
Onweer: Automated Resilience Testing through
Fuzzing

Gilles Coremans
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
gilles.coremans@vub.be

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract—Micro-service architectures remain a popular choice
for cloud applications. However, micro-service applications are
subject to faults such as dropped requests between services which
are difficult to catch during development in testing environments.
Automated testing tools have been proposed to test the resilience
of micro-service applications against faults in testing, but these
require manually specifying execution scenarios. In this paper,
we propose an approach to resilience testing which integrates
fault injection into the fuzzing process. In this way, system
executions and faults can be simultaneously explored, allowing
fully automated resilience testing. We describe our approach
as well as a prototype implementation called ONWEER, and
evaluate its performance on a standard micro-service benchmark
application.

Index Terms—Quality analysis and evaluation, Reliability,
Testing tools, Service-Oriented Architecture.

I. INTRODUCTION

Micro-service architectures remain one of the more popular
strategies for organizing large software systems. Splitting up
a large application into many smaller micro-services offers
many advantages [1]: services can be developed, deployed,
and scaled independently from each other. The ability to
develop and deploy micro-services independently allows dif-
ferent teams to more easily work on different parts of the
application, increasing development efficiency. Furthermore,
the ease with which micro-services can be scaled up or down
means that micro-service applications can adapt to changing
loads without long-term over-provisioning.

However, splitting components into independent services
introduces additional complexities when these services need to
communicate with each other [2]. Distributed communication
is subject to faults such as requests being delayed, duplicated,
or lost. More severe faults are also possible, such as services
crashing and losing their state. As micro-service applications
are often deployed across several physical machines, such
faults are unavoidable. Thus, to ensure correct operation of
micro-service applications, they must be made resilient to
faults.

Generally, this is accomplished by carefully written fault
handling logic which takes any faults into account and prevents
a fault from causing a failure of the system. For example,
if a connection error occurs, this fault could be handled
by retrying the request until it succeeds. While such fault

handling logic is essential to the functioning of micro-service
applications, it is also difficult to write correctly. Faults can
occur at any point in the execution, and can have a variety
of effects. Furthermore, due to the large amount of edge
cases introduced and the possibility of faults interacting across
multiple different micro-services, it is difficult to determine
whether an application is resilient or not. Finally, micro-
service applications are usually tested in environments that
differ from the production environment, often running on a
single machine. In these environments it is rare for faults to
occur, and thus the fault handling logic is difficult to test.

All of these factors mean that micro-service applications
often have bugs, called resilience defects, when exposed to
faults. For example, a badly written fault handler which retries
a request may inadvertently cause that request to be processed
twice. This can cause issues ranging from chat requests being
sent twice to payments being processed twice.

To find and resolve resilience defects, chaos engineering
[3] was developed. Chaos engineering involves intentionally
introducing faults into a production system and observing
whether metrics such as request latency or number of users
logged in are negatively affected. If they are, one can conclude
that the system is not resilient to the faults, and the issue can
be located and solved. Organisations using chaos engineering
often deploy their applications at a very large scale, and thus
faults can be injected affecting only a small part of the system
or even only a small section of users. This minimizes the
impact on the perceived reliability of the system.

However, chaos engineering is rather costly to deploy: it
is generally performed by dedicated site reliability engineers,
requires detailed system metrics, and requires organisational
buy-in [4]. Furthermore, testing in production remains risky
even if it is controlled. For example, one can imagine that a
medical company may not be able to introduce faults in any
part of critical production systems.

For this reason, there has been research interest in resilience
testing which can be performed in testing or staging environ-
ments and which is more automated, requiring less specialized
engineers. Gremlin [5] is one of the earliest tools in the field,
and relies on recipes which allow developers to specify which
faults to inject when. This was later followed by tools such
as Filibuster [6] and Chaokka [7], which use the structure of



the micro-service system to automatically explore all possible
faults efficiently.

However, which faults can occur and their effect on the
system depends on the system’s execution path; not every
request will produce the same sequence of requests sent
internally between services. Existing resilience testing tools
rely on manually specified execution scenarios. This means
that it is possible for these tools to miss resilience defects if the
execution scenarios have insufficient coverage of the system,
reducing the automation offered. Thus, an ideal resilience
testing tool should not only automatically explore all possible
faults, but also explore executions along which these faults
can occur.

Automatic exploration of the execution space of a program
is a field which has seen a large amount of research, often
focused on automatic bug finding. One of the most success-
ful and popular approaches is fuzzing, a technique whereby
random inputs are generated for the system under test [8].
This technique is fully automated, and requires relatively little
knowledge of the system under test, and with a sufficiently
large time budget can explore many different program be-
haviors. By providing enough random inputs, many different
program behaviors can be found and thus the program can
be tested. To increase the efficiency of this approach, fuzzers
often rely on feedback from the system under test, such as the
response given to an input (called blackbox fuzzing) or code
coverage (called greybox fuzzing). Instead of generating purely
random inputs, feedback is used to determine which inputs are
interesting, and these inputs are then incrementally changed by
mutators to create new potentially interesting inputs.

We propose combining resilience testing with feedback-
driven fuzzing to create a more automated, more effective
resilience tester. One could consider the faults to be injected
as part of the input used by a fuzzer, and thus similarly mutate
them according to the feedback obtained from the system.
This solves two problems at once. First, execution paths are
automatically found by the fuzzer, freeing developers from the
need to provide execution scenarios. Second, the fault space
can be efficiently searched by mutating interesting requests to
inject faults during their execution. Whether these requests
with fault injection are interesting can then be determined
using feedback from the system, and if so, further mutations
to the input or faults can be performed.

This paper makes the following contributions:
• We present a novel approach which reformulates re-

silience testing as a fuzzing problem, uses coverage
feedback to determine which sequences of faults are
interesting to inject, and traces the system under test to
find fine-grained fault injection points.

• We present a prototype implementation of this approach,
called ONWEER.

