1, . . . ,sn)
of equal arity. The similarity relationR associates a unification degree ofλ with this
unifier.
Choose non-deterministically one equation from Si and apply one of the following

rules depending on the form of the equation until the algorithm fails or no more
changes are applied to Si+1:

• f (t1, . . . , tn) = g(s1, . . . ,sn) where R(f ,g) > 0 . replace equation by the equa-
tions{ti = si : ∀0 < i ≤ n} and setλ = min(λ,R(f ,g)).

• f (t1, . . . , tn) = g(s1, . . . ,sm) where R(f ,g) = 0 or m 6= n . stop with failure

• x = x . remove the equation

• t = x, t is not a variable. replace by x= t

• x = y,x is a variable different from y and x occurs at least once more in Si . we
perform an occurrence check by failing whenever X occurs in y and otherwise
we replace all occurrences of x by y in every other equation

The unification degree of the most general unifier calculated by this algorithm can
be used further on in a “Fuzzy Prolog” system supporting approximate reasoning and
reasoning with uncertainty.

3.3.2.3 Fuzzy Unification Based on Edit-Distance

The above weak unification algorithm can only unify the symbols of predicates and
functors of the same arity, but does allow a semantic similarity relationship to be used.
A different approach [GS00] incorporates theLevenstheinor edit distanceto determine
the similarity of predicates and terms. This is a purely syntactical distance measure
which allows predicates and terms of different arity to be compared.

As the term implies, theedit distanceis defined on strings as the minimal number of
add, replace or delete operations to transform one string into the other. More formally,

CHAPTER 3. APPROXIMATE REASONING 51

the edit distancee(a.A,b.B) of two stringa.A andb.B (wherea andb denote the first
characters of the strings) can be defined recursively in the following manner:

e(A,ε) = e(ε,A) = |A|

e(a.A,b.B) = min

 e(A,b.B)+1 ,
e(a.A,B)+1 ,
e(A,B) if a = b

whereε denotes the empty string.

Thenormalised edit distance ne(A,B) between two strings is introduced in order to be
able to compare the edit distance of two short strings with that of two long strings:

ne(A,B) =
e(A,B)

max(|A|, |B|)

The performance of the straightforward recursive definition ofe is unfortunately ex-
ponential both in the size of the first stringn and in the size of the second stringm.
Fortunately, the complexity can be reduced toO(nm) using dynamic programming
techniques [AJ74].

The similarity relationship associated with the normalised edit distance can be defined
asR(x,y) = 1−net(A,B).

The Fury system [GS00] incorporates a generalisation of string edit distance to Prolog
predicates and functors in the interest of fuzzy unification. Although predicates can be
assigned truth values while functors cannot, there’s no syntactic difference between the
two and they are thus treated alike by the distance relationship.
The following is a recursive definition of the fuzzy unificationet betweenf (t1, . . . , tn)
andg(s1, . . . ,sn) [GS00]:

• et(t,ε) = 〈size(t), [],size(t)〉 Omitting a term is allowed with a penalty equal to
the size of the term.

• et(x,y) = 〈0, [x/y],0〉 givenvar(x),var(y) Same as normal unification.

• et(x, t) = 〈0, [x/t],0〉 given nonvar(t) andx doesn’t occur int Same as normal
unification with occurs check.

• et(f ,g) = 〈e(f ,g), [],max(| f |, |g|)〉 Atomic symbols match with a penalty equal
to their edit distance. The size of this comparison equals the maximum symbol
length.

• et(f (t1, . . . , tn),g(s1, . . . ,sn)) =

et(f ,g)⊕min

 et((t2, . . . , tn),(s1, . . . ,sn))⊕et(t1,ε),
et((t1, . . . , tn),(s2, . . . ,sn))⊕et(s1,ε),
et((t2, . . . , tn),(s2, . . . ,sn))⊕et(t1,s1)

where〈p,s,n〉⊕〈p′,s′,n′〉= 〈p+ p′,s·s′,n+n′〉.

This definition is a cruder version of the edit distance for strings in that entire
arguments must be omitted instead of just single string characters.

CHAPTER 3. APPROXIMATE REASONING 52

Its result is a triple consisting of thepenaltywe have to pay for the unification of the
two expressions and denotes the number of mismatches. The second entity contains the
unifier calculated by the procedure while the last entity denotes themaximum sizeof
pairwise node comparisons along the traversal. It will be used as a normalising factor
for the penalty.

The size of an expression is defined as follows:

size(ε) = 0

size(f) = | f |

size(f (t1, . . . , tn)) = | f |+
n

∑
i=1

size(ti)

The normalised edit distance over Prolog trees is then defined as the pair

net(f (t1, . . . , tn),g(s1, . . . ,sn)) = 〈 p
n
,s〉

where
et(f (t1, . . . , tn),g(s1, . . . ,sn)) = 〈p,s,n〉

As an examplenet(inseticide(baygon), insecticide(baygon,b9)) = 〈 3
19, []〉.

When the result ofnet(α,β) = 〈0,s〉, s equals the classicalMGU(α,β).

3.3.2.4 Alternative Fuzzy Unification Methods

As always with fuzzy systems, many other methods have been proposed to intro-
duce similarity-based unification. The above were prototypical examples of unification
based on a semantical similarity measure (Sessa’s method) and a purely syntactic sim-
ilarity measure (edit-distance based unification). In this section we will briefly sketch
two alternative approaches.

a) Likelog The Likelog logic programming language proposed in [AF99] performs
a unification even in cases where a classical unification method would fail by associat-
ing a set of constants that would make the unification successful if they were considered
similar.

This set is called acloud and consists of elements considered pairwise similar under
a similarity relationR. Thecodiameter µ(X) of a cloudX represents the degree up to
which the cloud can be considered as a singleton and is defined as

µ(X) = in f imumx,y∈XR(x,y)

whereµ(/0) = 1.

The crispness degreeξ(Z) of a system of clouds, simply a finite setZ of clouds, is de-
fined asξ(Z) = in f imumX∈Zµ(X). A system of clouds is calledcompactif none of its
subsets overlap (i.e. their intersection is non-empty).

CHAPTER 3. APPROXIMATE REASONING 53

The notion of a substitution is then extended from a mapping of variables to constants to
a mapping of variables to clouds of constants. A substitutionθ is called aλ-substitution
if for every substituted variable, the codiameter of the cloud it is mapped to exceeds
λ. When unifying atomsα = f (t1, . . . , tn) andβ = g(s1, . . . ,sn) from an equation setS
containing equations of the formα = β, the unification degree ofSunder a substitution
θ is defined as

in f imumα=β∈SR(θ(α),θ(β))

The unifierU(S) of a set of equationsS is defined as the substitution with the largest
unification degree.

This is calculated by the unification algorithm by transforming each equationα = β into
two systems of clouds{ f ,g} and{t1t s1, . . . , tnt sn} wheret t s is a union operator
extended to clouds:

t ts=

t ∪s if t,s are clouds
{t}∪s if t is a variable ands is a cloud
{s}∪ t if s is a variable andt is a cloud
{t,s} if t,s are variables

A substitutionθZ on a system of cloudsZ = {M1, ,Mn} is then defined in the following
way (whereC is the collection of ordinary constants):

• θZ(x) = x if x 6∈M1∪ . . .∪Mn

• θZ(x) = Mi ∩C if x∈Mi andMi ∩C 6= /0

• θZ(x) = y if x∈Mi ,Mi ∩C = /0 andy is a variable inMi

Although the unifiers in the Likelog systems are similar to those discussed in section
3.3.2.2, the algorithm itself differs in the use of the codiameter of clouds for the unifi-
cation degree. It also keeps track of these clouds so the end-user is made aware of the
similarities under which the unification and thus also a logical derivation holds.

An example of these clouds is given in [AF99] from which the following program is
an extract:

horror(drakula).
best_seller(Book) :-

interesting(Book),
recent(Book).

recent(Book) :-
published(Book, Y),
Y > 1997.

As interesting is left undefined, no answer to the query?- best_seller(X) can
be given using classical unification. Under the fuzzy unification algorithm, we can
however obtain an answer to this query using a similarity relationR which equals the
identity relation for constants and defines the predicateshorror and interestingto be
similar up to a degree of 0.7 : R(horror, interesting) = 0.7.

The answer consists of a tuple containing the variable substitutions{[X/dracula]} and
the cloud{horror, interesting} which allows us to consider dracula a best seller under
the conditions that horror and interesting are assumed similar. The codiameter of this
cloud, in this case 0.7, determines the confidence degree of the answer substitution.

CHAPTER 3. APPROXIMATE REASONING 54

b) Fuzzy Unification of Fuzzy Constants Another variant of the unification al-
gorithm is proposed in [TL98] where normalised, trapezoidal fuzzy sets denoted by a
linguistic term and linguistic variables (defined in the same way as in section 3.2.1.4)
are added as new kinds of terms in a logic programming language. To support the uni-
fication of fuzzy setsA andB, a similarity relationSD(A,B) between fuzzy setsA and
B with coresA′ andB′ respectively (see section 3.2.1.4) is defined as the mean value of
the membership function of the fuzzy setB on the interval[min(A′),max(A′)]. It gives
a measure of the inclusion degree of the setA′ into the setB′.

Also, a distinction between general and specific knowledge is made: the former con-
sists of terms occurring in the facts of the program while the latter consists of the
terms occurring in the heads of the program’s rules. The truth value ofbuy(a) is intu-
itively higher in the second program than in the first program as the conceptabout_27
(from the specific knowledge of the second program) is included in the concept of
between_25_and_30 (from the general knowledge of the second program) while the
reverse isn’t true.

price(a, between_25_and_30) : 1.
buy(x) : 0.7 :- price(x, about_27).

price(a, about_27) : 1.
buy(x) : 0.7 :- price(x, between_25_30).

More details on the (quite complex) unification of linguistic variables and fuzzy con-
stants based on this idea can be found in [TL98] from which the above examples were
taken.

3.3.3 A Mini-Survey of Fuzzy Logic Programming Systems

The previous section described a generalisation of the many forms of fuzzy resolution
and unification one might find in a fuzzy Prolog system. As we will now briefly de-
scribe some of the existing systems together with their peculiarities, it will become
clear that there are many ways to fuzzify a logic programming language and that there
is no general agreement on what is the best way to do it. We can only try to develop a
language which suits the application domain best.

3.3.3.1 Fuzzy Ciao Prolog

We will begin our discussion with the Fuzzy Prolog proposed in [VGoH02] since it
differs from the others in at least three important ways:

• Truth values aren’t modelled as reals in the unit interval, but as a finite union of
sub-intervals on the unit interval. It can be seen as a response to the objections
against an overly precise membership function of fuzzy sets (since one exact
number must be assigned to each element) or an overly precise degree of truth in
fuzzy logic.

• These intervals are represented as constraints onℜ which can be solved effi-
ciently by the Ciao Prolog constraint logic programming system. This approach
doesn’t alter the regular inference system of Ciao Prolog, but uses its original
constraint solving capabilities to model partial truth.

CHAPTER 3. APPROXIMATE REASONING 55

• Rules can’t be assigned a degree of truth so their degree of truth is determined en-
tirely by the conjunction that makes up their body. In order to generalise among
the many possible truth valuations of a conjunction, aggregator operators are
introduced which subsume triangular norms for conjunction and triangular co-
norms for disjunction. The user can thus choose on a rule-per-rule basis whether
he would like to use the minimum or the product for the truth value of the rule
body.

The following example directly expresses the fact that a certain plushbear is soft up
to a degree of truth between 0.8 and 0.9 and that theminoperator is to be used in order
to determine the truth of theloved_by_children predicate:

soft(bear, C) :~
C .>=. 0.8,
C .=<. 0.9.

loved_by_children(X, C) :~ min
soft(X, C1),
nice_color(X, C2).

At run-time the ruleloved_by_children is expanded to a regular Ciao Prolog rule
whereminim is an auxiliary predicate calculating the minimum of a list of values:

loved_by_children(X, C) :-
soft(X,C1),
nice_color(X, C2),
minim([C1, C2], C),
C .>=. 0, .=<. 1.

3.3.3.2 More Conventional Systems and Their Extensions

Lee’s paper on the fuzzy resolution rule [Lee72] gave rise to a myriad of fuzzy logic
programming languages, of which theProlog-ELFsystem [IK85] was the first. All of
these languages use variants of the fuzzy resolution rule discussed in section 3.3.1.4.

A possible extension is to only consider candidate clauses for inference if their truth
degree exceeds a user-specified cut-off value. In some cases this cut-off value can be
specified on a rule-per-rule basis. When this cut-off value is fixed to 0.7, Lee’s original
soundness result holds.
Another natural extension collects all possible solutions to a query and only returns
those with the highest truth value.
Other extensions allow fuzzy numbers as truth degrees for facts and rules.

The system closest to the general resolution rule is thef-Prolog system [LL89, LL90]
where minimum is used to compute the truth value of the body of a rule which is then
multiplied by the weight associated with the head of the rule.

While most of these systems use min-max and product logic, the system described in
[KK94] is based on Łuckasiewicz logic instead.

CHAPTER 3. APPROXIMATE REASONING 56

Some basic optimisation strategies for a fuzzy Prolog which only allows weighted facts
are described in [FSCdS94]. Solutions of subqueries can be cached and reused in sub-
sequent proofs while a form ofα-β pruning known from game trees is adapted for the
calculation of truth values. In effect there’s no use considering truth values of alter-
native solutions in a disjunction when it is already known that a certain value is the
maximum. Off course, in a more general setting, the goals themselves still need to be
verified.

Systems incorporating some form of fuzzy unification were already presented in the
previous section.

3.4 Conclusion

In this chapter, we have detailed the theoretical background on approximate reasoning.
We began our discussion with the cornerstone of existing techniques for modelling
vague concepts: fuzzy sets which are based on a natural extension of the set mem-
bership function to allow gradual membership. We provided the reader with common
terminology and extensive background on fuzzy set-theoretical and the corresponding
logical operations.

Fuzzy process control was exemplified as the most popular and successful application
of fuzzy set theory.

In sight of possible applications in declarative meta-programming, we broadened our
horizon with a detailed account on existing fuzzy logic programming languages in
which the ordinary resolution procedure is extended to incorporate partial truths. We
also explored the theoretical possibilities for extending the unification procedure based
on semantical or syntactical similarity measures.

We concluded the chapter with a mini-survey on existing fuzzy logic programming
languages.

Chapter 4

Extending SOUL’s Declarative
Framework

In chapter 2 we have explored the various ways in which declarative meta-programming
can aid in the software re-engineering process by providing reasoning facilities for
analysing the structure of a program’s source code as well as its run-time behaviour.
However, none of these approaches have language support for approximate reasoning
while, as we will see in chapter 5, the ability to express vague concepts and tolerance
for near-perfect solutions can increase the expressiveness of pattern detection rules and
even solve some commonly occurring problems in declarative meta-programming.

This chapter will detail the two pillars of the approach we developed: an extension of
SOUL’s base logic programming language for approximate reasoning and a library for
reasoning about a program’s behaviour using dynamic analysis which complements the
existent library for structural program analysis called LiCOR.

4.1 Library for Dynamic Program Analysis

Following SOUL’s organisation of the the LiCoR library for analysing a program’s
structure by its source code (see section 2.2.1.5), we have imposed an equivalent lay-
ered structure on our library for analysing a program’s behaviour from execution traces.
Each layer from this structure depends on the layers underneath.

4.1.1 Logic layer

As this layer is in common with SOUL’s LiCOR library for reasoning about source
code, we refer to section 2.2.1 for more information. To summarise, the lowest-level
logic programming constructs normally provided by the libraries of a logic program-
ming language are implemented in this layer.

4.1.2 Representational Layer

As we have seen in section 2.1.3, traces of a program’s execution can be modelled as
an ordered set of run-time events. To support a declarative analysis of such execu-

57

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 58

tion traces, the representational layer defines logic predicates which reify the dynamic
events from an execution trace to the logic meta-level.
In order to allow apost-mortemas well as anad-hocanalysis (these two variants of
dynamic analysis were discussed in 2.1.3), different definitions of these predicates are
provided for each variant.
As such, they describe the same source model (an execution trace) using the same
meta-model (the predicates from the representational layer), but their definition differs
in the way they extract the information for the source model from the application. In
the case of apost-mortemanalysis, each event from the execution trace is transcribed
as an individual logic fact while in the case of anad-hocanalysis, the same predicates
will be implemented as logic rules exploiting the symbiosis of SOUL with Smalltalk
to extract dynamic information from a running program on a need-to-know basis.

