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ABSTRACT

The dynamic nature of JavaScript may lead to challenges and issues
regarding efficiency and security. Analysis tools can help develop-
ers tackle some of these issues. In the context of web applications,
dynamic analyses are best suited for handling those dynamic fea-
tures but may affect the programs execution performance. In a first
experiment, we attempted to improve the performance of the Aran
dynamic analysis platform for JavaScript by utilizing WebAssem-
bly. The extension caused extra performance hits due to context
switches between JavaScript and WebAssembly. Because these con-
text switches are inevitable, we decided to refit our work for the
analysis of AssemblyScript, a variant of TypeScript which compiles
to WebAssembly (and therefore excluding context switches). In
this work, we explore this approach in the form of a new source
code instrumentation platform named Oron, which allows for the
instrumentation of AssemblyScript code. The presented platform
is evaluated and shows promising improvements which provide a
solid basis for efficient dynamic analysis of AssemblyScript appli-
cations.
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1 INTRODUCTION

JavaScript has become the language of client-side web applications
by default. A key strength of JavaScript is in its dynamic nature,
as it (i) does not require developers to code with type annotations,
(ii) provides developers with a flexible prototype-based OOP frame-
work, and (iii) allows developers to use runtime reflective capabili-
ties to modify the applications execution state. While JavaScript’s
dynamic nature makes it suitable for fast prototyping and develop-
ment, they complicate reasoning about an application’s behaviour.
Moreover, it may lead to challenges and issues regarding efficiency
and security.

Analysis tools can help developers tackle these issues by pro-
viding insights and information on program code bases. A static
code analyser analyses programs without actually executing them
but rather by approximating their behaviour. Static analysis has
shown to be useful for statically typed languages such as Java [10],
C [18] and C++ [16]. They are, however, limited in their capabilities
to reason about highly dynamic language features, such as those
present in JavaScript [1]. An alternative to static analysis is dy-
namic analysis, in which the analysis is performed at runtime. This
is achieved by monitoring and analysing the execution of a program,
instead of approximating its behaviours from code. Dynamic code
analysers are therefore more suitable for languages with dynamic
features than static analysers, as information on these features will
be more readily available at runtime. They are additionally useful
for performing analysis on aspects that heavily depend on the pro-
gram’s execution, e.g. such as performance analysis or concurrency
analysis. The downsides of using a dynamic analysis are that it
may heavily affect the execution performance [13] and intended
behaviour (i.e. the analysis is not transparent to the application)
of the program. These effects may be problematic in certain types
of analyses such as a security analysis, where malicious code can
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observe the application’s altered behaviour and can consequently
behave differently to avoid being discovered.

The main goal of this work is to explore an efficient source
code instrumentation platform for web applications. Source code
instrumentation is a suitable technique for implementing dynamic
analysis in the web environment as it ensures the independence of
the analysis from a specific JavaScript engine (i.e., the analysis is
portable across different JavaScript engines). This means that once
a program is instrumented it can run fully self-contained. The main
disadvantage of source code instrumentation is its performance
overhead.

In this paper, we investigate the performance issues of Linvail [5],
a state-of-the-art dynamic analysis platform for web applications
that makes use of source code instrumentation. To remediate some
of them, we propose to use WebAssembly, an efficient low-level
programming language that coexists with JavaScript on many plat-
forms. In particular, we explore and implement a new source code
instrumentation platform named Oron that allows instrumentation
of AssemblyScript code, a variant of TypeScript (which is a super-
set of JavaScript) that compiles to WebAssembly. The presented
platform is further evaluated and shows promising improvements
which provide a good basis for efficient dynamic analysis on the
Web.

2 BACKGROUND AND MOTIVATION

Performing dynamic analyses on large scale applications often
involves making use of general-purpose dynamic analysis frame-
works [4, 5, 12]. These frameworks remove the effort of developing
analysis tools from scratch and allow developers to focus on the
analysis itself.

Several different techniques are used by these platforms that can
roughly be classified into four categories: bytecode instrumenta-
tion, AST instrumentation, meta-circular interpreter, and source
code instrumentation. While byte code and AST instrumentation
allow for transparent analyses with a low-performance overhead,
they are not portable as they require Virtual Machine modifica-
tions. Meta-circular and source code instrumentation, on the other
hand, provide portable solutions that are best suited for web ap-
plications, but they incur a measurable performance overhead. In
particular, JavaScript source code instrumentation platforms have
been reported to have a significant impact on application perfor-
mance [5, 12].

