
Improving the Reactivity of Pure Operation-Based
CRDTs

Jim Bauwens
Software Languages Lab
Vrije Universiteit Brussel

Belgium
jim.bauwens@vub.be

Elisa Gonzalez Boix
Software Languages Lab
Vrije Universiteit Brussel

Belgium
egonzale@vub.be

Abstract
Modern distributed applications increasingly replicate data
to guarantee both high availability of the system and an op-
timal user experience. Conflict-Free Replicated Data Types
(CRDTs) are a family of data types specially designed for
highly available systems which guarantee some form of even-
tual consistency. In this paper, we show that the reliance on
reliable causal broadcasting (RCB) middleware by existing
CRDT frameworks may lead to less reactive CRDTs which in
turn hampers user experience. We propose a solution that im-
proves the reactivity of CRDTs built on an RCB middleware
by reifying buffered operations. We apply our strategy to the
pure operation-based CRDT framework, allowing for reac-
tive pure operation-based CRDTs. We describe our approach
as a formal extension to the framework and implement it in
Flec, an extensible and open CRDT framework. The exten-
sion is then used to create new Add-Wins and Remove-Wins
sets which exhibit higher reactivity.

CCS Concepts: • Software and its engineering → Con-
sistency; Synchronization;Middleware;Reflectivemid-
dleware; •Computer systems organization→Distributed
architectures.

Keywords: Replication, CRDTs, Middleware, Reflection, We-
bAssembly, Eventual consistency

ACM Reference Format:
Jim Bauwens and Elisa Gonzalez Boix. 2021. Improving the Reactiv-
ity of Pure Operation-Based CRDTs. In 8th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC’21), April 26,
2021, Online, United Kingdom. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3447865.3457968

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PaPoC’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8338-7/21/04. . . $15.00
https://doi.org/10.1145/3447865.3457968

1 Introduction
Many CRDT implementations rely on Reliable Causal Broad-
casting [5] (RCB), ensuring both causal ordering and reliable
delivery [2, 10] of operations. In fact, RCB is commonly un-
derstood to be a requirement for operation-based CRDTs
[1, 2, 9, 10]. The main benefit is that causal ordering reduces
complexity in the implementation of operation-based CRDTs,
as the handling of non-concurrent operations becomes triv-
ial.
In the case of concurrent operations, some causal meta-

data will still be required to ensure the commutativity of
operations, which can lead to unbounded memory growth.
But even here, an RCB middleware may help: Pure operation-
based CRDTs [2], a framework for constructing operation-
based CRDTs makes additional use of the RCB middleware
for tackling meta-data removal. The framework builds a par-
tially ordered log (PO-Log) of operations by piggybacking
on the causality information available in the middleware
(following the happened before relation [8]). When opera-
tions are causally stable (i.e. operations for which no new
concurrent operations can occur) or become redundant by
newer operations, they are compacted or removed from the
log.

While the benefits of using an RCB middleware are large,
it is not always desirable to fully rely on causal ordering as it
may hamper the reactivity of operation-based CRDTs. When
operations arrive out of causal order (e.g. before other oper-
ations that happened before), they are buffered by the RCB
middleware until all causal predecessors arrive. Since the
happened before relation does not always imply an actual
dependency between operations, operations may be buffered
by the RCB middleware needlessly. The result of this is a less
responsive CRDT, where replicas may have to wait for unre-
lated updates of other replicas before they can apply already
received updates. This, in turn, will hamper user experience
as applications may suffer from unnecessary delays. In the
case of pure op-based CRDTs, waiting may additionally im-
pact the removal of redundant log entries, leading to higher
memory consumption.

1

https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3447865.3457968

PaPoC’21, April 26, 2021, Online, United Kingdom Jim Bauwens and Elisa Gonzalez Boix

Table 1. A sequence of operations applied to several replicas
implementing an add-wins pure operation-based set CRDT.
The last remove does not have any immediate effect on A,
as A is waiting for B before it will apply any other operation
from C.