4.1.2.1 Source Model

We will analyse a program’s behaviour using execution traces modelled as an ordered
collection of run-time events.
Three types of run-time events are distinguished:

Method invocations This type of event occurs whenever a method is invoked. The
instance sending the message, the receiving object, the method’s selector and the
method’s arguments are recorded.

Variable assignmentsThis type of event occurs whenever a value is assigned to a
variable. The registered values are the object containing the variable, the method
invocation in which the assignment happened, the assigned value and the name
of the altered variable.

Method exits This type of event occurs whenever control returns from a method. We
record the method invocation we exit from and also the returned value.

Our model is thus rather fine-grained: it allows data flow information to be recorded
in addition to control flow information. In contrast to the simple coarse-grained model
deployed in Richner’s analysis tool (discussed in section 2.2.2), it keeps track of the
arguments passed to methods and the values they return. Not unlike the extremely
fine-grained model deployed in the Caffeine tool by Guéh́eneuc, Douence and Jussien
(discussed in section 2.2.3.3), we also log all variable assignments. This allows us to
keep track of the ever changing object states. Since Smalltalk handles classes as objects
and class instantiations as messages sent to these class objects, we however don’t need
separate events for class instantiations. The additional data flow information allows
more complex behavioural patterns to be detected and associations between classes to
be categorised.

Another difference with Richner’s source model is that we only allow entire classes to
be traced instead of individual methods. Furthermore, we don’t make the distinction
between indirect (i.e. a traced method is called from within an untraced method) and
direct (i.e. a traced method is called from within another traced method) method invo-
cations.

In general, we should be aware that while fine-grained models allow a great level of
detail in an application’s control and data flow, they also produce large amounts of

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 59

Listing 4.1: Source code extract of theTest class.

Tes t c l a s s>>new
2 ˆ (s u p e r new) i n i t i a l i z e

4 Test>> i n i t i a l i z e
t r e e R o o t := Tes t2 new

6
Test>>foo

8 | bar |
T r a n s c r i p t show : ’ t e x t ’ .

10 bar := ’ a n o t h e r t e x t ’ .
ˆ ba r

information. The sheer volume of run-time events gathered may limit the practical
applicability of a post-mortem analysis, but as a lightweight ad-hoc dynamic analysis
variant may spot possibly interesting classes, the size of the execution history can be
kept to a minimum by only tracing those candidate classes.
Therefore, we include both variants of dynamic analysis in contrast to Richner’s tool
which relies solely on the post-mortem analysis variant and the caffeine tool which
deploys an ad-hoc dynamic analysis.

In the context of software re-engineering, execution traces are obtained by executing a
scenario consisting of user actions or message sends specifically chosen in such a way
that only run-time information relevant to the examination of a particular part of the
program’s behaviour is generated. In addition, we aren’t required to trace the entire
program, but can limit our investigation to those classes we are interested in.

We implemented aTrace class that turns tracing on for classes given as arguments to
its trace: method. This is the same for ad-hoc and post-mortem analysis up to an
additionaladhoc notification that has to be sent to theTrace class before beginning
the execution of a scenario.

To illustrate, we will generate an execution trace of theTest class shown in listing 4.1.
This is the only class we will be tracing so no information about the behaviour of other
classes will be included in the resulting execution trace.
An extended sequence diagram mimicking the execution trace of a messagefoo sent
to a newly created instance ofTest (i.e. the scenario consists of the statement ’Test
new foo’) is shown in figure 4.1.

As execution traces may change drastically with different user input, determining a
suitable scenario is crucial to the successful investigation of a particular part of pro-
gram’s behaviour. They should focus and limit the execution trace to information that
is necessary to detect the requested patterns and shun the generation of excess data as
this will significantly slow down the detection process. Ideally, execution scenarios
invoke deterministic behaviour; the same program with the same scenario and input
should produce the same run-time information. Unit tests are often very suited for this
purpose as they should test one particular program feature in a deterministic way.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 60

Figure 4.1: Example of a source model represented as a sequence diagram

We generate the run-time events during a program’s execution by transforming its
source code in such a way that the previously mentionedTrace class is notified of
each event. This process is commonly calledinstrumentationand our particular imple-
mentation is detailed in appendix A.

4.1.2.2 Meta-Model

The events which comprise the execution trace (our source model) are modelled us-
ing the Smalltalk class hierarchy depicted in figure 4.2. TheTraceEvent class forms
the root of this hierarchical tree and has a subclass for every type of run-time event:
MethodEntryEvent, MethodExitEvent and VariableAssignmentEvent. Each
run-time event is provided with asequenceNumber instance variable which denotes
its chronological ordering in the execution trace.

Since we are interested in performing a declarative analysis of a program’s behaviour,
every run-time event can be transcribed to SOUL or Prolog facts using theirtoFactOn:
and toPrologFactOn: methods respectively. The following predicates form the
declarative meta-model used to describe execution traces with:

Method invocation

methodEntry(?sequenceNumber,
?sendingInstance,
?receivingInstance,
?receivedSelector,
?receivedArguments)

Variable assignment

assignment(?sequenceNumber,
?methodInvocationNumber,
?instance,
?variable,

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 61

Figure 4.2: UML diagram of the run-time events class hierarchy

?value)

Method exit

methodExit(?sequenceNumber,
?methodInvocationNumber,
?returnedValue)

As an illustration the execution trace depicted in figure 4.1 is thus transcribed to the
following set of SOUL facts with each object mapped to a unique identifying integer:

methodEntry(1, 0, 1, [#new], <>)
methodEntry(2, 1, 2, [#initialize], <>)
assignment(3, 2, 2, treeRoot, 0)

methodExit(4, 2, 2)
methodExit(5, 1, 2)
methodEntry(6, 0, 2, [#foo], <>)
assignment(7, 6, 2, bar, 3)

methodExit(8, 6, 3)

4.1.2.3 Reifying the Source Model

The reification process varies with the form of dynamic analysis that is deployed.

Mapping Objects to Unique Identifiers In an ad-hoc analysis, the symbiosis be-
tween Smalltalk and SOUL can be exploited to use the actual Smalltalk objects in-
volved in the execution trace as arguments of the above predicates. We could do the
same with thepost-mortemanalysis variant, but the equivalent transcription to Prolog

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 62

forces us to map each object to a unique object identifying integer. During a post-
mortem analysis within SOUL, it is however possible to retrieve the object correspond-
ing to a given integer using theobjectMap(?ObjectNumber,?Object) predicate,
but when using this functionality it is important to bear in mind that the retrieved ob-
ject has already been manipulated during the entire execution trace and that its values
no longer represent the values it had during the run-time event it was involved in at a
particular time.

Post-mortem Analysis Underpost-mortem analysis, the process consists of instru-
menting the classes under investigation followed by an execution of a well-determined
scenario that focuses the execution trace on interesting object interactions and be-
haviour. The events generated during the execution of the traced classes are gathered
into a knowledge base of logic facts after which the declarative analysis can start.

In other words: we do not start reasoning until the application has ended. This al-
lows advanced (i.e. we can consider multiple candidate solutions when looking for a
particular run-time event in the execution history through backtracking) reasoning pat-
terns over the entire run-time behaviour of a program. It however also means that large
amounts of data need to be stored and processed which might be overkill and even slash
the performance of very simple rules.

Ad-hoc Analysis In the alternativead-hoc analysisvariant, the declarative reasoning
process runs as a coroutine alongside the application. The execution of the application
is interleaved with the evaluation of the logic program which can suspend and resume
the execution of the former.

We declaratively request a particular execution event and the execution of the applica-
tion that is being analysed is continued until this event is encountered. Control then
returns to the reasoning process where we analyse the current event and make a request
for the following event.

As a consequence, we have at no time during the evaluation of our query a complete
execution history to our disposal. The applicability of this approach is thus limited to
lightweight rules: since the execution of the program is advanced whenever we back-
track upon a choice for a run-time event we can’t access past events in this way and
cannot consider alternatives for an event that is requested to prove the body of a rule
without advancing the application.

To interweave the evaluation of the application and the logic program, SOUL and the
program under execution need to be started in separate processes. We can then query
for the next execution event by simply launching a goal with one of the predicates from
the meta-model. These predicates are no longer facts but full-grown rules that suspend
and resume the application’s execution. By using the same predicates for ad-hoc and
post-mortem dynamic analysis, we ensure a maximal reuse of common rules.

The following rule illustrates how themethodEntry predicate used to model method
invocation events now steers the application’s execution. Also note how the rule’s
arguments now contain the actual Smalltalk objects involved in the run-time event:

methodEntry(?sequenceNumber,?sendingInstance,

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 63

?receivingInstance,?receivedSelector,
?receivedArguments) if

event(?event),
[?event isMethodEntryEvent],
equals(?sequenceNumber,[?event sequenceNumber]),
equals(?sendingInstance,[?event sender]),
equals(?receivingInstance,[?event receiver]),
equals(?receivedSelector,[?event receivedSelector]),
listAsCollection(?receivedArguments,[?event receivedArguments])

The rule first asks for a new run-timeevent which must be of themethodEntryEvent
type. If it is not, the system will simply backtrack and ask for anotherevent un-
til one of the correct type is encountered. The events themselves are instances from
the classes depicted in figure 4.2 to which we can send regular Smalltalk messages.
We use this property in the above rule to dissect an event into itssequenceNumber,
sendingInstance, receivingInstance, receivedSelector andreceivedArguments
components.

Because the execution of the analysed application is paused when a suitable event is
encountered, the information in this event is always accurate and up-to-date. We there-
fore do not have to map the objects participating in the event to unique integer identi-
fiers and can instead use the actual objects themselves. This is a major advantage over
post-mortem traces as we can now access and manipulate the objects in the analysed
program during its execution with declarative meta-programming which is of use in
advanced debugging sessions.

The application’s execution is interweaved with the evaluation of the logic program
using the threefoldevent predicate:

event(?e) if
equals(?e,[Tracing.Trace current event]),
[Tracing.Trace current event isProgramEndEvent],
!

event(?e) if
not([Tracing.Trace current event isProgramEndEvent]),
equals(?e,[Tracing.Trace current event])

event(?e) if
not([Tracing.Trace current event isProgramEndEvent]),
[Tracing.Trace current semaphore signal.
Tracing.Trace current semaphore wait.
true],

event(?e)

The first part of the rule defines the obvious case in which the program has ended and no
more solutions can be found to this rule. The second part simply unifies the argument
of the predicate with the last encountered execution event. When we ask for more
solutions to this rule, the third part is invoked which signals a semaphore shared by
the application process and SOUL’s process. This signal results in the execution of the
application being resumed. We also put our own reasoning process to sleep by sending

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 64

the wait message to the shared semaphore. When a run-time event is encountered, the
exact opposite will happen at the application’s side: it will signal the semaphore which
results in the reasoning process to be resumed and put itself to sleep again. The entire
process is depicted schematically in figure 4.3.

Figure 4.3: Schematic representation of the ad-hoc analysis process.

4.1.2.4 Simple Queries over the Representational Layer

In this section, we will show how the predicates in the representational layer can be
used to construct some simple analysis rules and also illustrate the practical differences
between post-mortem and ad-hoc analysis. More commonly used rules defined in the
basic layer will be detailed later on.

a) Post-mortem Analysis As a simple, yet convincing application of post-mortem
dynamic analysis, we will show how instances of the double dispatching pattern can be
detected.

The essence of this well-known pattern is depicted in figure 4.4 and its instances are
detected –solely relying on dynamic analysis– by the following rule which is satis-
fied whenever an?invoker instance starts a double dispatching method invocation se-
quence between two objects,?primary and?secondary, where?primarySelector
and?secondarySelector are the selectors of the first method invocation and the sec-
ond method invocation (invoked within the call stack of the first method invocation) re-
spectively. We also provide information about the ordering of the method invocations in
the execution history through the sequence numbers?primarySN and?primaryExit.

The implementation is a straightforward translation of the aforementioned sequence
diagram:

?invoker doubleDispatchesOn: ?primary
selector: ?primarySelector
at: ?primarySN
andOn: ?secondary
selector: ?secondarySelector
at: ?secondaryExit if

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 65

Figure 4.4: Sequence diagram of double dispatching patterns de-
tected by the ?invoker doubleDispatchesOn: ?primary selector:
?primarySelector at: ?primarySN andOn: ?secondary selector:
?secondarySelector at: ?secondarySN rule.

methodEntry(?primarySN,?invoker,?primary,?primarySelector,?primArguments),
methodExit(?primaryExit, ?primarySN, ?),
member(?secondary,?primArguments),
methodEntry(?secondarySN,?primary,?secondary,?secondarySelector,?secArguments),
methodExit(?secondaryExit, ?secondarySN, ?),
member(?primary,?secArguments),
greater(?primaryExit, ?secondaryExit)

The application of the rule, in which we map in addition each object identifier to the
corresponding Smalltalk object, on the execution trace of the heavily on double dis-
patching relying Visitor design pattern results in the following answers:

[?invoker-->[a Tracing.DDTestInvoker],
?primarySN-->[20],
?primary-->[a Tracing.DDTest1],
?primaryExit-->[30],
?secondarySelector-->[#visitDDTest1:],
?primarySelector-->[#accept:],
?secondary-->[a Tracing.DDVisitor]]

[?invoker-->[a Tracing.DDTest1],
?primarySN-->[21],
?primary-->[a Tracing.DDTest2],
?primaryExit-->[27],
?secondarySelector-->[#visitDDTest2:],
?primarySelector-->[#accept:],
?secondary-->[a Tracing.DDVisitor]]

[?invoker-->[a Tracing.DDTest2],
?primarySN-->[22],
?primary-->[a Tracing.DDTest3],
?primaryExit-->[24],

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 66

?secondarySelector-->[#visitDDTest3:],
?primarySelector-->[#accept:],
?secondary-->[a Tracing.DDVisitor]]

This result shows that there exists a double dispatching pattern starting at sequen-
cenumber 20 and ending at sequencenumber 30 which encompasses a second double
dispatching pattern starting at 21 and ending at sequencenumber 27 which in turn en-
closes a final double dispatching pattern starting at 22 and ending at sequencenumber
24.

This answer collection is complete; all double dispatching instances in the execution
trace are detected using the above rule under post-mortem analysis. In the next sec-
tion we will see that this rule is incomplete under ad-hoc analysis which is the main
difference between the two dynamic analysis variants.

b) Ad-hoc Analysis When we try to run the double dispatching rule under ad-hoc
analysis, we will only detect the first instance of the double dispatching pattern which
starts at the method invocation with sequence number 20 and ends with the method
invocation at sequence number 29.
To understand why, it helps to keep in mind that the execution of the application is
continued until a matching run-time event is encountered. As such, when we satisfy
the firstmethodEntry subgoal, its variables get bound which causes the execution of
the program to continue until a newmethodEntry event is encountered that satisfies
the existing variable bindings. Therefore, the intermediate double dispatching patterns
will never be detected since the execution of the application has already advanced be-
yond their starting point.

This might seem as a major disadvantage of ad-hoc analysis, but its lightweight nature
makes the partial results obtained through a preliminary ad-hoc analysis perfect to limit
the size of the execution histories that need to be considered by a post-mortem analysis
with. This can for instance be obtained by selectively tracing only those classes that
occur in the results of the preliminary analysis.

In general, ad-hoc analysis is unsuited for rules in which we have to backtrack over
previous choices for run-time events. A technical solution to this problem comprises
using a cache of past events with whose content we could try to satisfy our requests for
run-time events before advancing the application to obtain a new event. Such an ad-
hoc analysis extended with a cache could be seen as a windowed post-mortem analysis.