Analyses using source code instrumentation work by intercepting
program operations such as function calls, property writes, etc.
For example, in Linvail [5], intercepting operations can be done
by inserting (weaving) special function calls (traps) around the
program operations in the analysed application source code. Traps
implement the analysis semantics and are defined in an advice.

Towards an Efficient Source Code Instrumentation Platform. In
order to improve the overall performance of an instrumented ap-
plication, one could try to optimize and reduce the analysis code.
However, this may not always be feasible for JavaScript web appli-
cations, where it can be hard to reduce execution overhead. Another
method for achieving better performance is through the means of
WebAssembly [7]. WebAssembly is a portable, safe and fast low-
level binary code format that coexists with JavaScript in many web
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environments !. It offers high interoperability with JavaScript and
serves as a compilation target for many other languages (e.g., Rust,
C, etc).

As a first step towards reducing execution overhead, we con-
ducted experiments starting from a JavaScript dynamic analysis
platform that relies on source code instrumentation, Linvail [5]. In
particular, we extended Linvail’s source code instrumenter (called
Aran) to use WebAssembly for analysis. Because compilation of
JavaScript code to WebAssembly not possible, AssemblyScript was
used instead as an analysis language. AssemblyScript [15] is a strict
variant of TypeScript [2], which itself is a superset of JavaScript.
As AssemblyScript targets and compiles to WebAssembly, it pro-
vides a suitable replacement for JavaScript considering the shared
semantics and syntax.

The overall idea of the extension was to ensure that the applica-
tion’s source code could remain untouched (in JavaScript), while
the analysis code would be in AssemblyScript. Running Aran on an
application would then result in an instrumented application, along
with the analysis compiled as a WebAssembly module which is
linked to the instrumented application later at runtime. At runtime,
any trapped operations would call into the advice (i.e., analysis)
located in the WebAssembly module.

This strategy was evaluated by a series of benchmarks (based on
a subset of the SunSpider benchmark suitez). However, the results
showed that using AssemblyScript to implement the analysis for
instrumented JavaScript applications performed worse (i.e., 2x to
107x slowdown) than using JavaScript to implement the analysis
(as Aran does). Eventually, it became clear that the problem was
related to context switches between JavaScript and WebAssembly.
The overhead of these context switches was greater than the benefit
that could be obtained by utilising WebAssembly.

Because our extension to Aran did not allow for an immediate
performance improvement on the analysis of JavaScript programs,
we decided to refit our work for analysis on AssemblyScript pro-
grams and evaluate the performance of this approach instead. By
using AssemblyScript as the target language, no context switches
will occur. Additionally, because JavaScript and AssemblyScript are
closely related, many JavaScript programs are valid AssemblyScript
programs (or can be translated with minor changes), allowing us
to compare approaches. In the next sections, we describe, evaluate,
and discuss this approach in the form of a new dynamic analysis
platform.

3 ORON: A DYNAMIC ANALYSIS PLATFORM
FOR ASSEMBLYSCRIPT

In this section, we present Oron, a dynamic analysis platform based
on source code instrumentation for web applications written in
AssemblyScript. Figure 1 shows the overall architecture of Oron,
which is based on the architecture of Aran. In Oron, the target ap-
plication and analysis are both written in AssemblyScript, enabling
the compilation of the instrumented application to WebAssembly.
In theory, the application itself can be written in any high-level
language that can compile to WebAssembly, but as web applications

! WebAssembly is a W3C standard already being supported by all major browsers,
Node.js, and it can also run outside the web context.
2https://wiki.mozilla.org/Sunspider_Info
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are typically developed in JavaScript/TypeScript, AssemblyScript
should not pose a fundamental barrier.

In the rest of this section, we first describe Oron and its interface
by implementing a profiling analysis, using the Ackerman func-
tion as an input program. Then we explain how to deploy such
instrumented application.

3.1 Instrumenting Function Applications

Consider as an example application the Ackermann recursive func-
tion [3] shown in Listing1. A call to the main function on line 11
will perform a call to the ackermann function with arguments 4
and 5, resulting in a set of recursive calls eventually returning the
result of the calculation.

1 function ackermann(m: 132, n: i32): i32 {

2 if (m == 0) {

3 return n + 1;

4 } else if (n == 0) {

5 return ackermann(m - 1, 1);

6 } else {

7 return ackermann(m - 1, ackermann(m, n - 1));
8 3

9 3

—_

0 export function main(): i32 { return ackermann(4, 5); }

Listing 1: An AssemblyScript program implementing
the Ackermann function being called in its main
function.