• We evaluate ONWEER on a standard micro-service bench-
mark application, showing it can increase coverage, cover
fault handlers and find resilience defects.

• We provide the source code of our implementation, the
benchmark systems used for evaluation and the evaluation

1 @PostMapping("/ping")
2 public ResponseEntity<Ping> pingPost(
3 RestTemplate rest, @RequestBody Increment i) {
4 long ctr;
5 ResponseEntity<Pong> ponge;
6 try {
7 ponge = rest.postForEntity("http://pong/pong",
8 i, Pong.class);
9 ctr = counter.addAndGet(i.increment());

10 } catch(HttpClientErrorException e) {
11 // Handle 400 response from pong
12 logger.warn(e);
13 return ResponseEntity.badRequest().build();
14 } catch(RestClientException e) {
15 // Retry on connection error
16 logger.error(e);
17 ponge = rest.postForEntity("http://pong/pong",
18 i, Pong.class);
19 ctr = counter.addAndGet(i.increment());
20 }
21 Pong pong = ponge.getBody();
22 return ResponseEntity.ok(new Ping(ctr, pong.id()));
23 }

Listing 1: The implementation of the ping example service.

1 @PostMapping("/pong")
2 public ResponseEntity<Pong> pongPost(
3 RestTemplate rest, @RequestBody Increment i) {
4 long inc = i.increment();
5 if(inc >= 0 && inc < 10000) {
6 long ctr = counter.addAndGet(inc);
7 return ResponseEntity.ok().body(new Pong(ctr));
8 } else {
9 // 400 status code if out of range

10 return ResponseEntity.badRequest().build();
11 }
12 }

Listing 2: The implementation of the pong example service.

data in an appendix [9].

These contributions show that our approach enables more
automated and efficient resilience testers than currently exists
in the state of the art.

II. MOTIVATING EXAMPLE

We will illustrate the need for the integration of fuzzing and
fault injection in an example. Consider a simple micro-service
system consisting of the two services depicted in Listing 1 and
Listing 2. It consists of two services, ping and pong, which
must keep a counter in sync. The counter may be incremented
by any amount by sending requests to ping, which must
then communicate this increment to pong. However, if the
increment is out of range (not between 0 and 10000), pong
will return a 400 status code, indicating an invalid argument,
which must be handled by ping.

Implementing these micro-services is tricky, because faults
such as connection errors may occur in the request sent
from ping to pong. Thus, ping implements a basic retry
mechanism.

However, thoroughly testing this retry mechanism is quite
tricky. If a developer tests this application without fault in-
jection, they can cover lines 4-9 and 21-22 of ping, where
nothing goes wrong, and lines 10-13, where pong returns a
400 status code, but they will not be able to cover lines 14-20,
which are only executed when a connection error occurs.



1: population ← initialize population()
2: loop
3: (seed sequence, seed traces) ← select(population)
4: candidate sequence ←

mutate(seed sequence, seed traces)
5:
6: pre coverage ← get coverage()
7: responses ← ∅
8: traces ← ∅
9: for all request, faults, links ∈ candidate sequence do

10: for all index, from, to ∈ links do
11: request[to]← responses[index][from]
12: end for
13: install faults(faults)
14: responses← responses ∪ send request(request)
15: traces← traces ∪ get trace()
16: end for
17:
18: post coverage ← get coverage()
19: if post coverage > pre coverage then
20: population ←

population ∪ (candidate sequence, traces)
21: end if
22: end loop

Listing 3: An overview of the extended fuzzing algorithm that
underlies our approach.

Thus, fault injection is needed to fully test this system. If
the developer uses fault injection in a test where the input
is in range and injects a connection error fault in the REST
request on line 7, they will be able to cover lines 14-20 of
ping and achieve full coverage. However, they will still have
missed two resilience defects present in this system:

• If the developer injects a connection error but the input
is out of range, the application will crash with a 500
status code and they find the first resilience defect of this
application. The first REST request on line 7 is covered
by a try block to catch the exception thrown when pong
returns a 400 status code, but the second REST request
on line 17 is not. Thus, if the request is out of range and
a fault is injected, the exception indicating a 400 status
code will propagate and cause a crash.

• If the developer injects a connection error on line 7
and then also injects a connection error on line 17, the
application will also crash. As before, the retry block
does not have a try block to catch the exception thrown
when a connection error occurs, and thus the application
is only resilient to one fault, not two consecutive faults.

These resilience defects illustrate that in order to thoroughly
test micro-service applications, it is necessary to inject multi-
ple faults and to inject faults under a variety of inputs.

III. OVERVIEW OF THE APPROACH

Our approach to integrating fuzzing and fault injection
involves making two significant modifications to the basic

fuzzing loop: stateful fuzzing and fault injection. This results
in the high-level algorithm shown in Listing 3 which we will
describe in detail in the following sections.

A. Stateful Fuzzing

Fuzzing in our approach serves to explore potential exe-
cutions of the micro-service system such that faults can be
injected during a variety of executions of the system. Most
micro-service systems are stateful, regardless of whether they
use a REST, gRPC or different API. Typically, users of the
API must first send a request to create or fetch a resource, and
then send subsequent requests to manipulate this resource. Our
approach assumes that a schema describing all operations in
the API and their arguments is available, such as OpenAPI
[10] for REST or protocol buffer definitions for gRPC.

Thus, our approach must be capable of generating state-
ful sequences of requests to the system. For this, we use
an approach inspired by RESTler [11], but implemented as
mutators in our fuzzing architecture. The population is seeded
with request sequences containing a single request for every
operation in the schema. New requests are then added to the
sequences by mutators, which may add, remove, duplicate or
swap any requests in the sequence.

To make these sequences stateful, it must be possible for
values from responses to previous requests to be used as
parameters in future requests. For example, upon creation of a
new resource, an identifier for that resource is usually returned.
This identifier must be passed to future operations on that
resource, but if all arguments are randomly generated by a
fuzzer this is very unlikely to happen.