An ordinary ad-hoc analysis does however suffice for linear queries which don’t require
backtracking over past events. In such cases, a full-blown post-mortem analysis is often
too costly when large execution traces are involved. Therefore, we will now focus on
some possible applications of ad-hoc analysis:

Counting single argument message sendsWe begin with an example of a simple dy-
namic ruleallSingleArgumentMessagesToClass(?class, ?messages)which
returns a list?messages containing every single-argument message call received
by instances of?class in the form of the received argument and selector to-
gether with the ordering of the invocation event in the execution history.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 67

It is defined as a findall over allmethodEntry events where the receiver is an
instance of the givenclass and the argument list contains only one element:

allSingleArgumentMessagesToClass(?class,?messages) if
findall(<?sn,?selector,?arg>,

and(methodEntry(?sn,?,?receiver,?selector,<?arg>),
instanceOf(?receiver,?class)),
?messages)

The following is the result of the query

allSingleArgumentMessagesToClass([Tracing.DDVisitor],?arguments)

on an execution trace of a typical Visitor Design Pattern:

[?arguments-->< <[23],[#visitDDTest3:],[a Tracing.DDTest3]>,
<[26],[#visitDDTest2:],[a Tracing.DDTest2]>,
<[29],[#visitDDTest1:],[a Tracing.DDTest1]>>]

Among others we observe that avisitDDTest3: message was sent at time 23
with an instance of theTracing.DDTest3 class as its single argument.

While the above example can be executed in a post-mortem analysis setting as
well, this rule doesn’t require allmethodEntry events of the execution history
to be stored. Therefore, the ad-hoc analysis variant avoids in this case an unnec-
essary memory overhead by interleaving the execution of the application and the
evaluation of the logic query.

Declaratively altering program behaviour In the software re-engineering process,
the detection of patterns such as design deficits in a program’s source code is
often followed by a phase in which these errors are corrected by transforming or
refactoring its source code. The dynamic equivalent of modifying a program’s
source code boils down to changing its run-time behaviour. The ad-hoc dynamic
analysis variant provides a simple mechanism to do just that. The example in
itself is rather artificial but is illustrates that declarative analysis of a program’s
behaviour supports all phases of the software re-engineering process. In prac-
tice, software engineers alter the actual source code of a program to overcome
behavioural deficits that were detected during its execution.

Imagine an already existing e-commerce application and that we want to alter
its behaviour so that a discount is awarded on the price of a purchase when the
user has already made 3 of them. We can achieve this goal using declarative
meta-programming and ad-hoc event analysis:

offerDiscountAfterThree if
methodEvent(?,?,?receivingInstance,calculatePrice,?),
equals(?time,[?receivingInstance time]),
greater(?time,2),
[?receivingInstance price: (?receivingInstance price - 10).
Transcript show: ’Discount awarded’; cr.
true],

offerDiscountAfterThree

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 68

The above rule lets the application execute normally until an invocation of the
calculatePrice message is intercepted. In that case we verify whether the
user already bought more than 2 items. If so, we subtract 10e from the currently
calculated price and show the message “discount awarded” on the transcript. If
not, the rule backtracks and the application continues its normal execution.

This results in the following output on the transcript:

Time = 1
Price you have to pay = 100
Time = 2
Price you have to pay = 100
Time = 3
Price you have to pay = 100
Discount awarded
Time = 4
Price you have to pay = 90

We can thus conclude that ad-hoc declarative event analysis can be used to
alter an application’s behaviour. It turns out the above example is actually
quite close to Event-Based Aspect-Oriented Programming (EAOP) in which as-
pects are triggered by observing program execution events. This approach to
Aspect-Oriented Programming is presented in the work of Douence, Motelet,
and S̈udholt [DMS01].

Declarative debugging Another possible use of straightforward ad-hoc analysis queries
is declarative debugging. An erroneous program can be executed until a rule
which declaratively describes the incorrect behaviour is satisfied. From then on
the declarative reasoning process can be used to inspect and continue the pro-
gram’s execution step-by-step. Seen this way, ad-hoc analysis can be used to
specify flexible and dynamic breakpoints.

4.1.3 Basic Layer

The basic layer contains auxiliary predicates commonly used in the design layer. They
provide a reasonable level of abstraction over the representational layer and also im-
plement low-level dynamic analysis functionality commonly used in the design layer.
It contains among others accessing predicates providing abstraction over the dynamic
events in an execution trace and functionality for tracking variable assignments, object
instantiations and predicates for analysing binary class relations.
We will continue our discussion with some of the most important predicates from the
basic layer.

4.1.3.1 Object Instantiation

When trying to understand a program’s behaviour, identifying when a particular in-
stance of a class was created is an interesting problem. We can get an answer to this
question using the?instance isInstanceOf: ?class at: ?sequenceNumber rule
which is defined as follows:

?instance isInstanceOf: ?class at: ?methodInvocationNumber if

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 69

methodExit(?,?methodInvocationNumber,?instance),
methodEntry(?methodInvocationNumber,?,?class,?,?),
instanceOfClass(?instance,?class)

It states that an?instance of a ?class is created at a particular?sequenceNumber
when we have a method invoked on?class which returns an instance of this class.

This kind of information is hard to obtain statically because deriving an exact control
flow graph from the source code is hard. For instance, our rule correctly detects in-
stances that were created by an object Factory while a static rule that only searches
for new messages fails to detect it or would need to be extended to handle this specific
case. The dynamic rule is in contrast only a few clauses long.

Users can use this rule in the query below where we additionally map the integers
returned by the rule to a human-readable Smalltalk object:

?instance isInstanceOf: ?class at: sequenceNumber,
objectMap(?instance, ?i),
objectMap(?class, ?c)

The results returned by this query are of the following form:

[?instance-->[2],
?c-->[Tracing.DDTestInvoker],
?class-->[1],
?i-->[a Tracing.DDTestInvoker],
?methodInvocationNumber-->[1]]

Note that we can limit the amount of results by binding more variables in the query,
for instance when we want to restrict our investigation to instances of a particular class
or instances generated during a certain method invocation. Also note that we do not
restrict ourselves to instances that were directly created in a method invocation (as a
static analysis would do), but also consider instances that were created indirectly by
intermediate method calls.

In the next chapter, we will show how the accuracy of this rule can be improved by
incorporating static information from the existing source code reasoning library in a
structural way.

4.1.3.2 Object State Tracking Using Variable Assignments

The previous example used theobjectMap predicate to map integers in the logical
transcript of an execution history to the actual Smalltalk object they represent. How-
ever, as a consequence of most-portem analysis, the object returned by this predicate
is in the state it was in at the end of the program’s execution and not in the state it
was in during any other given message invocation. This also implies that if an instance
variable is assigned to in the middle of the program and once again at the end of the
program, we can only access its latter value even if we are reasoning about events that
occurred before the last assignment.

From this observation, the need to know the state of all objects at each moment in
time is easily identified. For this reason, we provide the predicate?variable in:

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 70

?instance at: ?methodInvocationNumber value: ?value, which states that
a ?variable related to a particular?instance contained a?value at the end of the
method invocation identified by a?methodInvocationNumber. Its implementation
involves declaratively calculating the value of a variable from the recorded assignment
events and is detailed in appendix B.

Due to the multi-directional nature of logic predicates, we can use this predicate (aside
from reasoning about variable values in the design layer predicates) in multiple ways:

• If only the?instance variable is bound to a value, we obtain for all the?variable
names related to that instance a summary of the different values taken on at the
end of each method invocation identified by the?methodInvocationNumber.

Among others, a possible use would be to detect unused or potentially dangerous
variables: variables which never take on a value other than nil.

• Suppose that an instance variable holds an incorrect value, but that we cannot
pin-point the exact method responsible for the error. In that case, we can use
the rule to search for all methods in which this faulty value is assigned to the
variable.

• Suppose on the other hand that we know the last occurrence of the correct value
for the above variable and that we want to know where this correct value is over-
ridden by an incorrect one. For this purpose, we could use theoverridesExternalAssignment
(a sub-goal of the above predicate, see appendix B for more information) which
returns the assignments that override another assignment during another method
invocation.

• TheoverridesInternalAssignment predicate, another subgoal of the predi-
cate, can for instance be used to count the number of assignments to an instance
variable that override another assignment within the same method invocation.

It is clear that this kind of information is extremely difficult to obtain from a static
source code analysis.

By only tracking variable assignments we are however ignoring another important
source of state information: the collections in an instance. These are normally not
assigned values, but extended usingadd-like messages and shrunk usingremove-like
messages depending on the actual kind of collection used. Keeping track of these
values would involve writing wrappers for commonly used collection classes which
generate events when a element is added to the collection or removed from it. A major
downside is the amount of trace information that once again increases enormously so
we haven’t pursued this path further on.

4.1.3.3 Binary Class Relationships

As was shown by Gúeh́eneuc in his Ph.D. thesis [Gué03], a declarative analysis of a
program’s run-time behaviour can be used to categorise binary class relationships:

Association There exists an association relation between classesA andB if instances
of the classes exchange message sends with each other.

Aggregation There is an aggregation relation between classesA andB if there already
is an association relation and classB is contained in a variable of classA:

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 71

aggregation(?wholeInstance,?partInstance,?sequenceNumber) if
directedAssociation(?wholeInstance,?partInstance,?sequenceNumber),
?variable isAssignedVariableOf: ?wholeInstance,
?variable in: ?wholeInstance at: ?sequenceNumber value: ?partInstance

Composition An aggregation relationship can be classified as a composition if the
lifetime of the part is entirely encompassed by the lifetime of the whole.

composition(?compositeInstance,?componentInstance,?sequenceNumber) if
aggregation(?compositeInstance,?componentInstance,?sequenceNumber),
?componentInstance of: ? instantiatedAfter: ?compositeInstance of: ?

The above rules can be used to classify the binary class relationships in programmat-
ically extracted UML diagrams. As this involves lifetime and exclusiveness informa-
tion, this classification cannot be performed statically.

4.1.4 Design layer

This layer contains predefined predicates for analysing a program’s behaviour and de-
sign. This layer will not only base its conclusions upon static and dynamic information,
but also appeals to approximate reasoning –the second pillar of our framework– for a
more expressive and flexible specification of its predicates.
Therefore, we will devote a separate chapter (Chapter 5) to the design layer and de-
scribe the features of our base language for approximate reasoning first.

4.2 Declarative Language for Approximate Reasoning

To incorporate approximate reasoning –which forms the second pillar of our approach–
in the automated re-engineering process, we have developed a basic fuzzy Prolog. The
features it exhibits for dealing with uncertainty and vague concepts are introduced in
the following exposition along with concrete examples to make the reader acquainted
with its extended syntax.

The language itself is implemented for efficiency reasons as a meta-interpreter in the
SWI-Prolog system instead of in SOUL itself.

Basic Weighted Facts and RulesOne of the primary language features is the ability
to assign weights to rules and facts. We have chosen the backquote operator for
this purpose since the more familiar colon is already used for other purposes by
the SWI-Prolog system in which the meta-interpreter was implemented.

In the following example, we are absolutely certain that Jan is Rob’s father, while
we’re not so certain at all about Karen being Rob’s child. Also, we can’t be
totally certain about the grandparent rule so it is assigned a truth degree lower
than the absolute truth.

parent(jan,rob) ‘ 1.
parent(rob,karen) ‘ 0.3.
parent(rob,tom) ‘ 0.5.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 72

grandparent(X, Y) ‘ 0.9 :-
parent(X,Z),
parent(Z,Y).

We can now ask our meta-interpreter for the degree of truth of solutions to
grandparent(X,Y) with the queryprove(grandparent(X, Y), C). In this
case, we will obtain a certitude of 0.27 for the solutionX = Jan, Y = Karen
while we obtain a certitude of 0.45 for Jan being Tom’s grandfather.

As can be derived from these results, we’re using Gödel semantics for the con-
junction operator (i.e. the minimum) and the Larsen implication operator (i.e.
multiplication) which are, as we have seen in the previous chapter, popular
choices for Fuzzy Prologs.

Combining Crisp and Fuzzy ClausesIn the previous example, we explicitly stated
that we were absolutely certain about the factparent(jan,rob) ‘ 1 by as-
signing it a certainty of 1. This truth assignment can be omitted for crisp facts
and rules as is the case for thesold fact andpopular_product rule in the next
example.

We are stating that any product of which more than 10 items are sold must be a
popular product, while other products are destined to become popular with a fair
certainty given an attractive packaging and good advertising.

sold(flower, 15).
nicely_packaged(chips) ‘ 0.9.
well_advertised(chips) ‘ 0.6.

popular_product(X) :-
sold(X, A),
A > 10.

popular_product(X) ‘ 0.8 :-
nicely_packaged(X),
well_advertised(X).

In the example,chips is a popular product with a certainty ofmin(0.9,0.6) ∗
0.8 = 0.48 while we can be absolutely certain aboutflower being a popular
product.

Algebraic Weight Assignments It is also possible to assign a variable to the degree
of truth of the head of a rule instead of a real on the unit interval. This variable
can then be bound in the body of the rule.

In the following example, this language feature is used to simulate the fuzzy
setabout_20. Its membership function∆(10,20,30) can be modelled by the
following set of rules. They can be used to determine how close a given number
is to 20, but not in the other way around; that is to return a number close to 20
up to a certain degree.

about_20(20).

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 73

about_20(X) ‘ 0 :-
X < 10.

about_20(X) ‘ C :-
X >= 10,
X < 20,
C is (X - 10) / 10.

about_20(X) ‘ C :-
X > 20,
X =< 30,
C is (30 - X) / 10.

about_20(X) ‘ 0 :-
X > 30.

When using truth variables in this way, it is important to keep in mind that they
are being bound to the degree of truth of the left-hand side of the implication (the
head of the rule) and not to the degree of truth of solutions to the entire rule.

In essence we are saying that the head of a rule is true up to a certain degree of
truth which we will assign later on in the body of the rule given that this body
is absolutely true. If this body is true only up to degree of for instance 0.5, the
certainty of solutions to this rule will be half that of the value of the variable
bound to the degree of truth of the head of the rule.

Truth of Subgoals Another useful feature allows obtaining the degree of truth of a
rule’s individual subgoals.

successful_product(X) :-
popular_product(X) ‘ C,
C >= 0.5.

In the above example, this feature is used to limit successful products to those
products which are popular up to a degree of 0.5. The solutions will all have a
certainty of 1 as the certainty of expressionsϕ ‘ C is defined to be 1 whenC
unifies with the truth degree ofϕ.

Explicit Truth Assignment on Rule Heads As 1 is the neutral element of G̈odel con-
junction, the fact thatϕ ‘ C is absolutely certain whenC unifies with the truth
degree ofϕ can be used to combine the truth degrees of a rule’s subgoals in a
way that is more suitable to the specific problem at hand.

In the example below, the average of the quantitative part of the first two subgoals
is explicitly assigned to the certainty of the rule’s head.

popular_product2(X) ‘ C :-
nicely_packed(X) ‘ C1,
well_advertised(X) ‘ C2,
C is (C1 + C2) / 2.

Again, it is important to note that we are only assigning the certainty of the rule’s
head. In this case, the degree of truth of the body is simply 1.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 74

Explicit Truth Assignment on Rule Bodies Combined with the possibility of using
numbers as regular clauses (their truth degree equals the number they represent),
we can use the above feature to actually assign the truth degree of a rule’s body
and thus also overrule the default interpretation of a conjunction of truth degrees.

It could be argued that using the average of the truth degrees ofnicely_packed
andwell_advertised is a more balanced measure of the popularity of a prod-
uct than the minimum. We can express this in the following way:

popular_product3(X) ‘ 0.9 :-
nicely_packed(X) ‘ C1,
well_advertised(X) ‘ C2,
C is (C1 + C2) / 2,
C.

The truth degree of each subgoal is 1 except for the last one which is actually
the average of the degree of truth ofnicely_packed andwell_advertised.
Using this rule, we get a certainty of 0.9×min(1,1,1, 0.9+0.6

2) = 0.675 for the
popularity of chips.

Truth Modifiers Using algebraic expressions and explicit truth assignments on rule
bodies or heads we can model linguistic hedges (whose use and purpose we have
discussed in section 3.2.2.6) in the following way:

absolutely(X) :-
X ‘ 1.

fairly(X) ‘ C :-
X ‘ C1,
C is sqrt(C1).

very(X) ‘ C :-
X ‘ C1,
C is C1 ** 2.