Writing an analysis for profiling the execution of this program is
done by extending the OronAnalysis interface provided by Oron.
Listing 2 shows a profiling analysis for the Ackerman function.
As analysis developers, we are interested in intercepting calls to
the ackermann function in order to maintain the counter. This is
done by implementing the preApply trap from the OronAnalysis
interface. Within the trap’s body, analysis developers have access to
the runtime information of the operation being intercepted before
that operation takes place.

For example, in the preApply implementation of Listing 2 the
developer can access the function pointer, name and arguments
of the function being called. Specifically, the profiler analysis (see
lines 6 to 12) keeps track of the number of calls of the ackermann
function and the number of times the arguments provided to the
function are equal to zero.

Besides the preApply trap used in this analysis example, Oron
provides a wide number of traps for intercepting the program oper-
ations. A non-exhaustive list of the supported program operations
and their corresponding trap is listed below:

o preApply: Function applications before the function is called

e postApply: Function applications after the function has been
called

e propertyAccess: Instructions in which an objects property
is being read

e propertySet: Instructions in which an objects property is
being written

The implementation of the traps is selective, meaning that devel-
opers are not forced to implement all traps during the implemen-
tation. Oron will only use the implemented traps to perform the
instrumentation. These traps can be combined in different ways to
measure certain properties of the instrumented program, such as
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recursion depth, function profiling, object profiling and different
combinations depending on the input program.

1 let count: i32 = @, zeroes: i32 = 0;

2 export function getCount(): i32 {return count;}

3  export function getZeroes(): 132 {return zeroes;}
4

5 export class MyAnalysis extends OronAnalysis {

6 preApply(fname: string, fptr: usize, args: ArgsBuffer): void {
7 if (fname === "ackermann") {

8 count++; // increment counter

9 if (args.getArgument<i32>(Q) === 0) zeroest+t;
10 if (args.getArgument<i32>(1) === 0) zeroes++;
11 3}

12 }

13 3}

Listing 2: Definition of an Oron analysis to profile the
amount of function calls and determine the amount of
zeroes.

3.2 Deploying an Analysis

After the analysis has been defined, it still needs to be linked (i.e., in-
strument the program) to the program and compiled to WebAssem-
bly. For the instrumentation Oron requires both, the input program
(e.g., Listing 1), the analysis program (e.g., Listing 2) and the output
path to output the instrumented program, as illustrated below:

1 node oron.js ackermann.ts analysis.ts instrumentedAck.ts

This will output the file instrumentedAck.ts containing the
instrumented code of ackermann. ts with the analysis applied de-
fined in analysis. ts in a single functional program.

During the instrumentation, Oron will traverse the AST of the
input program and will instrument all nodes for which a trap was
defined in the analysis implementation. For example, in Listing 2 it
means that AST nodes corresponding to function calls in lines 5,
7, and 10 will be instrumented. The output instrumented program
can be then compiled into a WebAssembly program by making use
of the AssemblyScript compiler.

After compiling the instrumented program, the program can be
instantiated in a JavaScript program as a module. Once the module
instance has been loaded, the main function can be invoked to run
the original AssemblyScript application. In our running example,
after the main execution, a call to getCount and getZeroes would
return the amount of function calls and amount of zeroes in the
program during the invocation of the main function.

3.3 Instrumenting the Running Example

Given the earlier code example enlisted in Listing 1 and the accom-
panying analysis enlisted in Listing 2, we now briefly describe the
transformation that Oron perform to produce the instrumented
code for an Ackermann function call.

As shown in Listing 2, the analysis method of performing a
preApply is invoked with three arguments: the function name
fname, a pointer fptr to the function and a data structure args
containing the arguments and their type information. This is done
in an effort to capture runtime information allowing maximum
flexibility to the analysis developer, as the function name allows
to perform a string match for the searched function, the function
pointer is to allow the analysis to store a reference to the function
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Figure 1: Overall architecture of the Oron AssemblyScript instrumentation platform.

for later retrieval and the arguments are provided to inspect them
before the function application will take place.
Listing 3 shows the transformation that Oron performs to ac-

count for the arguments to be passed to the function call ackermann (4,

5).