Thus, our approach stores the responses of every request and
uses the concept of links between requests in a sequence to
utilize these responses in future requests. Links are introduced
to sequences by mutators. A link has three properties:

• The “index” property indicates which response in the
sequence to take a value from.

• The “from” property indicates which key in the response
body to take the value of.

• The “to” property indicates which argument in the request
to replace with the value taken from the response with
the given index at the given key.

Lines 10-12 of Listing 3 show how links replace values in the
request with values from a previous response.

For example, consider a sequence for a REST API con-
sisting of GET /products, POST /cart/add?pid=5.
The second request has a link with an index of 0, a “from”
property of [0, id] and a “to” property of [pid]. The
first request, GET /products, returns a JSON object of the
form [{"id": 103}, {"id": 104}]. Then, before the
request POST /cart/add?pid=5 can be executed, its link
will take the response at index 0, and look at the property
id of the first element in the list. It will then place this
value, 103, in the property pid of the request, resulting in
the request POST /cart/add?pid=103, having replaced
the randomly generated value of 5 with 103.



B. Tracing & Fault Injection

Code locations where a fault can be injected are called
fault injection points. Because faults can only be injected
in code which is executed, efficient fault injection requires
knowledge of which fault injection points are executed for
any given request. Thus, after the execution of every request,
our approach collects a trace which is stored with the request,
as shown in Listing 3 on line 15. The trace records every
potential fault injection point and how often it was executed
during that request.

Faults are added to requests by a mutator which takes the
trace of a request and adds a fault at one of the points listed
in the trace. These faults are then installed in the system
under test just before the request is executed, as shown in
Listing 3 on line 14. The faults will be actually injected when
the corresponding fault injection point is executed. Under our
fault model, a fault can be injected multiple times at a fault
injection point. For example, if a fault is injected three times
at some fault injection point, then that fault will be injected
the first three times that that point is executed.

Our approach intentionally does not prescribe a highly
specific fault model and leaves this to the implementation.
The exact behavior of a fault does not matter to our approach,
and it even admits combining different kinds of faults. It also
allows for very fine-grained faults by using fine-grained traces,
but if more coarse-grained fault injection is desired this is also
possible within our framework.

Note that a trace is collected for every request, including
requests which already inject faults. Thus, it is possible for a
request that injects faults to have a trace which may expose
new fault injection points. By mutating this request, more
faults can be injected and it is possible to incrementally create
requests with multiple faults.

C. Greybox Feedback

As seen in Listing 3 on lines 6 and 18-21, our approach
uses greybox coverage feedback to determine whether an
input is interesting. Many stateful fuzzers only use blackbox
feedback methods such as responses from the system and
coverage of endpoints, so as to avoid needing to instrument
the system under test. However, our approach requires col-
lecting traces to enable fault injection, which likely already
requires instrumentation for most systems, making the extra
cost of gathering coverage fairly small. Thus, our approach
use greybox coverage feedback to increase the efficiency of
our approach.

Coverage feedback allows our approach to more easily dis-
tinguish which inputs cover new code and thus are interesting,
giving a wider variety of inputs to inject faults in. It is also
useful to determine which sets of faults are interesting to
inject. If a sequence containing faults increases coverage, it is
likely because it covers a fault handler. Thus, by adding this
sequence to the population, it becomes available for further
mutation and our fuzzing approach can attempt to find bugs
in this fault handler, either by injecting more faults or by
modifying the parameters of the request.

Fig. 1. A diagram showing how ONWEER, the ONWEER agents and the
system under test interact.

IV. PROTOTYPE IMPLEMENTATION: ONWEER

We have implemented our approach in ONWEER, a pro-
totype resilience tester. The source code of ONWEER is
available in our online appendix [9]. Figure 1 shows the high-
level architecture of our tool, which closely corresponds to
the algorithm in Listing 3. As seen in Figure 1, ONWEER
consists of two components: the ONWEER fuzzer, described
in Section IV-A and Section IV-B, and the ONWEER agents,
described in Section IV-C.

A. Generating REST Requests

As REST APIs are the most common choice for implement-
ing micro-service systems, we have chosen to build ONWEER
as a REST fuzzer. Thus, our tool must be able to generate
individual REST requests to build sequences out of. As
mentioned in Section III-A, our tool relies on an OpenAPI [10]
schema for the system under test to know which operations
and parameters are available, and which responses to expect.

To generate individual REST requests from this schema,
ONWEER uses the Schemathesis [12] library. This library
parses the schema into a Hypothesis [13] data generation
strategy per endpoint, which we can use to generate REST
requests for each endpoint.

These Hypothesis strategies can be seen as pure functions
which take as only input a bitstream and output a REST
request. Mutations of the input bitstream result in structural
mutations of the output REST request, a property which
Hypothesis uses to implement shrinking in property-based
testing [14]. However, ONWEER uses this to implement a
parametric fuzzer [15]. In this way, it is not necessary to



implement complex structural mutators for REST requests,
only some simple bitstream mutators.

B. Generating REST Sequences
ONWEER builds and executes sequences of REST requests

as described in Section III-A. However, some details are
important to note.

ONWEER uses HTTP status codes as an oracle for the
successful execution of a request. If a request in a sequence
receives a 400 Bad Request response, the sequence is
considered invalid and discarded. If a request receives a 500
status code, the sequence is considered an error and recorded,
as these errors are what ONWEER is designed to find.

In our implementation, links can replace any part of a
request object with any part of a previous response object.
This means that it is possible for links to create requests which
do not conform to the OpenAPI schema. This is unavoidable,
as OpenAPI schemas do not contain sufficient information to
determine the relations between the response of one endpoint
and the parameters of another. Some REST fuzzers such as
RESTler [11] use heuristics to determine which operations
may be safely linked, but this runs the risk of missing valid
links and thus valid sequences. However, these invalid requests
do not hinder the fuzzing process. Passing a nonconforming
parameter is likely to simply result in a 400 Bad Request
status code, which allows us to safely conclude that this
request is invalid and stop executing the sequence.

