Flec: a versatile programming framework for
eventually consistent systems

Jim Bauwens
Software Languages Lab
Vrije Universiteit Brussel

Belgium
jim.bauwens@vub.be

Abstract

Modern distributed applications increasingly replicate data
in order to guarantee both high availability of systems and an
optimal user experience. Conflict-Free Replicated DataTypes
(CRDTs) are a family of data types specially designed for
highly available systems which guarantee some form of even-
tual consistency. However, currently CRDT implementations
are hard to integrate with existing applications and/or pro-
gramming languages. In this extended abstract we describe
Flec, a versatile programming framework for operation-based
CRDTs that ultimately can be run in any environment sup-
porting WebAssembly.

CCS Concepts: « Software and its engineering — Con-
sistency; Synchronization; Middleware; Reflective mid-

dleware; - Computer systems organization — Distributed

architectures.

Keywords: Replication, CRDTs, Middleware, Reflection, We-
bAssembly, Eventual consistency

ACM Reference Format:

Jim Bauwens and Elisa Gonzalez Boix. 2020. Flec: a versatile pro-
gramming framework for eventually consistent systems. In 7th
Workshop on Principles and Practice of Consistency for Distributed
Data (PaPoC °20), April 27, 2020, Heraklion, Greece. ACM, New York,
NY, USA, 4 pages. hitps://doi.org/10.1145/3380787.3393685

1 Introduction

Many modern distributed systems keep multiple copies of
data (replicas) between distributed components. When a par-
tial failure occurs, the copies ensure availability of the data
in the system. This also improves performance by lowering
request latencies and as a result, provides a better user expe-
rience as requests are served faster. A system is expected to

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PaPoC 20, April 27, 2020, Heraklion, Greece

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7524-5/20/04.
https://doi.org/10.1145/3380787.3393685

Elisa Gonzalez Boix
Software Languages Lab
Vrije Universiteit Brussel

Belgium
egonzale@vub.be

provide users with up-to-date information, but keeping repli-
cas consistent is a complex task. One of the main reasons
to the complexity of ensuring consistent behaviour is that
there is no notion of a global clock in distributed systems.
This has as result that the order of updates applied to differ-
ent replicas in the system cannot be precisely determined,
which complicates determining when updates are concur-
rent and how conflicts caused by concurrent updates should
be resolved.

Conflict-Free Replicated Data Types [11] (CRDTs) are
promising data structures for eventually consistent systems
as programmers do not need to manually deal with conflicts.
CRDTs are replicated data structures which can be concur-
rently updated without requiring synchronisation among
replicas. To this end, CRDTs constrain the type of operations
which can be applied on them. Assuming no new updates
happen to a set of replicas, they will eventually converge to
the same state without conflicts.

A lot of CRDT research has focused on providing formal
specifications of different data types (e.g. OR-Sets, replicated
growable arrays, embeddable counters and more) [1, 4, 7, 11,
12], but limited work has focused on embedding CRDT in
actual language implementations [9, 10].

Developers using existing libraries need to handle many
distribution aspects themselves, such as deciding on how
to handle discovery of new network acquaintances and in
what way that they will cope with a dynamically changing
system [3]. This greatly raises the barrier for utilising CRDTs
in applications.

In this paper we introduce Flec, a modular programming
middleware that enables the development and use of CRDTs
in a flexible manner.

Firstly, Flec provides a flexible networking framework that
allows programs to work on different platforms. Moreover,
Flec exposes CRDT internals by means of a Meta Object Pro-
tocol (MOP)[8], easing development of new variants through
reflection. The MOP allows developers to hook into several
points of the CRDT replication process. Finally, it targets
WebAssembly!, a powerful assembly language that is de-
signed to be a portable target that can run on a multitude of

!https://webassembly.org/

https://doi.org/10.1145/3380787.3393685
https://doi.org/10.1145/3380787.3393685

PaPoC °20, April 27, 2020, Heraklion, Greece

platforms. This makes Flec ideal for experimenting with and
developing new replicated data structures.

2 An overview of Flec

Flec app

10 0

Language Layer Provider
mre T T T T T T TN T T T |
I
| POLog CRDTs :
I
I
I
| & | TSAT RCB CRDTs :
L '
| CRDTs :
R) |
7 Web Assembly
> VM
I

“Communication

Figure 1. Flec architectural overview

Flec is implemented in AssemblyScript?, a strict subset of
TypeScript that can be compiled to WebAssembly. TypeScript
is a typed superset of JavaScript. The goal is to have any
language that can target WebAssembly to be able to utilise
the framework, by means of small language providers that
provide APIs to Flec for different languages.

Figure 1 gives an overview of the architecture of an ap-
plication that uses CRDTs provided by the Flec framework.
Applications are compiled from high-level languages and
can interact with Flec by using the language and language
provider layers. Language providers ensure that values, data
and code structures native to a language can be mapped to
WebAssembly constructs, allowing them to be stored in or
interact with Flec CRDTs.