// storing arguments and types
argbuffer.setArgument<i32>(0, Types.i32, arg@, 0);
argbuffer.setArgument<i32>(1, Types.i32, argl, 0);
// call to analyis
MyAnalysis.preApply(

"ackermann",

changetype<usize>(ackerman),

args)

O 0 NG A W N =

)
// call to function
11 ackerman(4, 5);

—_
S

Listing 3: The transformation performed by Oron for a
function call.

The argbuffer is a globally accessible buffer containing the
values of the arguments passed to the instrumented function. More
concretely, it is a raw binary buffer that reserves the maximum
amount of memory needed for the arguments passed to any func-
tion call in the base program, which can be statically determined.
Besides a copy of the arguments, the buffer stores information on
the types for the arguments. This type of information would other-
wise be irretrievable for the analysis developer after compilation.
Additional discussion regarding the resolution of type information
is elaborated in Section 4.

Storing the arguments requires their types to be known as speci-
fied by the AssemblyScript store instruction. As such, the Oron im-
plementation takes alook at the function signature of the ackermann
function, in this case, being twice an argument of type 132. Using
setArgument, the type information and memory for the argument
is stored in the buffer as shown in lines 2-3.

4 IMPLEMENTATION

This section provides some implementation details on the Oron
platform. As mentioned before Oron manipulates AST nodes of the
source code program in AsemblyScript. The section provides imple-
mentation details on how to obtain the AST nodes and transform
them to produce the final instrumented output source code (which
is then compiled to WebAssembly).

Obtaining the input program AST. Accessing the AssemblyScript
input code AST could be done by making use of the AssemblyScript
compiler APL. The AssemblyScript compiler provides means of
hooking into the compilation process with a “--transform” flag
during compilation. With this flag, a script is provided that gains
access to inspect and modify the AST before it is further processed
in the compilation pipeline. Alternatively, one can make use of the
TypeScript compiler APL Since AssemblyScript is a variant of Type-
Script, AssemblyScript programs can be parsed by the TypeScript
compiler. The TypeScript compiler allows traversing the Assem-
blyScript compiler as if it were a TypeScripts program AST, though
it is essentially the same from a point of code structure.

Both options were considered for Oron, and the current proto-
type implementation employs the TypeScript compiler as it facili-
tates the AST traversal (as detailed below) and it supported type
inferencing (required for instrumenting function calls).

AST Traversal. Once having the program AST representation as
a TypeScript AST, the TypeScript compiler API provides operations
to traverse the AST making use of the visitor pattern. The API
provides a clear interface facilitating how AST node matching with
a syntactical structure takes place. These features are currently
not present within the AssemblyScript compiler API, making the
TypeScript compiler API a more viable way to traverse the program
AST.
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Transforming AST nodes. During the instrumentation, certain
target nodes should be transformed, which means that new instru-
mented nodes should be created and replace those target nodes.
Doing so making use of the AssemblyScript API requires implement-
ing the expected AST node generators and adjusting the traversing
method to allow replacing the target nodes within the provided
AST. Unfortunately, such traversal features combined with the gen-
eration features are not present within the AssemblyScript compiler
API, which entails manual implementation and maintenance during
further development of Oron.

In contrast to the AssemblyScript API, the TypeScript compiler
API provides a clear interface with AST node factories for each
type of node. Moreover, the traversal method provided by this API
includes means to effectively replace the target nodes. Therefore,
AST nodes transformation within the Oron is fulfilled using the
TypeScript compiler APL

Resolving type information. As discussed in Section 3.3, certain
steps need to be followed before retrieving information from AST
nodes. AST nodes themselves do not contain type information.
Instead, this information needs to be resolved by TypeScript’s type-
checker. AssemblyScript includes several types that are not natively
included in TypeScript (such as 132 and u64). The AssemblyScript
compiler will compile these types directly to the underlying We-
bAssembly types. The TypeScript Compiler API has to be made
aware of these types before any instrumentation can be performed,
otherwise, it will assume that it is traversing the AST of a JavaScript
application. If this is the case, any AssemblyScript specific type will
resolve to TypeScript’s “any”-type and important type information
will be lost.

Besides type information, it is also important to inform the Type-
Script compiler about native AssemblyScript functions and their sig-
natures. Without this information, the TypeScript compiler would
resolve all functions to any. The AssemblyScript repository contains
an up-to-date file with all primitive AssemblyScript definitions. A
version of this file is used by Oron to guide the TypeScript com-
piler during AST transformations. It contains modifications that
ensure that the native types of AssemblyScript are not resolved
to valid (conflicting) JavaScript types, retaining their information
after transformations by Oron.