Operation SET A SET B SET C
{} {} {}

SET C :: Add (X)
SET C :: Add (Y)

{X,Y} {X,Y} {X,Y}
SET B :: Add(Z)

{X,Y} {X,Y,Z} {X,Y,Z}
SET C :: Remove(X)

{X,Y} {Y,Z} {Y,Z}

Table 2. A sequence of operations applied to several replicas
implementing a classic OR-Set CRDT. The last remove is
applied immediately on set A.

Operation SET A SET B SET C
{} {} {}

SET C :: Add (X)
SET C :: Add (Y)

{X,Y} {X,Y} {X,Y}
SET B :: Add(Z)

{X,Y} {X,Y,Z} {X,Y,Z}
SET C :: Remove(X)

{Y} {Y,Z} {Y,Z}

2 Causal Ordering and its Impact on
Reactivity

To demonstrate the implications of delayed operations, con-
sider a sequence of operations that is applied to three set
replicas named A, B, and C. Figure 1 visualises the connec-
tivity between the replicas. Black lines denote bidirectional
connectivity between replicas and dotted lines temporal net-
work failures. The figure shows a scenario in which updates
are not propagated between replicas A and B.

A B

C

Figure 1. Network connectivity between set replicas

Assume that the replicas host two different set CRDTs,
both with add-wins semantics: a pure operation-based Add-
Wins set[2] and an operation-basedOR-Set CRDT that utilises
tombstones[4]. Contrary to pure operation-based Add-Wins
CRDTs, OR-Set CRDTs do not require an RCB middleware,

as tombstones and unique identifiers are used for tracking
causality. Table 1 shows the operations applied to the pure
op-based Add-Wins set, while table 2 shows the operations
applied to the OR-Set CRDT. We apply the operations to the
replicas in the following order:

1. As a first step, the elements X and Y are added to
replica C. This update is propagated to all other sets
and their state is updated.

2. Following this, the element Z is added to set B. This
update is only sent to set C, as there is a disconnection
between set A and B.

3. Finally set C applies the remove of item X, which will
be observed by set A and B, as set C is connected to
both other replicas.

In the case of the OR-Set, the item will be immediately
removed on all replicas. This differs however for the Add-
Wins set, where the operation will not be applied to set A.
The reasoning behind this is simple: the Add-Wins pure op-
based implementation set relies on the RCB middleware. The
middleware will buffer the operation as it can derive from
the causality information that it received along with the
operation (from set C) that A has not yet received one or
more operations from B. In practice, this means that only
after the connectivity issue between A and B is resolved, and
set A receives and applies the Add(Z) operation from B, the
remove operation from set C will be applied.

While the OR-Set has a clear benefit in terms of reactivity
when compared to the Add-Wins set, the implementation is
very ad-hoc and has a higher complexity: unique identifiers
need to be generated for every operation and tombstones
have to be kept to make sure that remove operations com-
mute. In the following section we propose a solution that
brings higher reactivity to operation-based CRDTs frame-
works without having to rely on ad-hoc techniques.

3 Improving the Reactivity of CRDTs in an
RCB-based Approach

To improve the reactivity of operation-based CRDTs util-
ising RCB in a generic (non ad-hoc) way, we propose that
the buffer of the RCB middleware where these messages are
held is made accessible (i.e. reified) to CRDT implementors
as part of the framework interface. In the context of a pure
operation-based CRDT, this buffer can then be used to con-
struct an incomplete partially ordered log. We say it is incom-
plete because the buffer can contain gaps of missing causal
dependencies. The incomplete log can then complement the
existing partially-ordered log (PO-Log) and compacted se-
quential state to represent the full CRDT state. Furthermore,
entries in the main PO-Log and the compacted state can be
made redundant by entries from the incomplete log. How-
ever, entries in the incomplete log cannot be made redundant

2

Improving the Reactivity of Pure Operation-Based CRDTs PaPoC’21, April 26, 2021, Online, United Kingdom

as long as they have not yet been moved to the main PO-
Log as concurrent operations that might be affected by the
operation may yet arrive.