In addition to unifying degrees of truth with variables, our language also supports
using these certainties as input of user-defined predicates. The degree of truth of
an expressionϕ ‘ ψ then equals the truth degree ofψ with the truth degree ofϕ
as its input.

For instance,C will be bound to 0.83666 in the queryprove(0.7 ‘ fairly, C).

The following rule expresses that a successful product must be a very popular
product up to a degree of at least 0.2. It also shows how the backquote operator
can be chained:

successful_product2(X) :-
(popular_product(X) ‘ very) ‘ C,
C > 0.2,
C.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 75

Combining Multiplication and Minimum for Conjunctions We have already shown
how the default calculation of truth values of a conjunction can be overridden.
There’s also some syntactic sugar for another often-used conjunction operator:
the multiplication designated by#. This will come in handy for the next feature
we will discuss.

zeropointfour :-
1 # 0.4,
0.9 # 0.5.

In the above example, the truth degree of the queryzeropointfour is calculated
asmin(1×0.4,0.9×0.5) = 0.4.

Fuzzy Unification of Strings Another language feature allows approximate unifica-
tion of strings based on their Levensthein edit distance (see section 3.3.2.3). The
operator for approximate unification is~. It is reasonable to obtain the certainty
of a goal with approximately unified arguments by multiplying the unification
degree of the arguments with the certainty of the goal itself. This is where the#
operator comes in handy.

The following mini-program implements a dictionary which is insensitive to
spelling mistakes thanks to the fuzzy unification on the first argument ofdictionary entry:

dictionary_entry(’flavour’, ’fragrance’) ‘ 0.8.
dictionary_entry(’flavour’, ’taste’).

approximate_lookup(X, Y) :-
dictionary_entry(X1, Y) # X ~ X1.

We will find that ’fragrance’ and ’taste’ are answers to the queryapproximate lookup(flavour,
X) with a certainty of 0.69 and 0.86 respectively.

Fuzzy Unification of Terms Our language also supports approximate unification of
prolog terms as discussed in the previous chapter.

In this example, we are trying to unify a term with a small typing error in the
functor name at the second level and with the second argument omitted.

prove(a(abba(X, Y), Z) ~ a(abb(2), 3), C).

X = 2
Y = _G148
Z = 3
C = 0.667774

We can see that the algorithm tries to unify the two terms as good as possible. It
is clear that this feature has to be used with caution as we might be able to unify
two very distinct terms, albeit with a very low unification degree and with some
variables left unbound.

An implicit fuzzy unification for all clauses could be built in the language itself,
but we have opted not to do so and leave an explicit choice with the user as this is
often not needed in declarative meta-programming for software re-engineering
and involves in addition a large run-time overhead.

CHAPTER 4. EXTENDING SOUL’S DECLARATIVE FRAMEWORK 76

4.3 Conclusion

We have discussed the two cornerstones of our approach to software re-engineering:
the declarative framework for dynamic analysis and the base logic meta-programming
language which supports approximate reasoning.

Our dynamic analysis library for reasoning about a program’s behaviour is structured
in a layered manner similar to the organisation of the LiCOR library for structural code
reasoning it is intended to complement.

Our source model consists of execution traces comprising chronologically ordered run-
time events which are reified to logic facts. The source model is fine-grained and
records method invocation arguments, method return values and variable assignments
which allows control and data-flow information to be obtained from the execution
traces.

We have implemented two variants of dynamic analysis: post-mortem and ad-hoc anal-
ysis where the latter interweaves the execution of the application and the declarative
analysis of its run-time behaviour. The former reasons over complete execution his-
tories obtained after the program has ended. Ad-hoc analysis is suitable for simple
queries which don’t require backtracking over previous choices for run-time events. Its
lightweight nature makes it fit for limiting the search space of complex logic rules in
the post-mortem analysis variant.

We have shown some examples of low-level ad-hoc predicates for reasoning about a
program’s behaviour: a rule which counts the number of single argument message in-
vocations and an elementary way to influence the behaviour of an existing application
reminiscent of event-based aspect-oriented programming.

We have also discussed examples of useful post-mortem predicates which are able to
detect exactly when each instance of a particular class is instantiated, we have shown
how to calculate an object’s ever-changing state at a random moment in an execution
history through variable assignments and we have classified the binary class relations
known from UML diagrams. We have also described a rule for detecting the double
dispatching pattern. These rules are all examples of information that is very difficult or
even impossible to obtain through static source code analysis.

We have concluded the chapter with an exposition of the approximate reasoning fea-
tures incorporated in our base logic meta-programming language.

Chapter 5

Applying Approximate
Reasoning and Dynamic
Analysis to Software
Re-engineering

In this chapter we will discuss how the predicates from the lower layers of our declar-
ative framework for dynamic analysis can be used to express more complex software
patterns such as the Visitor design pattern. We will also show how approximate rea-
soning, the second pillar of our approach to software re-engineering, can augment the
expressiveness of the base declarative meta-programming language thus allowing soft-
ware patterns to be described by flexible yet succinct rules.

We have identified three commonly re-occurring problems in declarative meta-programming
applied to software re-engineering for which support for approximation and vague con-
cepts in the base declarative language promises to be a viable solution. The following
sections will introduce each problem with a dynamic or static example that motivates
the use of approximate reasoning to overcome the problem.

5.1 Idealisation of Pattern Detection Rules

The first of the three commonly recurring problems we have identified in declarative
meta-programming is that of overly idealised declarative rules. We often strive for rules
that are as expressive and compact as possible, but –in an attempt to take every con-
ceivable real-world exception into account– often end up with massive rules consisting
of multiple conditions only to find out later that yet another discrepancy between the
utopic abstract description of a software pattern and a real-life occurrence wasn’t cov-
ered by this rule.

The Visitor design pattern is a perfect case study for the merits of approximate rea-
soning in detecting design patterns with compact logic programming rules as it is the
prototypical design pattern example with average complexity. It is one of the twenty-
three design patterns introduced by the “gang of four” in their famous book on reusing

77

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 78

proven and often re-occurring software designs [GHJV94].

The Visitor pattern is used when many unrelated operations need to be performed on
objects of different types in a compound object structure. Its structural architecture is
shown in figure 5.1.

Figure 5.1: The architecture of the Visitor Design Pattern [GHJV94].

The Visitor abstract class has a methodvisitConcreteElementX: for each ele-
ment of type X in the object structure. Instead of cluttering each element in the object
structure with their respective part in the definition of a complex object structure op-
eration, concrete implementations of thevisitConcreteElementX: methods can be
given inVisitor subclasses to define the operation on the object structure. The objects
in the object structure accept aVisitor subclass with theiraccept: method and sub-
sequently call thevisitConcreteElementX: method corresponding with their type
on the received visitor. The run-time behaviour of the Visitor design pattern is depicted
in the sequence diagram shown in figure 5.2.

This way, all methods defining a specific operation on the object structure are kept
together in a separate class instead of ending up intermixed with other operator imple-
mentations in the components of the object structure.

Implementing new operations on the object structure thus amounts to creating a new
Visitor subclass instead of extending the implementation of the object structure com-
ponents. Extending the object structure itself is however more difficult as everyVisitor
subclass will have to implement a new method for visiting the newly created object
structure element.

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 79

Figure 5.2: The sequence diagram of the Visitor design pattern [GHJV94].

We will first show how the pattern can be detected using a static analysis and identify
some of the problems related to this form of program analysis. This type of func-
tionality is particularly helpful to maintainers whose understanding of an unknown
legacy system (of which the documentation is often non-existent or no longer in sync
with evolved versions) can be significantly increased when a tool informs them about
instances of well-known design patterns that were successfully detected in the applica-
tion’s source code.

5.1.1 Static Detection of the Visitor Design Pattern

The use of static information implies that only the structural aspect of a programming
pattern can be expressed in a straightforward manner. This doesn’t pose any problems
for structural patterns which are very architecture-centric and can be easily described
in terms of class hierarchies and methods alone. However, it is much harder to express
a programming pattern that primarily describes how its entities collaborate with each
other.

The Visitor design pattern is a fine example of a behavioural design pattern that can
be detected more easily using dynamic analysis. Its architectural structure is shown in
figure 5.1. The logic rule below describes this structure in a straightforward manner:

visitor(?visitor, ?element, ?accept, ?visitSelector) if
class(?visitor),
classImplements(?visitor, ?visitSelector),
class(?element),
classImplementsMethodNamed(?element, ?accept, ?acceptBody),
methodArguments(?acceptBody, ?acceptArgs),
methodStatements(?acceptBody,

<return(send(?v, ?visitSelector, ?visitArgs))>),
member(variable([#self]), ?visitArgs),
member(?v, ?acceptArgs).

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 80

First of all, the rule checks whether thevisitor variable1 is a class that implements the
visitSelector method. The rule then verifies that?element implements a method
with the body?acceptBody. This method will be called with the visitor as its ar-
gument which is checked on the last line of the rule. In the body of this method, a
messagevisitSelector is consecutively sent back with the visited element as its
argument. This is verified by matching its source code with the statements in the
methodStatements part of the rule.

We are thus heavily relying on the actual implementation of the pattern in the source
code with little room for small derivations. The above rule assumes for instance that
the descend through the object structure is controlled by the visitor instead of by the
object structure itself as the body of theaccept: method is required to match the
<return(send(?v, ?visitSelector, ?visitArgs))> statement list exactly.

5.1.2 Dynamic Detection of the Visitor Design Pattern

In the previous chapter, we discussed some of the predicates from the basic layer which
offer information that is difficult or even impossible to obtain through a static analysis
alone. As we have illustrated, these predicates are by themselves useful to reason about
a program’s behaviour.

However, in the introduction we also claimed that dynamic and static analysis tech-
niques complement each other. This can be easily verified if we move one layer up
in our declarative framework to the design layer. Some design patterns, for instance,
are difficult to detect statically while others are difficult to detect dynamically. We will
illustrate this now with a dynamic rule to detect Visitor design pattern instances.

In the previous section, we showed how instances of the visitor design pattern can be
detected by searching for literal translations of the pattern’s architecture in a program’s
source code. The Visitor design pattern can however also be described by the behaviour
it exhibits instead of the implementation of that behaviour. The pattern’s sequence di-
agram describing its run-time behaviour was shown in figure 5.2.

The translation of this sequence diagram to a rule that can be used in a dynamic pro-
gram analysis results in more expressive and readable definitions of the visitor design
pattern. Furthermore, rules incorporating dynamic analysis can ignore differences in
the concrete implementation of the visitor behaviour such as whether the visitor or the
object structure controls the visitation of the components as they only look for run-time
events that are absolutely elementary to the behaviour of the Visitor design pattern.

If we study the dynamic behaviour of the Visitor Design Pattern using the annotated se-
quence diagram shown in figure 5.3, we can conclude that a recursive double dispatch-
ing over instances held by a parent node characterises this pattern’s behaviour. The vis-
itation of anObjectStructure begins and ends at certain moments in time between
which a visitation of the subelementsaConcreteElementB andaConcreteElementA
occurs. The latter visitation comprises a third visitation onaConcreteElementC.

1See section 2.2.1 for a description of the SOUL syntax

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 81

Figure 5.3: An annotated sequence diagram demonstrating the recursive nature of the
Visitor design pattern

We recall that thedoubleDispatchesOn:selector:at:andOn:selector:at:/7
predicate from the basic layer states that two consecutive method invocations can be
classified as a double dispatching if the receiver of the second message was part of the
arguments of the first method invocation and if the arguments of the second invocation
contain the receiver of the first message.

The behaviour of the Visitor Design Pattern rule can then be captured by the follow-
ing succinct rule which is a straightforward translation of the corresponding sequence
diagram:

?visitor visits: ?composite from: ?begin till: ?end invokedBy: ?invoker if
?invoker doubleDispatchesOn: ?composite

selector: ?acceptselector
at: ?begin
andOn: ?visitor
selector: ?visitselector
at: ?end,

(?visitor visits: ?part from: ? till: ? invokedBy: ?)
forall: (?composite contains: ?part at: ?begin)

The rule expresses that an?invoker caused a?visitor to visit acomposite from
the ?begin sequence number corresponding with theaccept: method invocation
till the ?end sequence number corresponding with the matching method exit event
if two conditions are met. The first condition captures the double dispatching event
of the pattern: there should be a double dispatching between the?composite and the
?visitor in which the first method plays the role of the accept method in the pat-

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 82

Figure 5.4: Object structure, visitation methods and extract from the corresponding
execution trace.

tern –the?acceptselector is received by a?composite with the?visitor as its
argument– and the second method behaves as the visit method in the pattern – the
?visitselector is received by the?visitor with the?component as its argument.
The second condition captures the recursive nature of a visitor: in addition to the pres-
ence of the above double dispatching pattern, we also demand that the visitorrecur-
sivelyvisits all the components of the composite.2

The recursion in this rule mirrors the recursion in the pattern’s sequence diagram as
discussed above. This validates the need in meta-programming for a full logic pro-
gramming language supporting recursion instead of opting for a lightweight execution
history analysis using regular expressions.

The visitor rule behaves as expected on an example trace of aChapterVisitor visit-
ing a composite instance consisting of aParagraph held in a collection contained by
a Section stored in an instance variable of aChapter object. The execution trace is
perfect with respect to theforall predicate as every component of the composite tree
is visited by the visitor.
This situation is depicted in figure 5.4 which depicts a composite instance consisting of
a Paragraph instance held in a collection contained by aSection instance which in
its turn is the value of an instance variable of aChapter object. The figure also shows
an extract of the execution history ofChapterVisitor instance visiting the section
object. Numbers in the instance squares denote the unique identifying integer they are
mapped to in the execution trace. The full execution trace is given in appendix C. As
the source code extracts show, the iteration through the composite tree is controlled by
the tree itself.

The results of the query?visitor visits: ?composite from: ?begin till:

2Thecomposite contains: ?part at: ?begin predicate is, in addition to the instance variable
value tracking predicate from the basic layer, composed of a logic transcription of the members contained by
collections in each instance at the end of the execution trace. This implies that our current visitor detection
rule is limited to composites whose components are known at the end of the execution trace. This limitation
can however be overcome in future versions of the declarative framework by tracking additions and removals
from collections. This way, collections can be queried for their contents at each moment in the execution
history and thus also at the moment of the visitation of their respective parent.

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 83

?end on the corresponding execution trace given in appendix C are shown below.
In addition, we took the liberty to change the object identifying integers to the tex-
tual representation of the corresponding instances which can be obtained using the
objectMap/2 predicate:

Composite Invoker Begin End Visitor
a Chapter a VisitorInvoker 20 30 a ChapterVisitor
a Section a Chapter 21 27 a ChapterVisitor
a Paragraph a Section 22 24 a ChapterVisitor

From these results we derive that theChapterVisitor class (the root of a class hierar-
chy of visitors for transforming formatted book chapters to for instance plain text files)
visits theChapter class beginning with method invocation 20 ending with a method
exit at sequence number 30. During this visitation, the visitor also pays a visit to the
Section class from sequence number 21 till sequence number 27. TheParagraph
class is visited from sequence number 22 till 24. The recursive nature of the Visitor
design pattern is emphasised by the order in which the components are visited: the
visitation of the root node ends when the invocation of the visitor on its children has
ended. The control over the recursive descend of the composite structure is located
in the structure itself which can be derived from the solutions by observing that the
Invoker variable is always bound to the parent node in visitations originating from
higher levels in the structure.

This rule is by nature insensitive to differences in common implementation variants
of the visitor as they mostly exhibit the same run-time behaviour. For instance, it is
insignificant whether the visitation of composite elements happens through an iteration
over elements in a collection (as is the case for theSection class) or through a (possi-
bly indirect) call to an instance variable (as is the case for theChapter class).

Although this was an example of the control over the descend in the composite structure
being localised in the structure itself, we will see in the next section that our dynamic
rule also correctly detects instances of the visitor design pattern where the visitation is
controlled by the visitor itself instead of by the visited structure.
As the static rule presented in section 5.1.1 requires the statements of the visitor to be
of the literal form<return(send(?v, ?visitSelector, ?visitArgs))> there is
really no room for the object structure to take on the additional role of controlling the
descend through the structure.