The main component of Flec is TSAT, which incorpo-
rates the concepts of ambient-oriented programming [5, 6],
a paradigm geared towards distributed mobile computing.
In ambient-oriented programming developers are provided
with an actor-based programming model where actors can
communicate and coordinate over dynamic networks. To this
end TSAT brings support for ambient acquaintance manage-
ment, non-blocking message passing between actors, failure

Zhttps://github.com/AssemblyScript/assemblyscript

Jim Bauwens and Elisa Gonzalez Boix

handling through message buffering, leasing and future-like
synchronisation constructs.

Depending on what platform TSAT is running on, the ex-
act means of transportation can be different: in web browsers
it could be using WebSockets or WebRTC, on embedded de-
vices (such as the ESP32, a lightweight, power-efficient inte-
grated system-on-a-chip platform) it could be over pure TCP
sockets. For this it is engineered to be network agnostic and
only knows about sending messages between actors. The
idea is that a special router actor (the ‘communication proxy’
actor in the diagram) has to be implemented in the host plat-
form and made available to the WebAssembly environment.
TSAT will use this router actor for forwarding messages to
Actors over a network when needed.

2.1 Using CRDTs in Flec

We currently have a basic provider for Lua®, a highly em-
beddable programming language, allowing the use of simple
CRDTs in the language. No explicit language provider is re-
quired for applications written AssemblyScript however, as
it is implicitly provided by TSAT which is written in Assem-
blyScript. Because TSAT operates under the language layer,
it is actually possible to use the same data-structures and
have interaction with and from other languages.

Listing 1 and 2 show the use of a counter CRDT in Assem-
blyScript and Lua respectively.

let counter = new CounterCRDT('shared_counter');

counter.setUpdateHandler (value => {
console.log('Counter updated', value);

N

NG AW =

counter.increment (1);

Listing 1. Using a counter CRDT in AssemblyScript

local counter = CounterCRDT("shared_counter")

counter:setUpdateHandler (function (value)
print('Counter updated', value)
end))

NG W =

counter:increment (5)

Listing 2. Using a counter CRDT from Lua

In both the AssemblyScript and Lua versions, the Coun-
terCRDT constructor takes a string representing a nominal
type used for other actors (locally or on other network nodes)
to discover this CRDT. It then creates a counter CRDT in-
stance which can be discovered in the network by means of
the shared_counter string. setUpdateHandler is used to
set a callback that will be invoked when the CRDT is updated.
Mutation of the CRDT happens by calling the increment
or decrement operations on the CRDT reference. Flec will
ensure that these operations are replicated across all devices
hosting a CRDT replica.

Another example of CRDT is an AWSet as seen in listing
3, which replicates a set of items using add-wins semantics.

Shttps://www.lua.org/

Flec: a versatile programming framework for eventually consistent systems

let set : AWSet = AWSet('shared_set');

1

2

3 | set.setUpdateHandler (set => {

4 console.log(set.join(', '));
5101

6

7 | set.add("element");

8 | set.add("this is another item");

10 | set.remove("element™)

12 | if (set.lookup("element"))

13 console.log("Element is in the set");
14 | else
15 console.log("Element is not in the set");

Listing 3. Using an AWSet CRDT in AssemblyScript

Just like CounterCRDT, AWSet takes a string representing
a nominal type for linking replicas together, and with setUp-
dateHandler a callback function can be set which will be
applied when the set is updated. Mutation of the set happens
by calling the add or remove operations on the set reference.
Using the lookup method items can be tested if they exist
in the set. The toList method returns an array containing
all elements as a non-replicated list.

2.2 Defining new CRDTs in Flec

Right now Flec only allows for CRDT definition (i.e. adding
custom behaviour) from within AssemblyScript, but with
extended language providers this should eventually become
possible from within other languages.

To implement a new CRDT, there are several classes pro-
vided by Flec that provide some base functionality, listed
below.

e CRDT: General-purpose CRDT class that provides con-
structs for operation- and state-based CRDTs.

e CRDT_RCB: Extended CRDT class for operation-based
CRDTs that implements reliable causal broadcasting
(RCB) for causal operation ordering. To this end, every
operation is tagged with a vector-clock, which receiv-
ing nodes will use for determining causal relations.

e POLog: A CRDT class that allows the creation of pure-
operation (POLog) based CRDTs [2]. In a POLog-based
CRDT every operation is stored in a log, and the state
of a replica is determined by performing computations
on this log.

Any CRDT type implemented using these classes will be
able to fully communicate over the network with other repli-
cas, inheriting discovery and communication from TSAT.
Due to space constraints, Appendix A shows the implemen-
tation of an AWSet using the POLog class.

3 Conclusion

Conflict-free Replicated Data Types (CRDTs) are a promising
programming abstraction to replicate data in a distributed
system as they guarantee that eventually all replicas will end
up in the same state. In this paper we introduce Flec, a highly
versatile framework that aims to provide CRDTs constructs

PaPoC °20, April 27, 2020, Heraklion, Greece

to a multitude of programming languages. It provides devel-
opers with a flexible environment to define, implement and
use CRDTs. By targeting WebAssembly, the framework can
run on many different platforms, and allows us to experiment
with CRDTs in various settings.