This approach has, aside from increasing the reactivity of
CRDTs, some additional benefits in terms of memory man-
agement. Since entries from the incomplete log can cause
entries from the main log to become redundant, it can be
used for decreasing memory consumption whenever inter-
mediate disconnections are common. When disconnections
are common it may be hard to determine causal stability as
not all replicas will be responsive. By observing the incom-
plete log, potentially redundant information can already be
removed from the main log even if causal dependencies are
missing.

In the next section, we detail our approach as an extension
to the pure operation-based CRDT framework in the form
of a formal specification. We illustrate the applicability of
the approach by applying it to Add-Wins and Remove-Wins
sets. Following this, we describe the implementation of our
strategy and the extended sets in our own TypeScript CRDT
framework.

3.1 Extending Semantic Log Compaction with
incomplete PO-Log Support

Pure operation-based CRDTs utilise a mechanism named
causal redundancy to prune operations from the log when-
ever they become causally redundant. Baquero et al. define
this mechanism by means of binary redundancy relations
(typically named R and R_). We extend this mechanism
with a new binary relationship Rβ that defines the relation
between log entries that live in the RCB buffer (e.g. the in-
complete PO-Log segment) and the non-buffered main log.
The relation defines which operations from the non-buffered
log become redundant when new entries arrive in the RCB
buffer.

Algorithm 1: Distributed algorithm (for a replica i)
showing the interaction between the RCB middle-
ware and the pure operation-based CRDT framework
state: si := ∅

on operationi (o) :
broadcasti (o)

on deliveri (t,o) :
si := (si \ {(t ′,o′) | ∀(t ′,o′) ∈
si · (t ′,o′) R_ (t,o)}) ∪ {(t,o) | (t,o) ��R si }

on bufferi (t,o) :
si := si \ {(t ′,o′) | ∀(t ′,o′) ∈ si · (t ′,o′) Rβ (t,o)}

on stablei (t) :
stabilizei (t, si)[(⊥,o)/(t,o)]

The interactions between the RCB layer and the pure
operation-based framework are listed in algorithm 1, which
builds on the original algorithm by Baquero et al.. It describes

Table 3.Modified semantics for the Add-Wins pure-op set,
supporting incomplete PO-Logs (based on approach in [2])

(t,o) R s = op(o) = (clear ∨ remove)
(t ′,o′) R_ (t,o) = t ′ < t ∧ (op(o) = clear ∨

arg(o) = arg(o′))
(t,o) Rβ (tβ,oβ) = t < tβ ∧ (op(oβ) = clear ∨

arg(oβ) = arg(o))Fr
am

ew
or
k

stabilize(t, s) = s
toList(s, sβ) = {v | (_, [op=add,arg=v]) ∈

s} ∪

{v | (_, [op=add,arg=v]) ∈
sβ }

add(e) = operation([op=add, arg=e])U
se
r

remove(e) = operation([op=remove,
arg=e])

the interactions that arriving operations have on the state of
a CRDT replica. In the case of a pure operation-based CRDT,
the state (si) is initially an empty log. When an operation is
applied locally, it will be broadcasted to all replicas. Depend-
ing on whether other causally dependent operations have yet
to arrive deliver or buffer may be invoked on the receiv-
ing replicas. These operations, in turn, use the R, R_ and Rβ
relations to check what log entries become redundant (and
modify the state accordingly) and if the new operation is
redundant itself. If the new operation has no missing causal
dependencies and is not redundant, it will be added to the
log (along with its logical timestamp). Whenever a particular
timestamp is causally stable, stable will be invoked and the
pure op-based framework will compact stable operations
that are returned by the stabilize function (which is data
type dependent).

The algorithm only describes the interaction between the
RCB middleware and pure operation-based framework. We
will now describe how actual CRDTs are build on top of this,
and in what way users can interact with them.