C. Tracing, Fault Injection & Coverage
ONWEER implements the tracing, fault injection and cover-

age features described in Section III-B and Section III-C using
ONWEER agents. These agents are responsible for gathering
coverage information, tracing requests and injecting faults. An
agent should be attached to every micro-service in the system
under test. Agents communicate with the ONWEER fuzzer
through a simple REST API, allowing multiple implementa-
tions of the ONWEER agent such that our tool may be used
with polyglot micro-service systems.

In terms of the fault injection model, ONWEER implements
the abstract fault model described in Section III-B. Tracing of
fault injection points and the actual behavior of fault injection
is left entirely up to the agents, with fault injection points
being arbitrary strings which ONWEER does not interpret in
any way. Furthermore, every fault injection point will only
be used with the agent where it originates. This means that
it is possible to use multiple different agents implementing
different fault injection models together.

Currently, we have implemented an ONWEER agent for Java
which supports Spring Boot applications and the example
in Section II, as well as the TeaStore system used in our
evaluation. We discuss the fault model used for TeaStore in
Section V-A2.

V. EVALUATION

In this section we answer the following research questions
about the performance of ONWEER and its underlying con-
cepts:

Fig. 2. Architecture of TeaStore. Arrows represent which services send
requests to other services. The registry service is only used at startup
and thus not shown. Requests sent only during startup are also not shown.

Fig. 3.

RQ1: Can integrating fault injection into a REST fuzzer
increase code coverage?

RQ2: Can integrating fault injection into a REST fuzzer
cover otherwise unreachable fault handlers?

RQ3: Can integrating fault injection into a REST fuzzer
find resilience defects that a regular fuzzer cannot?

RQ1 aims to provide insights into whether fault injection
makes the fuzzing process more or less effective, that is,
whether it is a tradeoff or a simple advantage. RQ2 investi-
gates whether ONWEER can increase the coverage of specific
pieces of code which are difficult to reach with ordinary
fuzzers. RQ3 aims to determine whether fault injection can
reveal bugs which may be missed without fault injection.

We answer these questions by discussing experimental re-
sults of running ONWEER on the TeaStore benchmark applica-
tion [16], comparing results with fault injection disabled and
results with fault injection enabled.

A. Experimental Setup

1) Benchmark Systems: As noted by Meiklejohn et al. [6],
there are few open source micro-service applications available,
due to the fact that micro-services are generally adopted within
large organisations and make less sense in the context of



open source software. This presents a problem for evaluating
ONWEER, as there is no solid corpus of applications to eval-
uate the approach. Because our approach involves integrating
resilience testing and fuzzing, evaluating it requires a micro-
service application which is interesting both from a resilience
testing and from a fuzzing perspective. Thus, benchmark
systems must have several interacting services to allow fault
injection as well as a REST API with several operations, each
having some parameters which can be fuzzed.

In their paper introducing Filibuster, Meiklejohn et al. [6]
presented a corpus of micro-service applications intended for
evaluating resilience testers. However, this corpus is highly
specialized to resilience testers, and as such its applications
generally only include a single operation with very limited
parameters. This makes this corpus unsuitable for evaluating
our approach, which relies on the integration of fuzzing and
fault injection.

The TeaStore micro-service benchmark system [16] was de-
veloped because few viable micro-service benchmark systems
exist. It has enjoyed success as an academic benchmark and
is used as a benchmark system in various academic papers
[17]–[19] This system comprises a webshop application and
has a variety of operations, with multiple parameters for each
operation and is thus suitable for evaluating the fuzzing side of
our approach. Furthermore, the structure of TeaStore, shown in
Figure 2, comprises five micro-services. Importantly the links
between services are not trivial; the auth service is contacted
by webui and itself contacts persistence, which is also
contacted by webui. Thus, there are sufficient interacting fault
injection points available to be a useful benchmark system.

To prepare TeaStore for automated resilience testing, we
wrote a REST interface to TeaStore’s application code and an
OpenAPI schema for this interface, comprising 11 operations.
This is needed as TeaStore provides only a web interface
and no RESTful API. We made this REST interface follow
the same flow and send the same requests as using the web
interface, so that the system remains representative. These
changes allow ONWEER to work with TeaStore. Finally, the
default configuration of TeaStore specifies that requests are
not retried, and thus the system is not resilient. In order to
actually enable the fault handling logic present in TeaStore,
we changed this configuration so that requests are retried once.
This modified version of TeaStore is available in our online
appendix [9].

2) Experimental Setup: We configured and deployed in
their standard configuration, except for the changes noted
above, running each service in a separate Docker container.
Each service was instrumented by an ONWEER agent for the
purposes of collecting coverage information, tracing, and fault
injection.

TeaStore uses a custom communication middleware for
all requests. Thus, the trace points used for our evaluation
are calls into this communication middleware, allowing for
very fine-grained tracing. This communication middleware
uses Netflix Ribbon [20] which uses Jakarta EE [21] to send
REST requests. Faults are injected by throwing a Jakarta

Fig. 4. Comparison of coverage over time between ONWEER with fault
injection, ONWEER without fault injection and RESTler . The solid line
represents the mean coverage of all fuzzing runs, while bottom and top of the
shaded area represent the 10th and 90th percentile of fuzzing runs.

ProcessingException in this low-level Jakarta request
processing code. This is the same exception thrown when a
connection fails, and thus this fault model accurately simulates
real-world behavior on unreliable connections.

We configured ONWEER to run for 1 hour on TeaStore and
, with an initial population of 3 single-request sequences for
each operation in the OpenAPI schema. With these settings,
we ran ONWEER 45 times with and 45 times without fault
injection enabled on TeaStore, . We restarted the applications
between every run, removing any state added by the previous
run, and only started sending requests after the application had
fully started.