In contrast to the static approach that searches for archetypical implementations of the
Visitor design pattern architecture, our dynamic approach finds multiple variants of
the Visitor design pattern using only one expressive and extremely compact rule. We
can conclude that dynamic analysis proves to be a powerful alternative for detecting
Visitor design pattern instances using a straightforward and compact translation of the
pattern’s sequence diagram.

5.1.3 Using Approximation in Overly Idealised Rules

The dynamic Visitor rule from the previous section performs as expected in cases where
the visitor descends every instance contained by each node in the composite tree start-
ing from the tree’s root. An example of such a situation was theChapterVisitor in

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 84

Figure 5.5: An incomplete visitation of an object structure taken from a real-life ap-
plication.

figure 5.4 where aChapter instance at the top of the tree was visited by recursively
visiting the children it contained.

Unfortunately, equally perfect examples of the Visitor design pattern are rather rare
in most real-life situations since composite components often contain many auxiliary
instance variables or collection elements that are never visited. An example of such a
commonly occurring situation is depicted in figure 5.5 where a composite tree contains
many objects (detected as elements of collections and non-collection values of instance
variables) that aren’t visited by the visitor.

The example is taken from the author’s licenciate project where a user feedback struc-
ture is built containing commands the user can choose from and which will be trans-
formed by a visitor to either an XML or an HTML document depending on the used
visitor.

Two kinds of instances are held in each component: instances contained by a collec-
tion belonging to the component and instances assigned to an instance variable of the
component. The instance variables in each component are shown in the class diagram
at the right. The left side depicts an actual instantiation of a user feedback composite
consisting of a rootDocumentFB node whoseelements instance variable contains a
collection comprising oneCommandsFB instance whoseelements variable in turn con-
tains three objects of which the last isn’t visited by the visitor. The feedback composite
will be visited by anXMLFBVisitor instance which transforms the visited structure in
an XML document suitable for rendering in web browsers.

As depicted in figure 5.5, only the leaves of the composite structure are visited recur-
sively and our visitor rule fails on all but these nodes. This is a bit of a disappointment
since we wouldn’t like to give up either the expressiveness or the compactness of the
original succinct rule by extending its definition with conditions to forgive small devi-
ations. Our visitor rule is a clear example of an overly idealised rule as we require each
component of the composite to be visited and since our rule is only relying on dynamic

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 85

information, we have no choice but to consider every instance held by a component as
its children. This assumption is more often than not false in real-life situations.

Until now, we have evaluated our rule in the usual crisp logic programming environ-
ment provided by SOUL. We can however refrain from altering our compact rule by
evaluating it in the fuzzy logic programming environment introduced in section 4.2
which includes a fuzzy variant of theforall/2 predicate which we haven’t discussed
before. Since this predicate assigns an (albeit lower) degree of truth toforall/2 pred-
icates whose test query doesn’t succeed on all unbound variables, we can close the gap
between the real-word concrete Visitor design pattern instance and its idealized abstract
description without extending the rule itself.

For completeness’ sake, the definition of the fuzzy version of theforall/2 predicate
in the fuzzy meta-interpreter is given below:

fuzzy_forall(Query, Test) :-
findall(SucCert, (Query, Test) ‘ SucCert, Successes),
findall(TotCert, Query ‘ TotCert, Total),
calculate_certainty(Successes, Total).

calculate_certainty(S, _) ‘ 1 :-
S = [].

calculate_certainty(Successes, Total) :-
minimum(Successes, Min),
length(Successes, S),
length(Total, T),
C is Min * S / T,
C.

The truth degree of answers to this rulefuzzy_forall(Query, Test) equals the ra-
tio Query solutions satisfyingTest to the total amount ofQuery solutions multiplied
by the minimum of success truth degrees. This factor can be seen as an expansion of a
forall to a series of conjunctions.

Using this fuzzy forall predicate in the visitor rule, we can now successfully detect
a visitor that visits the composite structure incompletely. The results of the query
prove(visits_from_till(Visitor,Composite,Begin,End, Invoker), C) on
an execution trace of aXmlFBVisitor visiting the composite shown in 5.5 are given
below.
In contrast to the example in the previous section, this is a visitation where the control
over the descend in the composite structure is located in the Visitor. This implies that
the Invoker variable will always be bound to the Visitor instance in solutions that
recursively descended from a visitation originating higher up in the tree.

Certainty Composite Invoker Begin End Visitor
0.1 a DocumentFB a FeedbackTranslator 60 100 a XmlFBVisitor
0.4 a CommandsFB a XmlFBVisitor 67 97 a XmlFBVisitor

1 a CommandFB a XmlFBVisitor 74 83 a XmlFBVisitor
1 a CommandFB a XmlFBVisitor 85 94 a XmlFBVisitor

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 86

The last result shows that the visitation on the composite’s leaves are 100% success-
ful. The visitation on theCommandsFB is however less successful as only 2 of three
instances contained in its collection are visited recursively and its 2 non-collection
instance variables aren’t visited at all. This augments to a certainty value of only
0.4 = 2

3+2. The visitation on the composite’s root isn’t very successful either as its
only collection member is visited for 0.4 and its 3 non-collection instance variables
aren’t visited. This augments to a degree of truth of 0.1 = 0.4× 1

1+3 for the recursive
visitation on the entire object structure.

It might seem that the certainty values in the obtained solutions get rather small when
large object structures need to be traversed, but this is just a matter of interpretation.
As long as this value exceeds the minimum truth value of 0, we can be quite sure that
there is in fact a visitor visiting the object structure. The magnitude of the associated
truth degree is an indicator for the amount of recursive visitations that are called upon
objects contained in the composite structure. When this number is extremely small,
this might indicate that there are too many instance variables in a particular class; an
indication of a design fault which we will discuss in the next section. Alternative def-
initions of the fuzzyforall/2 predicate which aren’t based on the minimum truth
aggregator, but on an averaging operator return larger quantitative results.

We could also make the forall constraint in the Visitor design pattern detection rule
less restrictive by limiting its unbound variables to objects in the composite structure
which implement theaccept: selector, but this requires the combination of static and
dynamic information (which we will discuss later on) and would make it impossible to
detect less perfect instantiations of the pattern.

Although the example presented in this section can only be considered as the beginning
of an exploration of the use of approximate reasoning in the relatively new domain
of declarative meta-programming, it already motivates that allowing fuzzy predicates
aids in closing the gap between the ideal description of a pattern and its real-world
implementation.

5.2 Expressing Vague Software Patterns

Many software patterns express inherently vague concepts which rely on arbitrary
boundaries to decide whether a part of a program’s implementation adheres or fails
the constraints of the pattern. When these constraints are enforced too rigidly, interest-
ing instances that only just failed the strict restrictions of the software pattern may be
overlooked. Therefore, built-in support for expressing vague concepts is desirable in
declarative meta-programming.

5.2.1 Detecting Bad Smells

Typical examples of vague software patterns are the so called“Bad Smells” put forth
by Fowler and Beck in their book on software refactoring [FBB+99] as indications of
situations in which to apply a refactoring in order to improve overall source code qual-
ity.

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 87

In her master’s thesis [Bra03], Francisca Muñoz Bravo already showed how logic meta-
programming can be applied to support the detection of bad smells and to execute their
corresponding refactorings.

However, a common problem in expressing bad smells as logic rules is that they often
rely on user-specified thresholds which decide whether the bad smell is detected or not.
Examples of bad smells suffering from this problem are the“too many instance vari-
ables” or “too many parameters”bad smells. Their classification boundaries are in-
herently vague: if the user sets a boundary limit of 10 variables, he will likely consider
a class with 9 instance variables almost as bad as a class with 10 instance variables.

If we evaluate these logic rules in a crisp logic programming language, many indica-
tors of a bad design may be left undetected. A language for approximate reasoning
offers two possible solutions to this problem: we can either replace the crisp compar-
ison operators by fuzzy variants which are flexible in their judgements or we can let
the user define their own concept of a large amount of instance variables by providing
the membership function of the corresponding fuzzy set. At the heart, both solutions
converge but they represent different ways of looking at the same problem.

We fill first discuss the fuzzy comparison operator approach as it doesn’t require many
changes to the original bad smell detection rule. Our base approximate reasoning lan-
guage defines a fuzzy greater than or equal operatory� x whose membership function
can be represented as an extension of the open right shoulder functionΓ(y, t,x) (see
section 3.2.1.3). It returns the maximum truth value wheny≥ x and the minimum truth
value wheny≤ t. The thresholdt determines the utter left point at which numbersy
can be considered close enough for the comparison withx to succeed. A reasonable
choice for most application domains is to let this threshold vary with the magnitude of
the numberx to which we compare. This way we obtain 7� 10 : 0 and 47� 50 : 0.57
although 7 is as far from 10 as 47 is from 50.

ThefuzzyGreaterThan/2 predicate is defined in our base declarative meta-programming
language where it can be reused in many other rule definitions:

fuzzyGreaterThanThreshold(X, Threshold) :-
Threshold is X - (2 + X // 10).

fuzzyGreaterThan(Y, X) ‘ 1 :-
Y > X,
!.

fuzzyGreaterThan(Y, X) ‘ 0 :-
fuzzyGreaterThanThreshold(X, Threshold),
Y < Threshold,
!.

fuzzyGreaterThan(Y,X) ‘ C :-
fuzzyGreaterThanThreshold(X, Threshold),
Threshold =< Y,
!,
C is (Y - Threshold) / (X - Threshold).

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 88

And then finally, the rule which detects instances of the“tooManyInstanceVariables”
bad smell in a fuzzy manner can be simply defined as the original rule with the crisp
comparison operator replaced by the above fuzzy greater than predicate:

tooManyInstanceVariables(ClassName, AmountOfVariables) :-
userTreshold(tooManyInstanceVariables, Maximum),
numberOfInstanceVariables(ClassName, AmountOfVariables),
fuzzyGreaterThan(AmountOfVariables, Maximum) ‘ notFalse.

In the last clause of the rules’ definition, we use a linguistic modifier to demand that
the result of the fuzzy comparison is at least larger than the minimal degree of truth, but
other linguistic hedges can be used such as “very” or “slightly” to intensify or weaken
our constraint on the amount of instance variables.

We used the above rule on the VisualWorks refactoring browser package with the fact
userTreshold(tooManyInstanceVariables, 10) and obtained among others the
following results:

ClassName = ’CodeModel’
AmountOfVariables = 11
C = 1 ;

ClassName = ’RBMethodNode’
AmountOfVariables = 8
C = 0.333333 ;

ClassName = ’RefactoringBrowser’
AmountOfVariables = 9
C = 0.666667 ;

We can see that theCodeModel class definitely contains too many instance variables
given a user-defined threshold of 10 as also indicated by the original rule using a crisp
comparison operator. In addition, our rule also suggests classes containing less instance
variables with a lower degree of certainty that were overlooked by the original.

When using the fuzzy comparison operator defined above, the user only has to specify
a classification threshold which will then be evaluated in a fuzzy manner. An alterna-
tive, but equivalent, approach lets the user specify its own fuzzy membership function
(probably shaped like an open right shoulder) and use the corresponding fuzzy set as a
constant which has to be unified approximately with the amount of instance variables
present in the class.
We didn’t implement this form of fuzzy unification since there is still a lot of ongoing
research on the best way to implement this functionality (especially on how to unify
two fuzzy constants, see for instance [GA98] and [Als01]), but it is interesting to see
how the bad smell detection rule could be expressed in such a fuzzy Prolog:

tooManyInstanceVariables(ClassName, AmountOfVariables) :-
userTreshold(tooManyInstanceVariables, Maximum),
numberOfInstanceVariables(ClassName, AmountOfVariables),
AmountOfVariables ~ large

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 89

Although the above rules represent a very elementary application of declarative meta-
programming for static source code analysis, they do suggest the applicability of built-
in support for approximate reasoning in the meta-programming domain as it provides
a standard framework for representing vague concepts.

5.3 Overcoming Small Discrepancies

Often, there are small differences between a wanted solution and the actual program
facts at hand. These differences can for instance originate from consistent spelling er-
rors or different naming conventions for method selectors but are insignificant to the
broader software pattern that we were trying to detect. A reasonable amount of flex-
ibility is thus required when searching for solutions to queries over the base program
facts.

5.3.1 Detecting the Visitor Design Pattern

In the Visitor design pattern detection rule above, we didn’t impose any constraints
on the selectors involved in the double dispatching pattern. We can however improve
the accuracy of the rule by demanding theAcceptSelector variable to unify with
accept: which is the selector the software engineering community seems to have
agreed upon. This way, we can eliminate many false positives, but we will at the same
time be unable to detect visitor design pattern instances using small variants on this
standardised selector.

Similarity-based unification provides a possible solution to this problem as we dis-
cussed in section 3.3.2. Our base declarative meta-programming language provides
a built-in operator~ for approximate unification based on a syntactic similarity mea-
sure defined over prolog terms: the Levensthein edit distance we discussed in section
3.3.2.3.

We can use this operator to demand theAcceptSelector to approximately unify with
accept: so consistent spelling errors and small naming deviations won’t cause our
detection rule to fail, but will simply return solutions with lower associated certainty
degrees:

visits_from_till(Visitor,Composite,Begin,End) :-
doubleDispatchesOn_selector_at_andOn_selector_at(Invoker,

Composite,
AcceptSelector,
Begin,
Visitor,
Visitselector,
End) # AcceptSelector ~ ’#accept:’,

forall(in_at_value(Variable,Composite,Begin,Part),
visits_from_till(Visitor,Part,_,_)).

Note that we aren’t using the regular Gödel interpretation (minimum) for the truth
value of the conjunction between the double dispatching and the approximate unifica-
tion clauses, but are using multiplication instead as denoted by the# operator. This is
because a low approximate unification degree of the selector shouldn’t dominate the

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 90

truth value of the entire visitor detection rule, but only slightly affect our confidence in
the appropriateness of the detected double dispatching pattern instance.

The tolerance for naming variations can be exploited for launching flexible search
queries over execution traces, but due to the syntactic nature of the similarity rela-
tionship deployed by the fuzzy unification operator our Visitor design pattern detec-
tion rule is limited to accepting small variations on the general accept selector such as
acceptVisitor: andaccept:.

Semantic similarity relationships can unfortunately not be implicitly provided by the
declarative base language, but have to be expressed explicitly by the maintainer using
user-defined fuzzy similarity predicates:

similarSelector(’#accept:’, ’#doVisitor:’) ‘ 0.5.
similarSelector(’#accept:’, ’#receiveVisitor:’) ‘ 0.7.

5.3.2 Detecting Accessor Methods

As we have seen before, dynamic analysis allows maintainers to overcome even very
large discrepancies in concrete source code implementations of the same dynamic be-
haviour.
For instance, the easiest way to detect with one succinct rule the most common im-
plementation variants of the run-time behaviour of an accessor method is to search for
methods named after the instance variable whose value they return on method exit:

accessor(?selector,?instance,?variable) if
methodEntry(?sn,?,?receiver,?selector,?),
equals(?selector,?variable),
?variable in: ?receiver at: ?sn value: ?value,
methodExit(?,?sn,?value).

In an attempt to achieve the same order of flexibility in a static analysis, we have
experimented with the application of approximate unification based on edit-distance
over prolog trees as defined in section 3.3.2.3 to detect approximations of software
patterns in method parse trees.
The tolerance for differing functor symbols and omitted functor arguments does make
it seem as a good solution for automating the detection of more elaborate variants of
the elementary instance variable accessor pattern such as variants incorporating lazy
initialisation or access count tracking. The following rule considers accessor method
statements as approximations of the elementary accessor form which simply returns
the variable’s value:

accessor(Class, MethodSelector, Var) :-
mliMethod(Class, MethodSelector,

’method’(Class, MethodSelector, Args, Temps, Statements)),
Statements ~ ’statements’([’return’(’variable’(Var))]).

In this rule we use the fuzzy unification operator to state that the statements of an
accessor method need to match the pattern^ var approximately. Note the use of the
logic variableVar in this pattern of statements.