3.2 Reactive Pure Operation-Based Sets
Table 3 shows a modified reference implementation for the
pure op-based Add-Wins set (AW-Set) CRDT using our ap-
proach. The table is grouped as follows: (1) functions that
are used by the pure operation-based framework that dictate
the interaction between new operations and entries in the
log, and (2) procedures that can be invoked by the user for
state serialisation or mutations.
In the case of the AW-Set, Rβ is equivalent to R_, i.e. a

(causally) older operation is redundant if it shares the same
arguments with a newer operation, or if the newer operation
is a clear operation. As Rβ also encodes semantics for newer
operations (albeit for buffered operations), it will typically
be equivalent to R_ for most data types.

3

PaPoC’21, April 26, 2021, Online, United Kingdom Jim Bauwens and Elisa Gonzalez Boix

Table 4.Modified semantics for the RW-Wins pure-op set,
supporting incomplete PO-Logs (based on approach in [2, 4])

(t,o) R s = op(o) = clear ∨ (op(o)=add
∧∃(t ′, [op=remove,
arg=arg(o)]) ∈ s · t ∼ t ′)

(t ′,o′) R_ (t,o) = (t ′ < t ∧ ((op(o) = clear ∧
op(t ′) = add) ∨ arg(o) =
arg(o′)) ∨ (t ∼ t ′∧ op(o) =
remove ∧ op(o′) = add ∧

arg(o) = arg(o′))
(t,o) Rβ (tβ,oβ) = R_Fr

am
ew

or
k

stabilizei (t, s)* = {(t ′,o) | ∀(t ′,o) ∈ s · t , t ′}
∪{∀(⊥, [op=add,arg=e]) |
(t ′, [op=add,arg=e]) ∈ s ·
t = t ′}

toList(s, sβ) = {v | (_, [op=add,arg=v]) ∈
s} ∪

{v | (t, [op=add,arg=v]) ∈
sβ ∧

∀(t ′, [op=remove,arg=v]) ∈
sβ · t ′ < t}

add(e) = operation([op=add, arg=e])

U
se
r

remove(e) = operation([op=remove,
arg=e])

(o′ ∼ o) denote concurrent operations
*We assume that stabilize is only called for a timestamp

when all concurrent operations are stable as well.

The toList1 operation is extended to take the incomplete
PO-Log segment into account (sβ , the incomplete PO-Log,
is passed as an extra dependency). The fully evaluated state
is the union of both the main and the incomplete PO-Log
segments. Finally, add and remove are mutator procedures
that will cause the corresponding operation to be broadcasted
to all replicas (following the definition in algorithm 1).
Table 4 shows a modified reference implementation for

the pure-op Remove-Wins set (AW-Set) CRDT using our
approach. Again,Rβ is equivalent toR_. However, unlike the
AW-Set version, toList cannot simply take all the adds from
sβ operation as it needs to account for possible removes that
may invalidate the add. All adds that contain a concurrent
or newer remove for a particular element will be filtered out.

4 Implementation
We implemented the proposed approach in our operation-
based framework Flec [3, 4], an extensible programming
framework for CRDTs written in TypeScript. Flec incorpo-
rates the concepts of ambient-oriented programming [6, 7],
to discover and communicate with replicas in a distributed
dynamic network. Among other things, it has support for
1In the original pure operation-based paper by Baquero et al. this would be
the eval(elems, ...) operation.

pure-operation based CRDTs and RCB for causal delivery. In
this section, we describe the modifications to Flec that are
required to improve the reactivity of pure-operation based
CRDTs.

Flec provides an open programming interface that allows
for the implementation of pure-operation based CRDTs, us-
ing the following constructs:

• isRedundantByOperation: Encodes theR_ (or R0,
R1) binary relation(s) (i.e. do existing log entries be-
come redundant by a new operation).

• isRedundantByLog: Encodes theR binary relation
(i.e. is a new operation redundant by an already exist-
ing log entry).

• setEntryStable: Perform an actionwhen an operation
becomes stable.