During these runs, we collected detailed information about
the fuzzing process, including every sequence in the pop-
ulation and every error returned by even if it did not
increase coverage. For each of these population members and
errors we also collected the precise requests sent, responses
received, which mutators constructed them, and detailed per-
class coverage information.

This allows us to answer each research question effectively:
we can use coverage achieved over time to answer RQ1 by
comparing how which coverage level is achieved and how
quickly it is achieved with and without fault injection. The
errors recorded by ONWEER can be examined to answer RQ2
by looking at the number of unique errors discovered with fault
injection which are not found without fault injection. Finally,
per-class coverage information lets us compare performance at
a more granular level and thus see whether classes responsible
for fault handling have increased coverage with fault injection,
answering RQ3.

B. Results

The results of this experiment are presented in Figure 4,
, Table I and Table II. The full dataset generated by this
experiment is available in our online appendix [9].



TABLE I
AVERAGES OF COVERAGE, POPULATION SIZE, ITERATIONS AND ERRORS FOUND DURING THE EXPERIMENT.

With fault injection Without fault injection Difference

Application Statistic Mean Stdev Min Max Mean Stdev Min Max Mean

TeaStore Coverage 3970.73 25.86 3818 4001 3861.62 24.86 3712 3894 109.11
Population size 53.49 2.60 48 60 52.04 2.71 46 58 1.44

Errors found 12404.33 1873.97 8804 17909 531.7 327.40 73 1623 11873.0
Iterations 126344.13 12819.76 97954 150830 121871.86 9968.62 95520 141121 4472.27

Coverage
Population size

Errors found
Iterations

TABLE II
PER-SERVICE, PER-CLASS DIFFERENCE IN COVERAGE BETWEEN ONWEER RUNS WITH AND WITHOUT FAULT INJECTION ENABLED.

Mean coverage

Service Class name With faults Without faults Difference

webui LoadBalancerCommand 48 31 17
auth LoadBalancerCommand 48 31 17

webui DefaultLoadBalancerRetryHandler 9 5 4
auth DefaultLoadBalancerRetryHandler 9 5 4

webui ServiceLoadBalancer 42 39 3
auth ServiceLoadBalancer 42 39 3
auth TrackingFilter 8 5 3

webui ProcessingException 2 1 1
webui LoadBalancerContext 27 26 1
auth LoadBalancerContext 27 26 1

webui RestHelpers 19 18 1

Fig. 5.

Looking at Table I we see the mean coverage over all runs is
109 lines higher when using fault injection, and the maximum
coverage achieved in all runs without fault injection is less than
the mean coverage achieved over all runs with fault injection.

Furthermore, Figure 4 shows that after half an hour of
fuzzing, most runs are close to saturation. At this point, the
majority of runs with fault injection achieve more coverage

than the majority of runs without fault injection.
Table II shows the per-class difference between the mean

coverage achieved with and without fault injection in TeaStore.
As coverage is collected on a per-service basis, communication
middleware classes which are shared between services such
as ServiceLoadBalancer will have their coverage mea-
sured separately for every service. Thus, we have a separate
coverage score for each class on every service. The table is
pruned to only show coverage differences with a magnitude
greater than 1, as it is expected that there will be some noise
between any two sets of runs.

We can see that most instances of increased coverage
are clearly related to fault handling. For example, on both
the webui and auth services we see a coverage increase
in LoadBalancerCommand, ServiceLoadBalancer
and LoadBalancerContext. These are all classes in-
volved in retrying failed connections by retrying the re-
quest on the same or other service, as well as paths for
when these retries fail. We see a coverage increase in
these classes on the webui and auth services, as these
are the services that send requests to other services and
thus can have faults injected. The classes which are not
involved in this logic, GenericExceptionMapper and
ProcessingException have higher coverage since the
errors discovered by ONWEER cause more exceptions to
be thrown. ProcessingException specifically is thrown



Fig. 6. A short sequence with three faults injected at the same fault injection
point, resulting in the application crashing and returning a 500 Internal
Server Error status code. Nodes denote requests, with method, endpoint,
faults, and links, while edges denote the sequence order. The final node
represents the response of the last request in the sequence.

TABLE III

Unique errors TeaStore TrainTicket

Without faults 42 36
With faults 34 42

Only with faults 25 7
Manually filtered 16 3

directly by the ONWEER instrumentation, so its increased
coverage is expected. This lets us confirm that fault handlers
which are not covered by regular fuzzers can be covered with
fault injection, answering RQ2 affirmatively.

To answer RQ3, we can look at the errors recorded during
execution. Table I shows that many more errors are found with
fault injection than without fault injection, but this is the total
number of requests resulting in an error, not the number of
unique bugs found.

First, some errors are found without fault injection.
Second, we look at the errors found when using fault

injection. All these errors have the same basic pattern, shown
in Figure 6. As seen in Figure 6, the error involves three faults
being injected at the same fault injection point, in this case
three faults in service webui, in file CategoryRest.java,
on line 16. These three consecutive errors when trying to send
a request cause TeaStore’s retry mechanism to fail and throw
an exception, which is not handled by the application code and
thus causes a 500 Internal Server Error response.

Taking all of this in account, we can conclude that ONWEER
can find resilience defects which cannot be found using a
fuzzer without fault injection, and affirmatively answer RQ3.

C. Discussion

One aspect of Table I which has not yet been discussed
is the row recording population size. Because fault injection
increases coverage of this system, and the per-class results
in Table II indicate coverage did not decrease for any class
under fault injection, we might also expect the population size
to be somewhat larger to account for new interesting inputs
using fault injection. However, the results are not clear. While
the average population size of all runs with fault injection is
1.44 sequences larger than the average population size of all

Fig. 7. A sequence with three faults injected in the auth service, showing
that this service is resilient to faults. The semantics of this figure is the same
as Figure 6.

runs without fault injection, the difference is relatively small
compared to the population size. Furthermore, the difference
is also rather small compared to the standard deviation, and
the minimum/maximum ranges of the population sizes overlap
significantly. Thus, we would likely need a larger sample size
and more detailed statistical tests to determine whether there
is a significant difference in population size.