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 91

However, this rule proved to perform very poorly in detecting the more elaborate ac-
cessor variants which can be explained by the fact that there can only be variation
in the actual statements the method parse tree comprises of since symbol and arity of
functors describing individual statements are fixed. The approximate unification would
still work on the statement list was it not for the edit-distance algorithm working in a
left-to-right fashion:

prove(statements([return(variable(x))]) ~
statements([return(variable(X)), complexstuff]), C).

X = x
C = 0.733333

prove(statements([return(variable(x))]) ~
statements([complexstuff, return(variable(X))]), C).

X = _G159
C = 0.733333

In the upper query, we see that the more elaborate statement list approximately unifies
with the base statement list up to a degree of 0.73 substitutingx for X as expected.
However, in the lower query (which only differs from the upper query in the statement
order), we see thatX remains unbound thus causing many interesting solutions to re-
main undetected.

As such, a syntactic similarity relation that is indifferent to permutations of method
statements is better suited for defining a similarity-based unification procedure in the
base declarative meta-programming language. However, more interesting future work
comprises the definition of a semantic similarity relation (for use in static analysis
approaches) on methods which relies on dynamic analysis to compare the semantics of
the run-time behaviour exploited by the methods that need to be compared.

5.4 Other Applications of Approximate Reasoning

5.4.1 Weighting Different Heuristics

As we have seen in the chapter on approximate reasoning, it is possible to assign dif-
ferent weights to rules describing the same predicate. This allows us to express hetero-
geneous heuristics about software patterns with varying confidence degrees.

5.4.1.1 Combining Static and Dynamic Information

Using the ability to assign weights to rules, it is possible to build a preference hierar-
chy among rules employing different heuristics to detect for instance the Visitor design
pattern.

Since the static analysis rule from section 5.1.1 was able to detect perfect instances of
the archetypical implementation of the Visitor design pattern’s architecture (with the
exception of implementations where the control over the descend of the object structure
was located in the structure itself), we can rest assured that when this rule detects
a Visitor design pattern instance it is almost certain no false positive. Our dynamic
analysis rule on the other hand detects much more variations in the implementation of

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 92

the pattern, but there’s a slightly increased risk of false positives. Therefore, we could
assign the dynamic analysis rule a lower weight than the static rule and combine the
solutions of each analysis variant in one unifying rule where each solution is weighted
by the data source from which it originated:

% static results
visitor(VisitorClass, VisitedClass) :-
visitor(Visitor, VisitedClass, _, _).

% dynamic results
visitor(VisitorClass, VisitedClass) :-
visits_from_till(VisitorInstance,VisitedInstance, _, _),
instanceOf(VisitorInstance, VisitorClass),
instanceOf(VisitedInstance, VisitedClass).

There is already a weight associated with the solutions of the dynamic Visitor detection
rule due to the use of the fuzzy forall predicate and the approximate unification on
the accept selector. But this is not the only way in which weights can be used to
differentiate solutions of rules. We can also construct a preference hierarchy among
the different rules we devised earlier as they can be considered implementations of
different heuristics to limit the number of false positives:

• Our original rule didn’t impose any restrictions on the selectors of the methods
involved in the double dispatching operation. Therefore, it is reasonable to assign
it an arbitrary weight of merely 0.9.

• We can significantly increase the accuracy of solutions to this rule by binding
its Acceptselector variable to the’#accept:’ selector. This represents the
most limiting heuristic we considered and as such it is safe to assume this rule
has an associated absolute certainty of 1 which will cause Visitor design pattern
instances following this common naming convention to be detected with a higher
confidence degree.

• The variant of our rule that incorporated approximate unification on the accept
selector to keep the ability to detect visitor design pattern instances which don’t
follow the naming conventions closely could be assigned an intermediary weight
of 0.95.

It is important to keep in mind that these rule weights will still be decreased by the
degree up to which the visitation of all the objects in the visited composite structure
will be visited. The certainty of solutions to the last rule will in addition depend on the
unification degree of the accept selector.

The weighting technique can also be applied to incorporate a similar heuristic into the
object instantiation rule we discussed in section 4.1.3.1 by extending its definition with
clauses that check whether the creational selector is defined in an instance creation
protocol:

...
selectorInProtocol([?stclass class],?protocol,?selector),
instanceCreationProtocol(?protocol)

CHAPTER 5. SUPPORTING SOFTWARE RE-ENGINEERING 93

5.5 Conclusion

In this chapter we have compared our new library for dynamic analysis with the exist-
ing LiCoR library for structural code reasoning.

We have shown how the existing Visitor design pattern rule which relies on static in-
formation is only able to detect archetypical concrete source code implementations of
the pattern’s architecture. We proposed a dynamic rule which detects the Visitor design
pattern by looking for instances of the run-time behaviour shared by all common vari-
ants of the pattern. This allowed more complex implementations of the Visitor pattern
to be detected by one and the same declarative rule. We were for instance able to detect
instances of the pattern where the control over the descent in the composite structure
is controlled by the structure itself instead of by the visitor. This was an example of a
case where the static alternative failed.

We realised that our succinct dynamic Visitor detection rule was an example of an
overly idealised declarative rule which is one of three commonly occurring problems
with declarative meta-programming in general: handling overly idealised rules, ex-
pressing inherently vague software concepts and overcoming small discrepancies be-
tween wanted information and the program facts at hand. We gave an example of each
of these problems and showed how approximate reasoning support in the base declar-
ative meta-programming language can help these overcome.

Our dynamic visitor detection rule was a fine example of an overly idealised declarative
rule and we showed how this problem can be overcome by interpreting the rule in our
approximate base language where a fuzzy variant of the forall predicate is available.
This way, the same succinct rule could be used to detect imperfect instances of the
pattern without having to sacrifice the rule’s succinctness.

We also showed how, using approximate reasoning, inherently vague concepts such as
bad smells can be expressed in a natural way. The flexible interpretation of the classi-
fication boundaries present in many of these software patterns allowed our framework
to detect indications of bad design that went undetected in the crisp logical setting.

Another important problem in declarative meta-programming is how to overcome small
discrepancies between the facts demanded by a logic rule and the program facts at
hand. Approximate reasoning provides similarity-based unification methods to resolve
this problem by unifying different, but still similar program facts with a lower degree of
certainty. We integrated this feature in our existing Visitor detection rule and identified
some of the problems encountered when a purely syntactical similarity relation is used
on method parse trees.

Our final exploration of the use of approximate reasoning in a software re-engineering
setting comprised combining dynamic and statically obtained information and, more
generally, the imposition of a preference hierarchy among rules using different heuris-
tics to detect instances of the same pattern.

As our experiments represent initial explorations on the applicability of approximate
reasoning to declarative meta-programming in a software re-engineering setting, we
have along the way identified many interesting topics of future work.

Chapter 6

Conclusions

6.1 Summary

In chapter two, we started our discussion with an overview of the broader context of this
dissertation: using declarative meta-programming to support the highly complex and
iterative software re-engineering process which comprises three main phases: design
recovery, identification of design defects and source code transformations to alleviate
any discovered defects.

We then set out to describe the existing tools for software re-engineering focusing on
recent developments employing logic programming, constraint logic programming and
pattern matching. Some of these systems incorporate only static information about an
application’s source code while others analyse a system’s run-time behaviour using dy-
namic information and a third kind tries to combine both in a rudimentary way.

Static analysis offers complete information about a program’s source code, but obtain-
ing correct information is difficult due to polymorphism, late binding and inheritance
which are prevalent in today’s object-oriented programming languages. Information
from a dynamic analysis is however always correct with respect to a chosen execution
scenario, but dynamically obtained control and data-flow information may change with
the executed scenario.

We hypothesised that a framework in which both forms of analysis are possible opens
doors to complex reasoning patterns about source code and run-time behaviour. As
such, providing a dynamic alternative to SOUL’s existing static reasoning provisions
formed one of the two main pillars throughout this dissertation.

We have detailed the theoretical background on approximate reasoning in chapter three
starting with the cornerstone of existing techniques for modelling vague concepts:
fuzzy sets which are based on a natural extension of the set membership function to
allow gradual membership. We continued with a detailed account on existing fuzzy
logic programming languages in which the ordinary resolution procedure is extended
to incorporate partial truths. We also explored the possibilities for extending the unifi-
cation procedure based on semantical or syntactical similarity measures. An extension
of the Levensthein edit distance for strings to logic terms was given as an example of a

94

CHAPTER 6. CONCLUSIONS 95

purely syntactical similarity measure.

In chapter four, we discussed the structure of our declarative framework for dynamic
analysis. It is organised in a layered manner where predicates in the top layers depend
on the predicates defined in the layers below. The representational layer contains predi-
cates for reifying the source model, a program’s execution history consisting of ordered
run-time events. The source model is in contrast to existing approaches fine-grained,
which is necessary to allow complex patterns to be expressed using data flow informa-
tion obtained from method arguments, returned values and variable assignments.

We have implemented and compared two alternatives for collecting these events. In a
post-mortem analysis, the entire application is run during which all run-time events are
collected. The reasoning process doesn’t start until the program has ended at which
point we have the entire execution history at our disposal. In the ad-hoc analysis vari-
ant, the execution of the application and the evaluation of the logic program are inter-
leaved as co-routines. The logic program requests a particular run-time event which
causes the application to be run until the requested event is encountered. Control then
returns to the reasoning process. At no time during the program’s execution, we have
the entire execution history at our disposal. We can only access the run-time event that
was last encountered.

The basic layer contains definitions for often-used queries which offer information that
is hard or impossible to obtain statically such as object instantiations, object state track-
ing or a precise classification of binary class associations.

We concluded the chapter on our new declarative framework with a walk-through of
the features our base logic programming language exhibits for supporting approximate
reasoning.

In chapter five, we detailed how dynamic analysis allows us to express complex soft-
ware patterns such as the Visitor design pattern in an alternative way by looking for
straightforward translations of their sequence diagrams in a program’s run-time be-
haviour instead of searching for archetypical implementations of their architecture in a
program’s source code.

We also identified three often re-occurring problems in declarative meta-programming:
abstract software patterns described in the form of overly-idealised rules which are too
far from concrete real-life implementations, software patterns that describe inherently
vague concepts and small discrepancies between a wanted fact and the facts at hand.
For each of these problems, we described how our experiments hint that approximate
reasoning can provide a rudimentary solution in a theoretical framework.

6.2 Conclusions

In the introduction we have made two claims: one about the need for approximate
reasoning support in a declarative meta-programing language and one about dynamic
analysis complementing SOUL’s already existing library for static analysis. To support
these claims, we have developed a declarative framework incorporating both approx-
imate reasoning and dynamic analysis and begun exploring the possibilities of each

CHAPTER 6. CONCLUSIONS 96

pillar from our approach for supporting the software re-engineering process.

First of all, declarative meta-programming can benefit from built-in support for approx-
imate reasoning in the base declarative programming language. We have identified
three commonly occurring problems in declarative meta-programming and proposed
a rudimentary solution for each of them using techniques from the approximate rea-
soning domain. Our results are still preliminary since we have only started an initial
exploration of all the possibilities, but they are already encouraging nonetheless.

Overly Idealised Rules A first problem is that of logic rules describing software pat-
terns in an overly idealised manner leaving a large discrepancy between the ab-
stract concept described by the rule and the concrete instantiation of this concept
in the program’s source code or behaviour. Introducing a partial truth for clauses
in a rule assists in overcoming this discrepancy as the rule’s constituents aren’t
longer validated on a black-or-white basis.

Our overly idealised Visitor design pattern detection rule failed on incompletely
visited composite structures within a crisp logic programming setting, but proved
to remain useful when interpreted in our approximate logic programming lan-
guage which supports a fuzzyforall/2 predicate.

Vague Software PatternsThe second problem is situated in the original application
domain of fuzzy set: vague concepts. Some software concepts are inherently
vague and thus can’t be described in an expressive and straightforward manner
in a logic programming language without implicit support for vague concepts.
One of the most straightforward examples is that of a pattern containing vague
numeric classification boundaries such as many bad smells. We have applied
fuzzy comparison operators and fuzzy sets in our definition of the “too many
instance variables” bad smell.

Overcoming Small DiscrepanciesIn many declarative meta-programming rules, facts
from the source model need to be unified with a particular pattern in which
we’re interested. Often, while the exact fact we’re looking for can’t be found in
the background knowledge, similar facts may be present. Approximate reason-
ing provides similarity-based unification as a theoretical framework for handling
partial semantic or syntactic similarities defined on logic terms. Straightforward
examples are variations on the accept-selector in the Visitor design pattern which
are semantically similar but completely different judged on a syntactical basis.

Although not a common problem in declarative meta-programming, approximate rea-
soning also provides a sound theoretical background for assigning different weights to
different rules or heuristics describing the same software pattern. In our setting, this
feature allows us to combine static and dynamic information to augment the certainty
of a solution obtained through one analysis variant by incorporating additional infor-
mation from the alternative data source.

The second and most thoroughly explored part of our work involves declaratively rea-
soning about a program’s behaviour using dynamic analysis.

CHAPTER 6. CONCLUSIONS 97

Our experiments have shown that a fine-grained source model allows complex be-
havioural patterns to be expressed relying on object states, method invocation argu-
ments and method return values. This kind of analysis goes beyond the mere discovery
of patterns in execution traces only comprised of method invocation events. Many of
these patterns are difficult or even impossible to express statically as object-oriented
language features such as polymorphism, late binding and inheritance make it hard to
analyse an application’s control and data flow exactly from source code.

The basic layer from our framework already provides useful predicates for perform-
ing low-level analyses over execution traces. We are for instance able to verify the
value returned by complex method chains, detect when a particular value of an in-
stance variable gets overridden by another one and analyse the exact nature of binary
class relationships.

We implemented and compared two variants of dynamic analysis: ad-hoc and post-
mortem analysis where the latter reasons about a program’s behaviour after the program
has ended and the former interleaves the execution and analysis of the program.
Our experiments have shown that the ad-hoc analysis variant provides a lightweight al-
ternative for the evaluation of simple rules that don’t require backtracking over run-time
events such as many of the low-level predicates from the base layer. It also provides a
rudimentary way to modulate a program’s behaviour in a declarative way.
The post-mortem analysis variant is in contrast suitable for solving complex queries
that require the entire execution history at the cost of a high performance and memory
overhead.

We have shown that straightforward logic transcriptions of the sequence diagrams as-
sociated with design patterns offer flexible alternatives to detecting instances of these
patterns in a program’s behaviour. These rules aren’t limited to detecting archetypical
source code implementations of a pattern’s structural architecture, but can find many
implementation variants sharing the same run-time behaviour. Our dynamic Visitor
detection rule was even able to detect instances of the pattern where the control over
the object structure descent was located in the composite instead of in the Visitor. This
is an example that the static version of the rule failed to detect.

To conclude, we believe that our library for behavioural program analysis exhibits a
distinct expressiveness advantage over the existing library for structural source code
reasoning as it is more natural to think in terms of the concepts central to object-
oriented programming, namely objects interacting with each other through message
sends, than to think in terms of class structures and concrete method statements as we
are forced to do in static analysis tools.

As our experiments have shown that dynamic analysis is well-suited for reasoning
about a program’s behaviour while static analysis is fit for reasoning about a program’s
architectural structure, neither may be omitted from declarative meta-programming
tools supporting the software re-engineering process. In addition, we believe after our
initial elementary experiments that increasing the expressiveness of the base declara-
tive meta-programming language by including support for approximate reasoning may
open doors to a more human-like detection of even more complex and vague software
patterns.

CHAPTER 6. CONCLUSIONS 98

6.3 Future Work

This dissertation has focused primarily on the implementation of a general declarative
framework incorporating dynamic analysis and approximate reasoning. In addition to
an initial exploration of the use of approximate reasoning techniques in declarative
meta-programming, we have extensively studied the use of dynamic analysis in the
context of software re-engineering and its design recovery phase in particular.