• removeEntry: Perform an action when a particular
item is removed from the log (for example if it was
marked redundant by isRedundantByOperation).

• newOperation: Perform an action when a new oper-
ation arrives in the log.

To build an actual (new) CRDT type, developers have to
implement these methods, following the semantics of the
datatype. For our reactivity extension we provide two new
constructs:

• isRedundantByBufferedOperation: Encodes theRβ
binary relation (i.e. do existing log entries become re-
dundant by a new buffered operation).

• newBufferedOperation: Perform an action when a
new operation arrives in the incomplete log segment.

1 onBufferedOperation(clock: VectorClock , op: O, args: any[]) :
POLogEntry <O> {

2 const entry = new POLogEntry <O>(clock , op, args);
3 this.newBufferedOperation(entry);
4
5 for (let i=this.log.length -1; i>=0; i--) {
6 let e = this.log[i];
7 if (this.isRedundantByBufferedOperation(e, entry ,

false)) {
8 this.removeEntry(this.log[i], entry);
9 delete this.log[i];
10 }
11 }
12 this.log = this.log.filter(e =>
13 typeof e !== "undefined");
14
15 return entry;
16 }

Listing 1. A code extension to the pure op-based framework
in Flec that enables reification of buffer data.

Listing 1 shows the code used to enable this reactive func-
tionality in the pure operation-based layer of Flec. By overrid-
ing the onBufferedOperation method, the framework can
hook into the RCB middleware. As a first step a POLogEntry
object, an object that represents a log entry, is created with
the operation data. This allows us to represent buffered RCB
data as log entries. These entries are then exposed to the new-
BufferedOperation, isRedundantByBufferedOperation
and removeEntry hooks, which can be used to implement

4

Improving the Reactivity of Pure Operation-Based CRDTs PaPoC’21, April 26, 2021, Online, United Kingdom

the actual pure operation-based CRDT logic. Finally, the en-
try object is returned to the RCB layer, so that successive
accesses to the RCB layer can immediately provide proper
objects in pure op-based entry format.

4.1 Implementing Reactive Sets in Flec
In this section, we describe the implementation of Add-Wins
and Remove-Wins sets using the Flec extensions described
above. Listing 2 shows the implementation of an Add-Wins
set, following from the proposed semantics in table 3.

1 enum SetOperation {
2 Add , Clear , Remove
3 }
4 type SetEntry = POLogEntry <SetOperation >;
5
6 export class AWSet extends POLog <SetOperation > {
7 ...
8
9 isRedundantByOperation(existing: SetEntry , new_: SetEntry

, isRedundant: boolean) {
10 return existing.precedes(new_) && (new_.is(

SetOperation.Clear) ||
11 existing.hasSameArgAs(new_));
12 }
13
14 isRedundantByBufferedOperation =

this.isRedundantByOperation;
15
16 isRedundantByLog(entry: SetEntry) {
17 return entry.is(SetOperation.Remove) ||
18 entry.is(SetOperation.Clear);
19 }
20
21 public toList () {
22 let list = {};
23
24 this.getLog () .forEach(entry =>
25 list[entry.args [0]] = true);
26
27 this.getBufferedLog () .forEach(entry => {
28 if (entry.is(SetOperation.Add))
29 list[entry.args [0]] = true});
30
31 return Object.keys(list);
32 }
33
34 add(e) { this.performOp(SetOperation.Add , [e]); }
35 remove(e){ this.performOp(SetOperation.Remove , [e]); }
36 clear(e) { this.performOp(SetOperation.Clear , [e]); }
37 }

Listing 2. AW-Set implementation in Flec

The implementations of isRedundantByLog and isRe-
dundantByOperation are a 1-on-1 mapping with the de-
scribed semantics for the R and R_ relations. isRedundant-
ByBufferedOperation, which implements the Rβ relation,
is set to point to the method of isRedundantByOperation
as its semantics are equivalent. Finally, in toList, the main
log (denoted by s) and the incomplete (buffered) log (denoted
by sβ) are combined to determine the full state of the data
structure.