Another interesting result concerns the faults injected in the
auth service. As seen in Table II, the coverage of the TeaStore
middleware increased under fault injection just as it did, and
thus we expect to find sequences in the population which
inject faults in the auth service to achieve that increase.
These sequences are indeed present, and an example can be
seen in Figure 7. Notably, this sequence does not result in
a 500 status code and is thus not considered an error by
ONWEER. When faults are injected in the communication
middleware of the auth service, the retry mechanism fails
and an exception is thrown, in the same way as in the webui
service. The auth service catches and correctly handles this
exception, returning a 504 Gateway Timeout status code
to the webui service, which this service handles, producing
a normal 200 OK result.

However, despite returning a 200 OK status code, the
specified product is not added to the cart. Thus, this is arguably
a resilience defect, as the requested operation is not completed,
yet no indication of this is given to the user. This is a
limitation of ONWEER, as it uses the response status code
as an oracle. While a 500 status code reliably indicates a bug
in the system under test, response with a 200 status code can
still be incorrect.

VI. FUTURE WORK & LIMITATIONS

A. Nondeterminism & State

Our approach assumes that a sequence of REST requests
has a deterministic execution path and relies only on state



the sequence itself creates. However, in the context of micro-
service systems these assumptions do not always hold. First,
many interesting sequences of REST requests do change the
state of the system by adding or deleting resources, and these
changes persist to future request sequences. This cannot be
avoided in general because restarting the system between every
sequence would be very slow, as many micro-service systems
take several minutes to start. We mitigate this issue with links
between requests filling in parameters with earlier responses.
This allows a request sequence to create a resource and then
operate on it in a deterministic way, regardless of the name
or ID that resource is nondeterministically assigned. However,
we do not enforce this and thus request sequences may still
rely on state not created earlier in the sequence.

Second, even in the absence of explicit user-visible state,
micro-service systems may still be nondeterministic. For ex-
ample, message queues or caching mechanisms may be used
to increase the performance or reliability of the system but
can cause the same request sequence to take different paths.

This nondeterminism causes issues for our prototype imple-
mentation. If a sequence that relies on previously existing state
is added to the population, it may fail if that state is mutated
and thus not yield further interesting sequences. Furthermore,
spurious increases in coverage due to service replication may
result in uninteresting inputs being added to the population.
This nondeterminism also presents a challenge for our fault
injection strategy, as it relies on the fault injection points
executed by a sequence always remaining the same.

Mitigating the effects of nondeterminism is an important
avenue for future research to increase the applicability of
fuzzing-based resilience testers. Potential approaches could
be taken from the existing literature on flaky tests, which
offer some methods of mitigating nondeterminism in testing.
Another approach could be to render the system deterministic
by integrating sources of nondeterminism in the fuzzing frame-
work, which is a common technique in fuzzing and concolic
testing.

B. Service Replication

Micro-service applications often deploy multiple copies of
many services, meaning that requests can be handled by any
of these services. This is another source of nondeterminism,
but requires special consideration as it is very common and
exposes limitations of our coverage feedback approach.

Considering the coverage of each service separately is
insufficient to handle this case, as it is clear that rerunning the
same request could increase its coverage simply by it being
routed to another service. However, it is also not clear if it
would be correct to consider a line of code fully covered if
any service has executed it. Improper coordination between
replicated services can result in resilience defects, and thus
requires testing, which requires some feedback as to how
thoroughly these services have been tested.

Thus, the development of new coverage or feedback metrics
tuned to the needs of micro-service systems is an important
avenue of future research. Such a metric could not only

improve resilience testing, but also manually written tests and
chaos engineering.

C. Additional Fault Types

In our evaluation, we only injected connection error faults.
However, many other kinds of faults can occur in micro-
service systems, such as services failing or being delayed. In
order to better test more complicated micro-service systems,
it is necessary to integrate these faults into resilience testing.

Future work should explore which faults are most inter-
esting to inject and how they can be injected. As discussed
in Section III-B and Section IV-C, the architecture of our
approach as well as the architecture of ONWEER enable such
experimentation. By design, faults are opaque to the fuzzer; a
new fault type can be added simply by writing instrumentation
that traces its fault injection points and injects it.

VII. RELATED WORK

A. Resilience Testing

Since the advent of chaos engineering, there has been
interest in automating resilience testing approaches in testing
environments, yielding a variety of different resilience testing
approaches in the literature.

FATE and DESTINI [22] are notable for being one of
the earliest implementations of the resilience testing concept.
FATE identifies failure injection points, which are any I/O
points in the target application, and systematically explores
every possible fault combination in order to test the resilience
of the system. Information from this resilience testing is then
used in DESTINI to specify correct recovery behaviors for
the system. FATE systematically explores the fault space but
does not explore execution space, and is specialized towards
“infrastructure” distributed applications such as Zookeeper
rather than micro-service applications.

Gremlin [5] is another early resilience testing tool which
allows developers to write recipes which specify a pattern of
faults to apply to a system. For example, a developer could
write a recipe which simulates a service being overloaded,
and the system can then be tested with this fault recipe to
determine its behavior under overloaded services. However,
this approach offers neither automated fault space exploration
nor execution space exploration.

Chaokka [7] is a resilience tester specialized to Akka actor
systems. It operates by injecting all possible faults in a system,
and then using delta debugging to determine the minimal set
of faults that will still cause a test failure. While Chaokka
explores the fault space using delta debugging, it assumes a
fixed test case under which delta debugging is performed.

Filibuster [6] makes the requirement for execution scenarios
implicit by being implemented as a library which can enrich
end-to-end tests with resilience information, letting developers
specify the desired behavior when certain faults occur. It
efficiently searches the fault space by assuming that micro-
services encapsulate services they depend on, meaning that
downstream faults are only visible in the form of a specific
status code returned by the upstream service. However, it



relies on existing end-to-end tests written by developers of
the system and does not automatically explore the fault space.