Producing the output transformed source code. Finally, Oron out-
puts the transformed AST code into an AssemblyScript file which
is then compiled to WebAsembly. Besides using the TypeScript
compiler API for generating the AST, traversing and transforming
it, it is also used to output the source code. The API also provides a
printer, instructed to output the AST transformation to the out-
put file specified by the Oron caller, effectively rounding up the
instrumentation process.

5 PERFORMANCE EXPERIMENTS

In this section, we do a first validation of Oron as a source code
instrumentation platform by running several performance bench-
marks that aim to answer the following questions:

RQ1: What is the runtime overhead introduced by the
instrumentation?

10
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RQ2: What factor of code size increase can be expected
due to the instrumentation?

As discussed in Section 2, performance overhead is considered to
be the main disadvantage of source code instrumentation. Besides
overhead, it is also necessary to quantify the expected increase
in source code size. WebAssembly is mainly used in an effort to
improve overall performance. However, differences between the
original source code and the final compiled binaries may be large
enough to matter in terms of network load and resource usage. We
present the results for both research questions in Section 5.2 and
Section 5.3, respectively.

5.1 Methodology

To provide an answer to these research questions, we ran experi-
ments on a Dell XPS with an Intel Core i7-8550U CPU @ 1.80Ghz
with 16GB of RAM. For all benchmarks, we deploy Oron on Node.js
14.2.0 and each individual benchmark was run 30 times. For each
of these runs, the average execution time is used to model perfor-
mance. These averages are then used to compute the slowdown
between the original program and its instrumented version.

The evaluation uses three profiling analyses, each instrumenting
different program operations, and an empty analysis. More con-
cretely, the profiling analyses employ functionCalls, propReads
and propWrites. These analyses count (i) the number of function
calls to a certain function, (ii) the number of object property ac-
cesses for objects and their properties and (iii) the amount of object
property writes, respectively. The empty analysis is included to
measure the overhead introduced by the analyses over the base
program.

The analyses were tested on a subset of the SunSpider benchmark
suite3. We translated an existing implementation of the benchmarks
for TypeScript * to AssemblyScript.

5.2 Evaluating the Runtime Overhead

Figure 2 plots the results of each benchmark, visualizing the perfor-
mance overhead and slowdown introduced by Oron. In the follow-
ing, we discuss some preliminary conclusions drawn from these
benchmarks results.

Worst slowdown factor. The input program
bitops-3bit-bitsin-byte shows the largest slowdown, of
104x, for profiling function calls. The program depends on a
relatively large amount of function calls to a single particular
function that performs a set of byte code operations (left bit
shifts, right bit shifts). As the analysis is instructed to profile each
function call, the relative slowdown of a CPU optimized operation
(bit shift) compared to the high-level operations introduced by the
analysis (string comparison, data structure manipulation) is to be
expected.

In short, an increased slowdown can be expected when the input
program only performs low-level operations. As Oron’s injected
instrumentation code uses high-level constructs, the injected code
would outweigh the original program and introduce a large over-
head.

3https://wiki.mozilla.org/Sunspider_Info
“https://github.com/apurvaraman/sunspider-jsx/tree/master/js/tests/sunspider-
1.0/ts
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Figure 2: Slowdown factor on a partial set of the SunSpider benchmarks for four analyses built on top of Oron

Slowdown factor for function calls. In this section, we take a look at
benchmarks that involve a high number of function calls. In particu-
lar, controlflow-recursive shows a slowdown of 72x. The input
program has many invocations to the ackermann function [3], the
fibbonacci function [6] and the tak function [11]. These func-
tions involve a high number of recursive function calls and are
used to benchmark the recursion capabilities of AssemblyScript.
As was shown in Section 3.3, every instrumented function call is
accompanied by operations that store its arguments in a data struc-
ture (provided by Oron) A possible cause of the large slowdown
factor might be related to the additional call stack growth and the
required argument buffer fill instructions as this is repeated many
times in the recursive function calls.

Slowdown for property reads and writes. The slowdown introduced
by propReads and propWrites is fairly small throughout most
benchmarks, except for access-nbody. Inspecting the programs,
we can see that access-nbody is the only program in the bench-
mark suite making use of AssemblyScript classes and objects. As
such, it is clear the overhead is not present on benchmarks that do
not use classes and objects. This overhead is mainly due to the extra
level of indirection added by the instrumentation during property
read and write operations.