Listing 3 shows the implementation for the RW-Set, follow-
ing the semantics in Table 4. The approach is similar to the
Add-Wins set, aside from that the RW-Set has some mecha-
nisms for pruning causally stable operations. When an entry
from the log becomes stable, setEntryStable (line 26-35)
will remove it from the log and place it in a small compacted
set (implemented as a dictionary). removeEntry, newOper-
ation and newBufferedOperation (line 45-47) make sure
that this local compacted set stays up to date when the log

changes (using the cleanCompactEntries helper method).
The toList method (line 44-60) is also a bit more complex
for the RW-Set, as it has to take the compacted set, the main
log and the incomplete (buffered) log into account while
respecting the semantics of the data structure.

1 export class RWSet extends POLog <SetOperation > {
2 ...
3
4 isRedundantByOperation(e1: SetEntry , e2: SetEntry ,

isRedundant: boolean) : boolean {
5 return (e1.precedes(e2)
6 && ((e1.is(SetOperation.Add) && e2.is(

SetOperation.Clear)) || e1.hasSameArgAs
(e2)))

7
8 ||
9
10 (e1.isConcurrent(e2)
11 && e1.is(SetOperation.Add) && e2.is(

SetOperation.Remove) && e1.hasSameArgAs
(e2));

12 }
13
14 isRedundantByLog(entry : SetEntry) {
15 return entry.is(SetOperation.Clear) || (entry.is(

SetOperation.Add) &&
16 !! this.log.find(e => e.is(SetOperation.Remove) &&

e.hasSameArgAs(
entry) &&
e.isConcurrent(entry)));

17 }
18
19 isRedundantByBufferedOperation =

this.isRedundantByOperation;
20
21 setEntryStable(entry : SetEntry) : boolean {
22 let element;
23
24 if (entry.is(SetOperation.Add)) {
25 const element = entry.args [0];
26 this.compact[element] = true;
27 }
28
29 return true;
30 }
31
32 cleanCompactEntries(entry: SetEntry) {
33 if(! entry.is(SetOperation.Clear)) {
34 let element = entry.args [0];
35 delete this.compact[element];
36 } else {
37 this.compact = {};
38 }
39 }
40 newOperation = this.cleanCompactEntries
41 newBufferedOperation = this.cleanCompactEntries;
42 removeEntry = this.cleanCompactEntries
43
44 toList () {
45 let list = {...this.compact };
46
47 this.getLog () .forEach(entry =>
48 list[entry.args [0]] = true);
49
50 let sb = this.getBufferedLog ();
51 sb.forEach(entry => {
52 if (entry.is(SetOperation.Add) &&
53 !sb.find(e => e.is(SetOperation.Remove) &&
54 (e.isConcurrent(entry) || e.follows(

entry))))
55 list[entry.args [0]] = true});
56 // this has exponential complexity , can be reduced to
57 // linear complexity by using a dictionary
58
59 return Object.keys(list);
60 }
61
62 add(e) { this.performOp(SetOperation.Add , [e]); }
63 remove(e){ this.performOp(SetOperation.Remove ,[e]); }
64 clear(e) { this.performOp(SetOperation.Clear , [e]); }
65
66 }

Listing 3. RW-Set implementation in Flec

5

PaPoC’21, April 26, 2021, Online, United Kingdom Jim Bauwens and Elisa Gonzalez Boix

5 Conclusion
Conflict-Free Replicated Data Types (CRDTs) are powerful
tools to replicate data in a distributed system as they guar-
antee that eventually, all replicas end up in the same state.
In this paper, we show how causal ordering, used by many
CRDT frameworks, is not always desirable and may lead to
less reactive CRDTs. We introduce a technique that circum-
vents the problem by the reification of the operation buffer,
which can potentially be used by any CRDT framework rely-
ing on reliable causal broadcasting. We apply our approach
to the pure operation-based CRDT framework and explain
how it leads to improved reactivity and potentially lowered
resource usage. Finally, we describe and implement reactive
Add-Wins and Remove-Wins sets on top of the extended
pure operation-based CRDT framework.