Fault Injection Analytics [23], unlike most other resilience
testing tools, injects faults into a system under some synthetic
load rather than executing under specific end-to-end tests.
The system is traced during the fault injection run, and the
traces are compared to traces without fault injection using a
machine learning model to find anomalies in the fault-injected
traces, which are identified as resilience defects. This approach
of looking for anomalies during a load test of the system
differs substantially from our approach, which attempts to
find specific combinations of requests and faults that reveal
a resilience defect.

B. REST Fuzzing

As REST APIs are commonly used in industry, and thus
there is also a large amount of interest in automated testing
of these interfaces, leading to a wide variety of REST API
fuzzers [24]. While none of these approaches incorporate
fault injection, it is interesting to consider the differences in
approach between ONWEER and common REST fuzzers.

RESTler [11] stateful REST API fuzzer. It relies on a
Swagger/OpenAPI specification of the API, and analyzes this
specification to determine the dependencies and outputs of
each operation. Using this information, it then constructs
sequences so that each request’s dependencies can be fulfilled
by earlier requests in the sequence to efficiently test the
API. RESTLer systematically extends sequences with new
requests until it cannot find any new sequences, attempting
to exhaustively explore the sequence space, while our ap-
proach instead uses mutators to construct sequences during
the fuzzing process. Furthermore, our approach does not use
information from the OpenAPI schema to determine which
responses can be used as future parameters. Such technical
optimisation can be considered in future instantiations of the
approach.

EvoMaster [25] is REST testing tool based on the approach
of the EvoSuite search-based testing tool. Because it is based
on EvoSuite’s approach, EvoMaster instruments the system
under test to gain feedback and speed up the testing process.
This instrumentation is more heavy-weight than our approach,
as it uses detailed metrics to enable search-based testing. It
builds sequences out of templates of common REST API
patterns rather than analyzing dependencies between opera-
tions, whereas our approach constructs sequences during the
fuzzing process. EvoMaster has also been extended to RPC
frameworks and used in industry [26].

RestTestGen [27] is a modular framework for implementing
REST fuzzers. It aims to making it simpler to try new REST
testing approaches by implementing many components which
are commonly used in REST testing tools, such as an OpenAPI
specification parser, mutation operators, etc. Like RESTler,
RestTestGen attempts to deduce relations between requests
from the provided schema, which our approach does not do.
Our focus has been on increasing coverage through fault
injection.

Schemathesis [12] is a property-based tester for REST APIs,
which we used to implement ONWEER. It uses an OpenAPI
specification to determine the arguments and expected re-
sponses for an API, and then generates a large number of
example requests for each operation in order to test if the
responses listed in the API are correct and exhaustive. While
it is effective at generating REST requests [24], it does not
support stateful fuzzing, and thus ONWEER implements its
own stateful fuzzing layer.

VIII. CONCLUSION

In this paper, we presented and described a novel re-
silience testing approach which integrates greybox fuzzing
and fault injection. This combination of techniques allows
more efficient and more thorough resilience testing of micro-
service systems, as faults are injected during fuzzing instead
of during developer-specified test cases. We presented our
prototype implementation of this approach, called ONWEER,
and evaluated this tool on the TeaStore benchmark system.
We determined that our tool can increase coverage on bench-
mark systems, cover otherwise unreachable fault handlers, and
identify resilience defects in micro-service systems.

REFERENCES

[1] V. Velepucha and P. Flores, “A Survey on Microservices Architecture:
Principles, Patterns and Migration Challenges,” IEEE Access, vol. 11,
pp. 88 339–88 358, 2023. [Online]. Available: https://ieeexplore.ieee.
org/document/10220070

[2] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, 2018.

[3] M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos Monkey:
Increasing SDN Reliability through Systematic Network Destruction,”
in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, S. Uhlig, O. Maennel, B. Karp, and J. Padhye, Eds.
ACM, 2015, pp. 371–372.

[4] H. Tucker, L. Hochstein, N. Jones, A. Basiri, and C. Rosenthal,
“The Business Case for Chaos Engineering,” IEEE Cloud Computing,
vol. 5, no. 3, pp. 45–54, May 2018. [Online]. Available: https:
//ieeexplore.ieee.org/document/8383672

[5] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and
V. Sekar, “Gremlin: Systematic Resilience Testing of Microservices,”
in 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), Jun. 2016, pp. 57–66. [Online]. Available:
https://ieeexplore.ieee.org/document/7536505

[6] C. S. Meiklejohn, A. Estrada, Y. Song, H. Miller, and R. Padhye,
“Service-Level Fault Injection Testing,” in SoCC ’21: ACM Sympo-
sium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
C. Curino, G. Koutrika, and R. Netravali, Eds. ACM, 2021, pp. 388–
402.

[7] J. De Bleser, D. Di Nucci, and C. De Roover, “A Delta-Debugging
Approach to Assessing the Resilience of Actor Programs through
Run-time Test Perturbations,” in Proceedings of the IEEE/ACM 1st
International Conference on Automation of Software Test, ser. AST
’20. New York, NY, USA: Association for Computing Machinery,
Oct. 2020, pp. 21–30. [Online]. Available: https://dl.acm.org/doi/10.
1145/3387903.3389303

[8] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The Art, Science, and Engineering of Fuzzing: A Survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–
2331, Nov. 2021.