Slowdown on instrumentation with empty analysis. In this sec-
tion, we look at the results of the benchmarks with the empty
( identity) analysis. There is one aspect that was observed

11

during the benchmarks that is worth discussing, however, ad-
ditional experimental data will be needed to any draw conclu-
sion. An excessive performance cost for instrumenting func-
tion calls can be observed during the identity analysis on the
programs bitops-3bit-bits-in-byte, bitops-bits-in-byte,
controlflow-recursive and math-spectral-norm, while this
same analysis had little to no impact in access-nbody, which has
a very low number of function calls when compared to other op-
erations. This excessive impact of just trapping an operation may
be the result of manipulating the global arguments buffer, which
we plan to solve in the future by statically analysing the traps
and ensuring that the transformation only selectively prepares the
arguments if they are used in the trap.

Overall conclusions. From the benchmarks conducted, we conclude
that the additional overhead in AssemblyScript applications ranges
from 1X to 104X slowdown. However, comparing the performance
overhead of the identity analysis between Oron and the combi-
nation of Aran and WebAssembly (done in Section 2), we found
that our approach performs better in general, ranging from 1x to
25x overhead in Oron versus 2,37x to 107.98x of the combination
of Aran and WebAssembly.

5.3 Evaluating the Code Size Increase

We now evaluate our approach with respect to the increase in code
size for the instrumented programs. At a first glance, code size
could be estimated by means of the lines of code or characters of
code. This, however, makes less sense in the context WebAssembly
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Figure 3: Instrumented source code growth ratio measured in bytes.

which has a binary format. We therefore focus on the increment of
byte code as is presented in Figure 3.

As can be seen in Figure 3, binary sizes of instrumented applica-
tions of our benchmarks program have a growth ratio between 1x
and 2,3x in the number bytes compared to the original base program.
This growth depends on the traps implemented in the analysis and
the frequency of such trapped operations in the analysed program.

6 RELATED WORK

This section describes the closest related work to Oron in the con-
text of web applications.

Wasabi [9] is a general-purpose dynamic analysis framework for
WebAssembly. The framework works by inserting calls to JavaScript
functions in the binary representation of WebAssembly. In contrast
to Wasabi, where the analysis targets WebAssembly code (and
therefore low-level program operations), our approach makes the
instrumentation target AssemblyScript code (i.e., a set of higher-
level program instructions).

NodeProf [14] is an instrumentation platform for JavaScript
application running on Graaljs [17]. A distinguishing feature of
NodeProf is that applications are instrumented at the AST-level,
i.e. nodes of the AST can be wrapped with additional operations
that perform the analysis. This allows the analysis to be enabled or
disabled at runtime, with no overhead when disabled. However, as
most JavaScript engines do not allow access to the AST, NodeProf
cannot be used outside the Graal.js ecosystem.

Another known technique would be to make use of a meta-
circular interpreter which implements the JavaScript interpreter
in JavaScript itself. This allows for full control and visibility of the
program as the interpreter has been redefined, as shown in Photon
[8]. This technique has the advantages of being portable across
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platforms as it does not rely on a new interpreter and allows for
full transparency to the original application.

These advantages, however, come at the cost of slowdown exe-
cution due to the overhead of the additional engine and loss of just-
in-time compilation. Another disadvantage is that upon changes
in the specification of the language, the meta-circular interpreter
consequently requires updates to support these changes.

7 CONCLUSION

This paper presented Oron, an instrumentation platform designed
for AssemblyScript, a popular high-level language in the JavaScript
ecosystem used to compile to WebAssembly. The Oron platform in-
struments AssemblyScript programs by inserting traps to perform
an analysis developed in AssemblyScript. It performs this instru-
mentation by using the TypeScript compiler API which can handle
AssemblyScript programs as they are valid TypeScript. The result-
ing instrumented application is then compiled to WebAssembly
and can be executed in any compliant engine.

Oron solves challenges regarding argument passing which are
unknown at compile time by dynamically manipulating a runtime
buffer with a set of arguments allowing the analysis to inspect
runtime values. Evaluation of Oron with compute-intensive bench-
marks programs shows a 1X to 104X runtime overhead. These
results show that Oron exhibits less performance overhead in our
benchmarks than a combination of Aran and WebAssembly. How-
ever, our experiments comparing these approaches are still too
limited to give a general conclusion.

Our future work is twofold: (i) we would like to conduct bench-
marks to gain more insights into the expensive operations added
by Oron and, (ii) explore a different strategy to reduce the overhead
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of instrumentation of function calls operations by looking into a
more efficient strategy for handling arguments.
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