Possible future work includes investigating more specific applications of dynamic anal-
ysis in declarative meta-programming and its integration in industrial development
tools. A natural extension of the ad-hoc dynamic analysis variant is a declarative de-
bugging tool which allows programmers to declaratively specify dynamic breakpoints
on run-time events (such as“a variable is assigned a value that indirectly originated
–possibly through intermediary assignments and message sends– from the return value
of a certain method invocation”) after which either the program could be inspected on
an event-per-event basis or continued until another dynamic breakpoint fires.

Another point of further investigation is how ad-hoc analysis could take advantage of
the reflective language features of an application’s implementation language. In the
case of Smalltalk this would allow us to reason about and such low-level concepts as
method contexts and call stacks.
A related path to pursue in an extended study of ad-hoc analysis is how a program’s
behaviour can be altered. It would also involve the implementation of an event-based
aspect-oriented programming system where joinpoints could be specified in a declara-
tive manner.

Another interesting research topic comprises collecting run-time events without having
to execute fixed execution scenarios. Abstract interpretation [JGS93] could allow the
extraction of run-time events without knowing the exact value of the objects involved
in method invocations as these are normally provided by the execution scenario. Ap-
proximate reasoning could also be needed for further reasoning with these unknowns.

As we have developed our library of predicates for dynamic analysis in SOUL, we are
using backward reasoning common to all Prolog-like logic programming languages. It
might be interesting to see how forward reasoning performs in our application domain
especially when we are faced with large volumes of run-time events. Also, more ex-
periments are needed to evaluate the efficacy and performance of our dynamic analysis
library on industrial-sized applications.

Static analysis in SOUL has until now only been applied to class-based object-oriented
languages such as Smalltalk and Java, but since dynamic analysis lends itself naturally
to express patterns about instances and message sends, it may also lead to the applica-
tion of declarative meta-programming to prototype-based languages.

As no previous work exists to our knowledge on the application of approximate rea-
soning to declarative meta-programming, we have only been able to brush the surface
of possible applications and many open questions remain.

A common problem in approximate reasoning is the interpretation of the obtained truth
values. In the software re-engineering setting, these might be used by tools to indicate

CHAPTER 6. CONCLUSIONS 99

for instance the particular “badness” of a bad smell through different colours in the
source code editor.

We believe that software patterns in which many unknowns can be determined up to
a degree of certainty using different declaratively codified heuristics are particularly
interesting application domains. Examples comprise approximate type derivations in
dynamically typed languages.

Whether employing approximate reasoning techniques to common problems such as
overly idealised rules and vague concepts won’t significantly increase the amount of
false positives up to a point where analysis rules lose their relevance, is another impor-
tant question that needs to be resolved.
Another interesting problem comprises finding a suitable similarity relation for method
statements: either a purely syntactical one or a semantical one where the semantics
of methods could be compared using dynamic analysis on run-time events obtained
in absence of execution scenarios through the aforementioned abstract interpretation
technique.

Appendix A

Extracting Run-time Events

In order to collect the events generated during a program’s execution, we will have to
alter the source code or byte code of the methods we are interested in. This process is
calledinstrumentation. In contrast to uninstrumented methods, instrumented methods
will trigger events during their execution. In the case of a post-mortem analysis, these
events are collected and transformed to SOUL facts when the program finishes while
in the case of an ad-hoc analysis, individual events are requested one-by-one as the
analysis of the program progresses. The transformation of the method’s source code
is however the same in both variants of dynamic analysis. This chapter discusses the
various techniques we considered for implementing instrumentation.

A.1 Method Wrappers

The Method Wrapper technique [BFJR98] allows introducing new behaviour (e.g. gen-
erating run-time events) that is executed around or in the place of an existing method.
Smalltalk developers traditionally change the lookup process to implement such func-
tionality while this approach modifies the objects returned by the lookup process in-
stead.

Methods are represented in Smalltalk as instances of theCompiledMethodclass, which
contains a pointer to the position of the method’s source code in the Smalltalk image,
an integer representing the compiled byte codes and an instance variable representing
the class that compiled this method. The methods belonging to a class are kept together
in aMethodDictionaryfilled with CompiledMethodinstances.

Method Wrappers could be implemented by modifying the method’s source code to in-
clude the code that needs to be executed before and after the method call, but this would
imply that the method has to be recompiled when the wrapper is installed and this may
take too long for large programs. Instead, the method wrapper technique replaces the
CompiledMethodinstance in a class’MethodDictionaryby a MethodWrapperclass
which holds a reference to the originalCompiledMethodobject. When theMethod-
Wrapper instance is invoked, it will simply forward the call to itsCompiledMethod
instance and execute its before and after code. This setup is shown in Figure A.1.
The major advantage of this technique is that it is reasonably fast at run-time and
doesn’t require an instrumented method to be recompiled. Since it doesn’t alter the

100

APPENDIX A. EXTRACTING RUN-TIME EVENTS 101

Figure A.1: A method wrapper installed on the
OrderedCollection>>removeFirst method [BFJR98].

source code of the wrapped method itself, the Smalltalk class browser shows the orig-
inal source code and thus prevents users getting confused by automatically inserted
before and after statements woven through their own source code.

Richner’s tool for automated software re-engineering described in section 2.2.2 deploys
method wrappers in its instrumentation process.

However, with this technique it isn’t possible to trace anything except method invo-
cations so we abandoned it as soon as we identified the need for variable assignment
tracking.

A.2 Aspect-Oriented Programming

Aspect-Oriented Programming isan approach for realizing separation of concerns and
allows different concerns to be weaved into existing applications[HU]. Concerns usu-
ally cross-cut the entire architecture which can clutter an application’s implementation.
Examples of concerns are for example the correct opening and closing of network con-
nections throughout a program. Aspect-oriented languages allow these concerns to be
expressed in a clean way.

We could use aspects to support tracing by essentially weaving the required function-
ality through an existing program. We have not pursued this path further because not
many Smalltalk implementations exist and the higher-level aspect abstraction function-
ality of aspects (such as manipulation and instantiation) are a bit overkill for simple
method instrumentation.

APPENDIX A. EXTRACTING RUN-TIME EVENTS 102

A.3 Parse Tree Rewriting

A.3.1 Description

Finally, we have opted for an approach in which we recompile the classes we are in-
terested in with a modified compiler that rewrites method parse trees in order to insert
instrumentation code which allows tracking the variable assignments too. We do not
change the actual source code of the method, but only output byte codes different from
a normal compiler. Apart from a special icon which indicates that a class is being
traced, the user’s view of a method’s source code in the class browser is left intact.
The source code below is an extract from theDDTestInvokerclass:

bar: aNumber
| foo |
Transcript show: ’foobar’.
foo := 2 + aNumber.
^foo

When we compile this method with ourTraceCompiler, its parse tree is rewritten at
compile time before we handle it over to the regular Smalltalk compiler. We can ask
Smalltalk to decompile the resulting byte codes into regular source code and obtain the
following result for theDDTestInvoker>>bar: method:

bar: t1
| t2 |
Tracing.Trace

method: #bar:
sender: thisContext sender
receiver: self
arguments: ((OrderedCollection new) add: t1; yourself).

Transcript show: ’foobar’.

t2 := Tracing.Trace
variable: ’foo’
object: self
method: #bah:
value: 2 + t1.

^Tracing.Trace return: t2

This example shows how theTracing.Trace class is notified of each of the three
types of execution events:

Method invocations The centralTrace class is notified of method invocations by a
method:sender:receiver:arguments call which is placed at the beginning
of each traced method.

The first argument contains the selector of the invoked method. The sender of the
message is obtained at run-time by thethisContext sender statement. The
receiver of the message call is recorded in thereceiver: argument while the
arguments to the call are collected in thearguments: argument.

APPENDIX A. EXTRACTING RUN-TIME EVENTS 103

Variable assignmentsThe right hand-side of a variable assignment is replaced by a
call variable:object:method:value to theTrace object which returns the
value of the original right-hand side expression.

The arguments of the call are comprised of (from left to right) the name of the
assigned variable, the object and method in which the assignment happens and,
to conclude, the assigned variable.

Method returns Return statements are replaced by a callreturn: to the Trace object
with the returned value as argument.

Due to the experimental nature of our implementation, the above transformation scheme
ignores method exits that were caused by a raised exception. The implementation can
however be changed in a straightforward manner to correctly handle this kind of exit
by wrapping method bodies in a block to which anensure: message is sent with code
to notify theTrace class of the returned value as its argument.

A.3.2 Selecting the Appropriate Compiler

For the actual implementation of this scheme, we must first of all be able to change
the compiler a class is normally compiled with. We accomplish this by means of
Smalltalk’s reflective capabilities described in the outline by Foote and Johnson [FJ89].

To summarise, when a new method must be compiled for a certain class, the class is
asked what compiler should be used through theBehavior>>compilerClassmethod.
TheBehavior class defines the minimal behaviour of all Smalltalk classes.

If we were to change the default compiler in this method, it would affect all classes in
the class hierarchy beneath the class whose behaviour we would like to monitor. As
this does not allow a selective instrumentation on a class-per-class basis, we have to
raise this method one level to theMetaclass 1 class instead:

Behavior>>compilerClass
^self class traceCompiler

In the above code, we ask a class for its class and receive aMetaclass instance on
which we invoke the messagetraceCompiler. This method is implemented in the
MetaClass class and its subclassTraceMetaclass:

Metaclass>>traceCompiler
^Compiler

TraceMetaclass>>traceCompiler
^TraceCompiler

If we want to instrument a class by compiling it with theTraceCompiler, we simply
have to change its meta-class to theTraceMetaClass. Users can do this by sending
theswapTracing message to the class whose execution they want to trace.

1In the Smalltalk Meta Object Protocol, classes are instances of classMetaclass

APPENDIX A. EXTRACTING RUN-TIME EVENTS 104

Metaclass>>swapTracing
self changeClassToThatOf: TraceMetaclass new

TraceMetaclass>>swapTracing
self changeClassToThatOf: Metaclass new

In addition, we have also defined a little icon in theTraceMetaClass that is shown in
the Smalltalk class browser alongside traced classes.

A.3.3 Rewriting the Parse Trees

TheTraceCompiler class is a subclass of the default SmalltalkCompiler class. It
overwrites thecompile:in:notifying:ifFail method used to compile methods.

The compilation begins by constructing a parse tree of the given source code us-
ing the RBParser class defined in the Refactory Browser package. It then lets a
TraceInstrumentationVisitor do the actual parse tree rewriting on the obtained
tree. The result is finally given to thecompile:in:notifying:ifFail method de-
fined in its superclass to continue the normal compilation process on the transformed
tree.

TraceCompiler>>compile: textOrStream
in: aClass
notifying: aRequestor
ifFail: failBlock

|tree|
tree := Refactory.Browser.RBParser

parseMethod: textOrStream.
TraceInstrumentationVisitor new

instrument: tree.
^super compile: (tree formattedCode)

in: aClass
notifying: aRequestor
ifFail: failBlock

The following source code extract illustrates how theTraceInstrumentationVisitor
replaces eachRBReturnNode instance in the parse tree by aRBMessageNode instance
which results in the parse tree transformation shown in the beginning of appendix
A.3.1.

acceptReturnNode: aReturnNode
super acceptReturnNode: aReturnNode.
aReturnNode replaceWith:
(Refactory.Browser.RBReturnNode

value: (Refactory.Browser.RBMessageNode
receiver: (Refactory.Browser.RBVariableNode

named: ’Tracing.Trace’)
selector: #return:
arguments: (Array with: aReturnNode value)))

Appendix B

Implementation of Declarative
Object State Tracking

Keeping track of the different states an object goes through during a program’s execu-
tion is a challenging problem. We could use a database filled with serialised versions
of each object at a particular moment, but such a database would be massive and se-
rialisation of random objects isn’t easy nor efficient since we will have to make deep
copies of all of the objects involved.

Instead, we chose to log all variable assignments and declaratively calculate the values
of a variable at each moment in time. To understand the definition of the rules below,
we recall that a variable assignment event happens whenever a variable is assigned
within a method. The recorded name is thus either a temporary variable in the invoked
method or an instance variable of the object to which the message was sent (method
arguments can be excluded). It is impossible for a symbol to designate an instance
variable and a method temporary variable at the same time. We only have to ensure
that the lifetime of a temporary variable ends with the method return while an instance
variable is permanent during the object’s existence.

For this reason, the?variable in: ?instance at: ?methodInvocationNumber
value: ?value predicate, which states that a?variable related to a particular
?instance contained a?value at the end of the method invocation identified by a
?methodInvocationNumber, is split in two:

?variable in: ?instance at: ?methodInvocationNumber value: ?value if
not(?variable isInstVarOf: ?instance),
sequenceTotal(?max),
constrain(?methodInvocationNumber,[1 to: ?max]),
?a assignmentDuring: ?methodInvocationNumber ,
not(? overridesInternalAssignment: ?a with: ?),
equals(?a,assignment(?,?methodInvocationNumber,?instance,?variable,?value))

?variable in: ?instance at: ?methodInvocationNumber value: ?value if
?variable isInstVarOf: ?instance,
sequenceTotal(?max),
constrain(?methodInvocationNumber,[1 to: ?max]),

105

APPENDIX B. IMPLEMENTATION OF DECLARATIVE OBJECT STATE TRACKING106

?a assignmentPrecedes: ?methodInvocationNumber,
not(? overridesInternalAssignment: ?a with: ?),
not(? overridesExternalAssignment: ?a with: ? limit: ?methodInvocationNumber),
equals(?a,assignment(?,?,?instance,?variable,?value))

In order for the lower rule to hold, the?methodInvocationNumber must lie between
1 and the program’s end, and a variable assignment must have occurred before the cho-
sen?methodInvocationNumber. This assignment may however not be overridden
by another assignment in the same method invocation event nor be superseded by any
later assignment to the variable before the chosen?methodInvocationNumber. If
the assignment is in fact the last assignment in or before the method invocation identi-
fied by the chosen?methodInvocationNumber, the assigned value is the value of the
variable after the method invocation.

The sub-goaloverridesExternalAssignment is defined as follows:

?x overridesExternalAssignment: ?a with: ?v limit: ?endMN if
equals(?a,assignment(?sn,?mn,?instance,?variable,?)),
equals(?x,assignment(?sn2,?mn2,?instance,?variable,?v)),
not(equals(?mn2,?mn)),
greater(?sn2,?sn),
smallerOrEqual(?mn2,?endMN)

while the sub-goaloverridesInternalAssignment is defined similarly.

Appendix C

Example Execution Trace

The following is an example trace of the Visitor design pattern discussed in section
5.1.2 on the example object structure shown in figure 5.2.

:- discontiguous bexit/2.
:- discontiguous bassignment/5.
:- discontiguous bdirect/5.
methodEntry(1, 0, 1, ’#new’, []).
methodEntry(2, 1, 2, ’#initialize’, []).
assignment(3, 2, 2, treeRoot, 0).
methodEntry(4, 2, 3, ’#new’, []).
methodEntry(5, 3, 4, ’#initialize’, []).
methodEntry(6, 4, 5, ’#new’, []).
methodEntry(7, 5, 6, ’#initialize’, []).
assignment(8, 7, 6, test3, 7).

methodExit(10, 7, 6).
methodExit(11, 6, 6).
assignment(12, 5, 4, test2, 6).

methodExit(13, 5, 4).
methodExit(14, 4, 4).
assignment(15, 2, 2, treeRoot, 4).

methodExit(16, 2, 2).
methodExit(17, 1, 2).
methodEntry(18, 0, 2, ’#start’, []).
assignment(19, 18, 2, visitor, 9).
methodEntry(20, 2, 4, ’#accept:’, [9]).
methodEntry(21, 4, 6, ’#accept:’, [9]).
methodEntry(22, 6, 7, ’#accept:’, [9]).
methodEntry(23, 7, 9, ’#visitParagraph:’, [7]).
methodExit(24, 23, 10).

methodExit(25, 22, 10).
methodEntry(26, 6, 9, ’#visitSection:’, [6]).
methodExit(27, 26, 10).
methodExit(28, 21, 10).
methodEntry(29, 4, 9, ’#visitChapter:’, [4]).
methodExit(30, 29, 10).

107

APPENDIX C. EXAMPLE EXECUTION TRACE 108

methodExit(31, 20, 10).
methodExit(32, 18, 2).
sequenceTotal(32).