Discussion and future work. TheRβ relation only tack-
les the redundancy of operations in the main log. It might be
interesting to explore if operations from the buffer could be
made redundant before they are moved out. This would intro-
duce an extra improvement on the reactivity of the CRDTs.
Implementing this is a bit more involved, however, as re-
moving elements within the RCB middleware can lead to
subtle problems. Additionally, unlike for the main log, items
do not arrive in causal order. This means that extra causal
bookkeeping may be needed to track operations - possibly
undoing the extra benefit.
Right now developers can decide to include or ignore

particular entries from the buffer when computing the state
of the CRDT (such as done in the toList function of the RW-
Set). With this, theoretically, the developer could still achieve
the same reactivity that could be gained by having a relation
that defines if buffer entries are redundant. Future work will

include exploring what method of expression allows for the
least complexity.

References
[1] C. Baquero, P. S. Almeida, and A. Shoker. 2014. Making Operation-

Based CRDTs Operation-Based. In Distributed Applications and Inter-
operable Systems, Kostas Magoutis and Peter Pietzuch (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 126–140.

[2] C. Baquero, P. S. Almeida, and A. Shoker. 2017. Pure Operation-Based
Replicated Data Types. CoRR abs/1710.04469 (2017). arXiv:1710.04469

[3] J. Bauwens and E. Gonzalez Boix. 2020. Flec: A Versatile Programming
Framework for Eventually Consistent Systems. In Proceedings of the
7th Workshop on Principles and Practice of Consistency for Distributed
Data (PaPoC ’20). Association for Computing Machinery, New York,
NY, USA, Article 12, 4 pages. https://doi.org/10.1145/3380787.3393685

[4] J. Bauwens and E. Gonzalez Boix. 2020. From Causality to Stability:
Understanding and Reducing Meta-Data in CRDTs. Association for
Computing Machinery, New York, NY, USA, 3–14. https://doi.org/10.
1145/3426182.3426183

[5] K. P. Birman and T. A. Joseph. 1987. Reliable Communication in the
Presence of Failures. ACM Trans. Comput. Syst. 5, 1 (Jan. 1987), 47–76.
https://doi.org/10.1145/7351.7478

[6] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix., J. Dedecker, andW. De
Meuter. 2007. AmbientTalk: Object-oriented Event-driven Program-
ming in Mobile Ad hoc Networks. In XXVI International Conference
of the Chilean Society of Computer Science (SCCC’07). Iquique, Chile,
3–12. https://doi.org/10.1109/SCCC.2007.12

[7] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. 2006. Ambient-Oriented Programming in AmbientTalk. In
ECOOP 2006 – Object-Oriented Programming, Dave Thomas (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 230–254.

[8] L. Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (July 1978), 558–565. https:
//doi.org/10.1145/359545.359563

[9] N. Preguiça. 2018. Conflict-free Replicated Data Types: An Overview.
arXiv:cs.DC/1806.10254

[10] M. Shapiro, N Preguiça, C. Baquero, and M. Zawirski. 2011. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506. INRIA.

6

https://arxiv.org/abs/1710.04469
https://doi.org/10.1145/3380787.3393685
https://doi.org/10.1145/3426182.3426183
https://doi.org/10.1145/3426182.3426183
https://doi.org/10.1145/7351.7478
https://doi.org/10.1109/SCCC.2007.12
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://arxiv.org/abs/cs.DC/1806.10254

	Abstract
	1 Introduction
	2 Causal Ordering and its Impact on Reactivity
	3 Improving the Reactivity of CRDTs in an RCB-based Approach
	3.1 Extending Semantic Log Compaction with incomplete PO-Log Support
	3.2 Reactive Pure Operation-Based Sets

	4 Implementation
	4.1 Implementing Reactive Sets in Flec

	5 Conclusion
	References