References

[1] C. Baquero, Paulo S. Almeida, and C. Lerche. 2016. The Problem
with Embedded CRDT Counters and a Solution. In Proceedings of
the 2Nd Workshop on the Principles and Practice of Consistency for
Distributed Data (PaPoC ’16). ACM, New York, NY, USA, Article 10,
3 pages. https://doi.org/10.1145/2911151.2911159

[2] C.Baquero, P.S. Almeida, and A. Shoker. 2017. Pure Operation-Based
Replicated Data Types. CoRR abs/1710.04469 (2017). arXiv:1710.04469

[3] Jim Bauwens and Elisa Gonzalez Boix. 2019. Memory Efficient CRDTs

in Dynamic Environments. In Proceedings of the 11th ACM SIGPLAN In-

ternational Workshop on Virtual Machines and Intermediate Languages

(VMIL 2019). Association for Computing Machinery, New York, NY,

USA, 48-57. https://doi.org/10.1145/3358504.3361231

S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. 2014. Replicated

Data Types: Specification, Verification, Optimality. In Proceedings of the

41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’14). ACM, New York, NY, USA, 271-284. https:

//doi.org/10.1145/2535838.2535848

T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix., J. Dedecker, and W. De

Meuter. 2007. AmbientTalk: Object-oriented Event-driven Program-

ming in Mobile Ad hoc Networks. In XX VI International Conference

of the Chilean Society of Computer Science (SCCC’07). Iquique, Chile,

3-12. https://doi.org/10.1109/SCCC.2007.12

[6] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De

Meuter. 2006. Ambient-Oriented Programming in AmbientTalk. In

ECOOP 2006 — Object-Oriented Programming, Dave Thomas (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 230-254.

R. Hyun-Gul, J. Myeongjae, K. Jin-Soo, and L. Joonwon. 2011. Repli-

cated abstract data types: Building blocks for collaborative applications.

J. Parallel and Distrib. Comput. 71, 3 (2011), 354 — 368.

Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow. 1991. The

Art of Metaobject Protocol. MIT Press, Cambridge, MA, USA.

[9] M. Kleppmann and A. R. Beresford. 2017. A Conflict-Free Replicated
JSON Datatype. IEEE Transactions on Parallel & Distributed Systems 28,
10 (oct 2017), 2733-2746. https://doi.org/10.1109/TPDS.2017.2697382

[10] C. Meiklejohn and P. Van Roy. 2015. Lasp: A Language for Dis-
tributed, Coordination-free Programming. In Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP ’15). ACM, New York, NY, USA, 184-195. https:
//doi.org/10.1145/2790449.2790525

[11] M. Shapiro, N Preguica, C. Baquero, and M. Zawirski. 2011. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506. INRIA.

[12] P. Zeller, A. Bieniusa, and A. Poetzsch-Heffter. 2014. Formal Specifica-
tion and Verification of CRDTs. In Formal Techniques for Distributed
Objects, Components, and Systems, E. Abraham and C. Palamidessi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 33-48.

[4

flaa)

(5

—_

[7

—

8

—

Appendices

A AWSet POLog definition

Listing 4 shows the implementations of an AWSet in As-
semblyScript. It utilises the POLog class which provides a

https://doi.org/10.1145/2911151.2911159
https://arxiv.org/abs/1710.04469
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1109/SCCC.2007.12
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525

PaPoC °20, April 27, 2020, Heraklion, Greece

pure-operation based back-end. The implementation can al-
most be directly be mapped to the original POLog AWSet
specification[2]. Flec will handle all distribution and replica-

tion aspects.

class AWSet extends POLog {

constructor (tag, callback) {
super (tag);

this.callback = callback;
}

isRedundantByOperation(el, e2, isRedundant) {
return el.clock.precedes(e2.clock) && (e2.operation
== "clear" || el.args[1] == e2.args[2])
3

isRedundantByLog(entry) {
let op = entry.operation;

return op == "rmv" || op == "clear";
}
toList() {

let state = this.getState();

let set = [1;

let list = [];

state.log.forEach(element => {

Jim Bauwens and Elisa Gonzalez Boix

let i = element.args[1];

if (set[i] == null) {
set[i] = element;
list.push(i);

s

set.forEach(entry => {
let index = 0;
if (entry.operation = "add") {
list.push(index);

}
b
return list;
}
add(element){
this.performOp("add", [element]);
3
remove (element) {
this.performOp("remove", [element]);
3

clear (element) {
this.performOp("clear", [element]);
}

Listing 4. AWSet definition

	Abstract
	1 Introduction
	2 An overview of Flec
	2.1 Using CRDTs in Flec
	2.2 Defining new CRDTs in Flec

	3 Conclusion
	References
	A AWSet POLog definition