In the trace, the following integer-to-object mappings exist:
0 nil
1 ChapterVisitorInvoker
2 a ChapterVisitorInvoker
3 Chapter
4 a Chapter
5 Section
6 a Section
7 a Paragraph
8 a ByteString
9 a ChapterVisitor

10 a True

Bibliography

[AA01] Hervé Albin-Amiot. JavaXL, a Java source code transformation engine.
Technical Report 2001-INFO,́Ecole des Mines de Nantes, 2001.

[AACGJ01] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Gúeh́eneuc, and Naren-
dra Jussien. Instantiating and detecting design patterns: Putting bits
and pieces together. In Debra Richardson, Martin Feather, and Michael
Goedicke, editors,proceedings of the 16th conference on Automated
Software Engineering, pages 166–173. IEEE Computer Society Press,
November 2001.

[AF99] F. Arcelli and F. Formato. Likelog: a logic programming language for
flexible data retrieval.ACM Symposium on Applied Computing, pages
260–267, 1999.

[AJ74] Wagner R. A. and Fischer M. J. The string-to-string correction problem.
Journal of the ACM, 21:168–173, 1974.

[Als01] Teresa Alsinet.Logic Programming with Fuzzy Unificiation and Im-
precise Constants: Possibilistic Semantics and Automated Deduction.
PhD thesis, Universitat Politécnica De Catalunya, May 2001.

[Bec96] Kent Beck.Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[BFJR98] John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts. Wrap-
pers to the rescue.Lecture Notes in Computer Science, 1445:396–??,
1998.

[Bra03] Francisca Munoz Bravo. A logic meta-programming framework or sup-
porting the refactoring process. Master’s thesis, Vrije Universiteit Brus-
sel - Belgium in collaboration with Ecole des Mines de Nantes - France,
2003.

[Cin01] Petr Cintula. About axiomatic systems of product fuzzy logic.Soft
Computing, 5:243–244, 2001.

[CL96] Yves Caseau and François Laburthe. Claire: Combining objects and
rules for problem solving. In Yike Guo, Jose Meseguer, Tetsuo Ida, and
Joxan Jaffar, editors,proceedings of the JICSLP workshop on Multi-
Paradigm Logic Programming, pages 105–114. Technischen Univer-
sität Berlin, September 1996. Technical report 96-28.

109

BIBLIOGRAPHY 110

[DDVMW00] Theo D’Hondt, Kris De Volder, Kim Mens, and Roel Wuyts. Co-
evolution of object-oriented software design and implementation. In
Proceedings of the international symposium on Software Architectures
and Component Technology 2000., 2000.

[DMS01] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal defini-
tion of crosscuts.Lecture Notes in Computer Science, 2192:170–184,
2001.

[DP80] Didier Dubois and Henri Prade.Fuzzy Sets & Systems: Theory and
Applications, volume V.144, 393 p. Academic Press, New York, math-
ematics in science and engineering series edition, 1980.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: improving the design of existing code. Object
Technology Series. Addison-Wesley, 1999.

[FJ89] Brian Foote and Ralph E. Johnson. Reflective facilities in Smalltalk-80.
In Norman Meyrowitz, editor,OOPSLA’89 Conference Proceedings:
Object-Oriented Programming: Systems, Languages, and Applications,
pages 327–335. ACM Press, 1989.

[Fla94] P. A. Flach. Simply Logical: Intelligent Reasoning by Example. John
Wiley, 1994.

[Fow97] Martin Fowler.UML Distilled. Addison Wesley, 1997.

[FSCdS94] Daniela V. Carbogim Flávio S. Correa da Silva. A system for reasoning
with fuzzy predicates, 1994.

[GA98] And L. Godo and T. Alsinet. Fuzzy unification degree. August 11 1998.

[GAA01] Yann-Gäel Gúeh́eneuc and Herv́e Albin-Amiot. Using design pat-
terns and constraints to automate the detection and correction of inter-
class design defects. In Quioyun Li, Richard Riehle, Gilda Pour, and
Bertrand Meyer, editors,proceedings of the 39th conference on the
Technology of Object-Oriented Languages and Systems, pages 296–
305. IEEE Computer Society Press, July 2001.

[GDJ02] Yann-Gäel Gúeh́eneuc, Ŕemi Douence, and Narendra Jussien. No Java
without Caffeine – A tool for dynamic analysis of Java programs. In
Wolfgang Emmerich and Dave Wile, editors,proceedings of the 17th

conference on Automated Software Engineering, pages 117–126. IEEE
Computer Society Press, September 2002.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley, Massachusetts, 1994.

[GJ01] Yann-Gäel Gúeh́eneuc and Narendra Jussien. Using explanations for
design-patterns identification. In Christian Bessière, editor,proceed-
ings of the 1st IJCAI workshop on Modeling and Solving Problems with
Constraints, pages 57–64. AAAI Press, August 2001.

BIBLIOGRAPHY 111

[Goe33] K. Goedel. Zum intuitionistischen aussagenkalkul.Ergebnisse eines
mathematischen Kolloquiums, 4:34–38, 1933.

[Gog67] J. Goguen. L-fuzzy sets.Journal of Mathematical Analysis and Appli-
cations, 18:145–174, 1967.

[GS00] David Gilbert and Michael Schroeder. FURY: Fuzzy unification and
resolution based on edit distance. InIEEE International Conference on
Bioinformatics and Biomedical Egineering, pages 330–336, 2000.

[Gué02] Yann-Gäel Gúeh́eneuc. Three musketeers to the rescue – Meta-
modelling, logic programming, and explanation-based constraint pro-
grammingtest for pattern description and detection. In Kris De Volder,
Kim Mens, Tom Mens, and Roel Wuyts, editors,proceedings of the 1st

ASE workshop on Declarative Meta-Prorgramming. Computer Science
Department, University of British Columbia, September 2002.

[Gué03] Yann-Gäel Gúeh́eneuc.Un cadre pour la traçabilit́e des motifs de con-
ception. PhD thesis,́Ecole des Mines de Nantes, juin 2003.

[H9́8] Petr H́ajek. Basic fuzzy logic and bl-algebras.Soft Computing, 2:189–
212, 1998.

[HG] Petr H́ajek and Lluis Godo. Deductive systems of fuzzy logic. To
appear in Tatra Mountains Mathematical Publications.

[HGE96] Petr H́ajek, Lluis Godo, and Francesc Esteva. A complete many-valued
logic with product-conjunction, 1996.

[HU] Stefan Hanenberg and Rainer Unland. Grouping objects using aspect-
oriented adapters.

[Hyd02] Dominic Hyde. Sorites paradox. In Edward N. Zalta, editor,The Stan-
ford Encyclopedia of Philosophy. Fall 2002.

[IK85] Mitsuru Ishizuka and Naoki Kanai. Prolog-ELF incorporating fuzzy
logic. In Aravind Joshi, editor,Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 701–703, Los Ange-
les, CA, August 1985. Morgan Kaufmann.

[JB00] Narendra Jussien and Vincent Barichard. The PaLM system:
Explanation-based constraint programming. In Nicolas Beldiceanu,
Warwick Harvey, Martin Henz, François Laburthe, Eric Monfroy, To-
bias Müller, Laurent Perron, and Christian Schulte, editors,Proceed-
ings of TRICS: Techniques foR Implementing Constraint Programming
Systems, pages 118–133. School of Computing, National University of
Singapore, Singapore, September 2000. TRA9/00.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evaluation
and Automatic Program Generation. Prentice Hall International, 1993.

[Joh92a] Ralph Johnson. HotDraw (abstract): A structured drawing editor frame-
work for Smalltalk. InAddendum to the Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Lanuages, and Appli-
cations, page 232, 1992.

BIBLIOGRAPHY 112

[Joh92b] Ralph E. Johnson. Documenting Frameworks using Patterns. InPro-
ceedings of the OOPSLA ’92 Conference on Object-oriented Program-
ming Systems, Languages and Applications, pages 63–76, October
1992. Published as ACM SIGPLAN Notices, volume 27, number 10.

[KC99] E. E. Kerre and M. De Cock. Linguistic modifiers: An overview.In G.
Chen, M. Ying, and K.-Y. Cai, editors, Fuzzy Logic and Soft Computing,
pages 69–85, 1999.

[KK94] Frank Klawonn and Rudolf Kruse. A łuckasiewicz logic based prolog.
Mathware and Soft Computing, 1:5–29, 1994.

[Kle82] E.P Klement. Construction of fuzzyσ-algebras using triangular norms.
Journal of Mathematical Analysis and Applications, 85:543–565, 1982.

[Lee72] Richard C. T. Lee. Fuzzy logic and the resolution principle.Journal of
the ACM, 19:109–119, 1972.

[Lin65] C.H. Ling. Representation of associative functions.Publicationes
Mathematicae Debrecen, pages 189–212, 1965.

[LL89] D. Liu and D. Li. A new fuzzy inference language f-prolog.Computer
Engineering, 1:23–27, 1989.

[LL90] Deyi Li and Dongbo Liu.A fuzzy Prolog database system. John Wiley
& Sons, Inc., 1990.

[MDC01] E. E. Kerre M. De Cock, Zabokrstky. Modelling linguistic hedges by
l-fuzzy modifiers.Proceedings of CIMCA’2001 (International Confer-
ence on Computational Intelligence for Modelling Control and Automa-
tion), pages 64–72, 2001.

[MMW01] K. Mens, I. Michiels, and R. Wuyts. Supporting software develop-
ment through declaratively codified programming patterns.SEKE 2001
Special Issue of Elsevier Journal on Expert Systems with Applications,
2001.

[MS98] Kim Marriott and Peter J. Stuckey.Programming with Constraints: An
Introduction. The MIT Press, 1998.

[MY60] R. F. McNaughton and H. Yamada. Regular expressions and state
graphs for automata.IEEE Transactions on Electronic Computers,
9:39–47, March 1960.

[NP00] V. Novák and I. Perfilieva. Some consequences of herbrand and mc-
naughton theorems in fuzzy logic.Discovering the World with Fuzzy
Logic, pages 271–295, 2000.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic information.
In Hongji Yang and Lee White, editors,Proceedings ICSM’99 (Inter-
national Conference on Software Maintenance), pages 13–22. IEEE,
1999.

BIBLIOGRAPHY 113

[RD01] Tamar Richner and Stéphane Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. Technical Report
IAM-01-007, 2001.

[RDW98] Tamar Richner, Stéphane Ducasse, and Roel Wuyts. Understanding
object-oriented programs with declarative event analysis. In Serge De-
meyer and Jan Bosch, editors,Object-Oriented Technology (ECOOP
’98 Workshop Reader), LNCS 1543. Springer-Verlag, July 1998.

[Ric02] Tamar Richner. Recovering Behavioral Design Views: a Query
Based Approach. PhD thesis, Universität Bern, Philosophisch-
naturwissenschaftlichen Fakultät, Bern, Swiss, May 2002.

[Ses02] Maria I. Sessa. Approximate reasoning by similarity-based sld resolu-
tion. Theoretical Computer Science, 275:389–426, 2002.

[SS63] B. Schweizer and A. Sklar. Associative functions and abstract semi-
groups.Publicationes Mathematicae Debrecen, pages 69–81, 1963.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nier-
strasz. A meta-model for language-independent refactoring. InPro-
ceedings ISPSE 2000, pages 157–167. IEEE, 2000.

[TL98] T.Alsinet and L.Godo. Fuzzy unification degree.Logic Program-
ming and Soft Computing - Theory and Applications, A Post-conference
Workshop of JICSLP’98, 1998.

[VGoH02] C. Vaucheret, S. Guadarrama, and S. Mu oz Hernández. Fuzzy prolog:
A simple general implementation usingclp(r). Proceedings of LPAR
2002. Lecture Notes of Artificial Intelligence 2514: Logic for Program-
ming, Artificial Intelligence, and Reasoning., pages 451–463, 2002.

[WD01] Roel Wuyts and Stéphane Ducasse. Symbiotic reflection between an
object-oriented and a logic programming language. InECOOP 2001
International Workshop on MultiParadigm Programming with Object-
Oriented Languages, 2001.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure object-oriented
systems. InProceedings of the TOOLS USA ’98 Conference, pages
112–124. IEEE Computer Society Press, 1998.

[Wuy01] Roel Wuyts.A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, 2001.

[Zad65] Lotfi A. Zadeh. Fuzzy sets.Information and Control, 8:338–353, 1965.

[Zad75a] L. Zadeh. The concept of a linguistic variable and its application to
linguistic reasoning. Information Sciences, pages 8: 199–249, 301–
357, 9: 43–80, 1975.

[Zad75b] Lotfi Zadeh. Fuzzy logic and approximate reasoning.Synt̀hese, 30:407–
428, 1975.

	Introduction
	Thesis
	Context
	Motivation
	Validation
	Organisation of the Dissertation

	DMP for Software Re-engineering
	Introduction
	Software Re-engineering
	Declarative Meta-Programming
	Definitions
	Declarative paradigms

	Dynamic and Static Program Analysis

	Survey Of Existing Declarative Approaches
	Declarative Reasoning about the Structure of Object-Oriented Systems
	Motivation
	Approach
	Source Model
	Smalltalk Open Unification Language
	LiCoR: a Library for Code Reasoning
	Evaluation

	A Query-Based Approach to Recovering Behavioural Design Views
	Motivation
	Approach
	Source Model
	Concept View Recovery
	Collaboration View Recovery
	Evaluation

	Using Design Patterns and Constraints to Automate the Detection and Correction of Inter-class Design Defects
	Motivation
	Approach
	Source Model
	Declarative Framework
	Transformation Rules
	Evaluation

	Conclusions

	Approximate Reasoning
	Introduction
	Approximate Reasoning
	Uncertainty and Vagueness

	Fuzzy Sets and Logic
	A Generalised Characteristic Function
	Fuzzy Extension
	Assigning Membership Degrees
	Common Membership Functions
	Common Vocabulary

	Set-Theoretic and Logical Operations
	Fuzzy Extensions of Conventional Set Operations
	Logical Algebra with Triangular Norms and Co-norms
	Implication Operators
	Deductive Systems of Many-Valued Logics
	Fuzzy Set Product and Fuzzy Relational Composition
	Linguistic Hedges

	Fuzzy Process Control
	Process Control
	Fuzzy Control Reasoning System
	Inference for Approximate Reasoning
	Combining Individual Rule Results

	Fuzzy Logic Programming
	Fuzzy Logic Programs
	Syntax
	Model Semantics
	Fix-point Semantics
	Operational Semantics

	Similarity-Based Unification
	Classical Unification
	Weak Unification
	Fuzzy Unification Based on Edit-Distance
	Alternative Fuzzy Unification Methods

	A Mini-Survey of Fuzzy Logic Programming Systems
	Fuzzy Ciao Prolog
	More Conventional Systems and Their Extensions

	Conclusion

	Extending SOUL's Declarative Framework
	Library for Dynamic Program Analysis
	Logic layer
	Representational Layer
	Source Model
	Meta-Model
	Reifying the Source Model
	Simple Queries over the Representational Layer

	Basic Layer
	Object Instantiation
	Object State Tracking Using Variable Assignments
	Binary Class Relationships

	Design layer

	Declarative Language for Approximate Reasoning
	Conclusion

	Supporting Software Re-engineering
	Idealisation of Pattern Detection Rules
	Static Detection of the Visitor Design Pattern
	Dynamic Detection of the Visitor Design Pattern
	Using Approximation in Overly Idealised Rules

	Expressing Vague Software Patterns
	Detecting Bad Smells

	Overcoming Small Discrepancies
	Detecting the Visitor Design Pattern
	Detecting Accessor Methods

	Other Applications of Approximate Reasoning
	Weighting Different Heuristics
	Combining Static and Dynamic Information

	Conclusion

	Conclusions
	Summary
	Conclusions
	Future Work

	Extracting Run-time Events
	Method Wrappers
	Aspect-Oriented Programming
	Parse Tree Rewriting
	Description
	Selecting the Appropriate Compiler
	Rewriting the Parse Trees

	Implementation of Declarative Object State Tracking
	Example Execution Trace
	Bibliography