[9] Anonymous, “Experiment data for Onweer, including source code of
Onweer, source code of modified TeaStore, and experiment output
JSON files,” Mar. 2025. [Online]. Available: https://zenodo.org/records/
15425114

https://ieeexplore.ieee.org/document/10220070
https://ieeexplore.ieee.org/document/10220070
https://ieeexplore.ieee.org/document/8383672
https://ieeexplore.ieee.org/document/8383672
https://ieeexplore.ieee.org/document/7536505
https://dl.acm.org/doi/10.1145/3387903.3389303
https://dl.acm.org/doi/10.1145/3387903.3389303
https://zenodo.org/records/15425114
https://zenodo.org/records/15425114


[10] D. Miller, J. Whitlock, M. Gardiner, M. Ralphson, R. Ratovsky, and
U. Sarid, “OpenAPI Specification,” Feb. 2021. [Online]. Available:
https://spec.openapis.org/oas/v3.1.0.html

[11] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST
API Fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), May 2019, pp. 748–758.

[12] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web API schemas,” in Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Companion
Proceedings, ser. ICSE ’22. New York, NY, USA: Association
for Computing Machinery, Oct. 2022, pp. 345–346. [Online]. Available:
https://doi.org/10.1145/3510454.3528637

[13] “Hypothesis,” 2024. [Online]. Available: https://hypothesis.works/
[14] D. MacIver, “How Hypothesis Works,” Dec. 2016. [Online]. Available:

https://hypothesis.works/articles/how-hypothesis-works/
[15] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,

“Semantic fuzzing with zest,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2019. New York, NY, USA: Association for Computing
Machinery, Jul. 2019, pp. 329–340. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3293882.3330576

[16] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource Management Research,” in
2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Sep. 2018, pp. 223–236. [Online]. Available: https://ieeexplore.ieee.org/
document/8526888

[17] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović, and A. van
Hoorn, “Microservices: A Performance Tester’s Dream or Nightmare?”
in Proceedings of the ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’20. New York, NY, USA:
Association for Computing Machinery, Apr. 2020, pp. 138–149.
[Online]. Available: https://dl.acm.org/doi/10.1145/3358960.3379124

[18] L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, C. Sporea, A. Toma,
and S. Sajedi, “Locating Performance Regression Root Causes
in the Field Operations of Web-Based Systems: An Experience
Report,” IEEE Transactions on Software Engineering, vol. 48,
no. 12, pp. 4986–5006, Dec. 2022. [Online]. Available: https:
//ieeexplore.ieee.org/document/9629300

[19] J. Keim, S. Schulz, D. Fuchß, C. Kocher, J. Speit, and A. Koziolek,
“Trace Link Recovery for Software Architecture Documentation,” in
Software Architecture, S. Biffl, E. Navarro, W. Löwe, M. Sirjani,
R. Mirandola, and D. Weyns, Eds. Cham: Springer International
Publishing, 2021, pp. 101–116.

[20] “Netflix/ribbon,” Netflix, Inc., Mar. 2025. [Online]. Available: https:
//github.com/Netflix/ribbon

[21] “Jakarta EE.” [Online]. Available: https://jakarta.ee/
[22] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-

Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “{FATE} and
{DESTINI}: A Framework for Cloud Recovery Testing,” in 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
11), 2011. [Online]. Available: https://www.usenix.org/conference/
nsdi11/fate-and-destini-framework-cloud-recovery-testing

[23] D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, “Fault Injection
Analytics: A Novel Approach to Discover Failure Modes in Cloud-
Computing Systems,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 3, pp. 1476–1491, May 2022.

[24] M. Zhang and A. Arcuri, “Open Problems in Fuzzing RESTful APIs: A
Comparison of Tools,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 6, pp. 144:1–144:45, Sep. 2023. [Online].
Available: https://dl.acm.org/doi/10.1145/3597205

[25] A. Arcuri, “RESTful API Automated Test Case Generation with
EvoMaster,” ACM Transactions on Software Engineering and
Methodology, vol. 28, no. 1, pp. 3:1–3:37, Jan. 2019. [Online].
Available: https://dl.acm.org/doi/10.1145/3293455

[26] M. Zhang, A. Arcuri, Y. Li, Y. Liu, and K. Xue, “White-Box Fuzzing
RPC-Based APIs with EvoMaster: An Industrial Case Study,” ACM
Trans. Softw. Eng. Methodol., vol. 32, no. 5, pp. 122:1–122:38, Jul.
2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3585009

[27] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “RestTestGen:
An Extensible Framework for Automated Black-box Testing of
RESTful APIs,” in 2022 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Oct. 2022, pp. 504–508. [Online].
Available: https://ieeexplore.ieee.org/document/9978261

https://spec.openapis.org/oas/v3.1.0.html
https://doi.org/10.1145/3510454.3528637
https://hypothesis.works/
https://hypothesis.works/articles/how-hypothesis-works/
https://dl.acm.org/doi/10.1145/3293882.3330576
https://dl.acm.org/doi/10.1145/3293882.3330576
https://ieeexplore.ieee.org/document/8526888
https://ieeexplore.ieee.org/document/8526888
https://dl.acm.org/doi/10.1145/3358960.3379124
https://ieeexplore.ieee.org/document/9629300
https://ieeexplore.ieee.org/document/9629300
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon
https://jakarta.ee/
https://www.usenix.org/conference/nsdi11/fate-and-destini-framework-cloud-recovery-testing
https://www.usenix.org/conference/nsdi11/fate-and-destini-framework-cloud-recovery-testing
https://dl.acm.org/doi/10.1145/3597205
https://dl.acm.org/doi/10.1145/3293455
https://dl.acm.org/doi/10.1145/3585009
https://ieeexplore.ieee.org/document/9978261

	Introduction
	Motivating Example
	Overview of the Approach
	Stateful Fuzzing
	Tracing & Fault Injection
	Greybox Feedback

	Prototype Implementation: Onweer
	Generating REST Requests
	Generating REST Sequences
	Tracing, Fault Injection & Coverage

	Evaluation
	Experimental Setup
	Benchmark Systems
	Experimental Setup

	Results
	Discussion

	Future Work & Limitations
	Nondeterminism & State
	Service Replication
	Additional Fault Types

	Related Work
	Resilience Testing
	REST Fuzzing

	Conclusion
	References

