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Abstract

Modern distributed applications increasingly replicate data
in order to guarantee both high availability of systems and
an optimal user experience. Conflict-Free Replicated Data
Types (CRDTs) are a family of data types specially designed
for highly available systems which guarantee some form of
eventual consistency. However, memory usage may grow
unboundedly in their implementations, as garbage collection
of meta-data is not tackled in most approaches.

In this paper, we explore a memory management model
for operation-based CRDTs in dynamic setting, where nodes
can dynamically join a network, and where the implementa-
tion can remove unnecessary meta-data employed by CRDTs
used to determine the order of operations applied in different
replicas. We first describe how new nodes will be brought
up-to-date and fully linked with other replicas, and later we
introduce our memory management model which allows
meta-data to be removed. We benchmark the memory usage
of an add-wins set using different garbage collection tech-
niques in various situations and show how our approach can
be beneficial in comparison to state of the art techniques.
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1 Introduction

Many modern distributed systems keep multiple copies of
data (replicas) between distributed components. When a par-
tial failure occurs, the copies ensure availability of the data
in the system. This also improves performance by lowering
request latencies and as a result, provides an better user ex-
perience as requests are served faster. A system is expected
to provide users with up-to-date information, but keeping
replicas consistent is a complex task. One of the main rea-
sons to the complexity of ensuring consistent behaviour is
that there is no notion of a global clock in distributed sys-
tems. This has as result that the order of updates applied to
different replicas in the system cannot be precisely deter-
mined, which complicates determining when updates are
concurrent and how conflicts caused by concurrent updates
should be resolved.

Conflict-Free Replicated Data Types [16] (CRDTs) are a
promising approach for replication because they avoid the
need to deal with conflicts. CRDTs are replicated data struc-
tures which can be concurrently updated without requiring
synchronisation among replicas. To this end, CRDTs con-
strain the type of operations which can be applied to them
to be commutative. As such, CRDTs are said to be strongly
eventual consistent (SEC). Assuming no new updates happen
to a set of replicas, they will eventually converge to the same
state without conflicts.

In order to handle concurrent operations and ensure com-
mutativity, a CRDT implementation typically keeps some
meta-data. For example, some CRDTs might use tombstones
to ensure that removal operations are commutative [16].
Tombstones act as placeholders for removed entries and en-
sure that if a replica receives a removal operation for an item
before its add operation, that the removal is still processed
when the add arrives. However, for many CRDT types this
meta-data grows unboundedly, and it should be removed
once it becomes useless to ensure that the application re-
mains responsive.

Most of CRDT research has focused on providing formal
specifications of different data types (e.g. OR-Sets, repli-
cated growable arrays, embeddable counters and more)
[2, 6, 10, 16, 20], but very few efforts have focused on em-
bedding CRDT in actual language implementations [11, 14].
Previous work on CRDT specifications has already pointed
out that memory usage may grow unboundedly, however,
this is still an open issue in the community. Bieniusa et al. [4]
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introduced an optimised version of the OR-Set CRDT type,
where tombstones were removed when redundancy could
be determined. However, this approach is specific to the
OR-Set CRDT data type and as such, cannot be generalised
to any replicated data type. To the best of our knowledge,
Baquero et al. [3] is the only work that proposes a general
scheme for removing meta-data. In this work, CRDTs are
built on top of a Reliable Causal Broadcast (RCB) middle-
ware that provides causality information for operations and
notifies CRDT implementations when certain operations be-
come causally stable, allowing for the removal of meta-data
belonging to operations that can no longer be concurrent.
However, their solution assumes a fixed network where the
number of replicas is known when a CRDT is created, while
dynamic environments can be found in many real-life CRDT
use-cases.

In this paper we propose a model that is able to work in
dynamic environments. We first describe how a CRDT can
work in a dynamic environment by describing a join model
that allows new nodes to get a replica of a CRDT. We then
detail our memory management scheme to remove meta-
data in this context. Furthermore we show how to speed
up the process of meta-data removal by being pro-active in
determining when an operation can no longer be concurrent.
This allows us to relieve memory pressure at a faster rate
when compared to previous approaches. Finally we evaluate
our implementation by benchmarking the memory usage of
an add-wins set. We configure the set to work with various
meta-data removal techniques, including our own approach
and test its behaviour in various situations, and show that
our approach offers benefits over other tested approaches.

2 Background

Eventual Consistency (EC) is a family of consistency models
in which replicas are allowed to diverge from one another
with the condition that the state of the replicas must eventu-
ally converge [19].

One specific model in the EC family is strong eventual
consistency [17] (SEC). In this model, replicas converge to a
consistent state without any form of synchronisation. The
model guarantees that regardless of the order of operations
and assuming no new updates happen to the set of repli-
cas, they will eventually converge to the same state, i.e. all
replicas that have observed the same updates will have an
equivalent state. This way, replicas can be updated simul-
taneously and concurrent updates will be resolved without
requiring synchronisation.

2.1 CRDTs
Conflict-Free Replicated Data Types [15, 16] (CRDTs) are a
family of data structures that adhere to the SEC consistency

model. As defined by Shapiro et al. there are two main types
of CRDTs: operation-based CRDTs and state-based CRDTs.
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Operation-based CRDT replicas share mutation events, while
state-based CRDTs replicas share their entire state. Both
types are functionally equivalent to each other, meaning that
they can be transformed to either type. The main implication
of the CRDT type is at implementation level, where the
choice can impact processing and network usage.

1 | local counter = CounterCRDT("shared_counter",

)
print('Counter updated',

function (value

value)
end)

counter:increment (5)
counter:decrement (2)
counter:increment (1)

I NET BTN

Listing 1. Using a counter CRDT

An example of a commonly used CRDT is a counter as
shown in listing 1. A counter implementation has a single
integer register that can be incremented and decremented.
The addition and subtraction operations are commutative,
e.g.5-2+ lisequivalentto 1 +5 - 2. Intermediately between
the operations different states may be observed, but eventu-
ally when all updates are applied to all copies all states will
be numerically equal.

Listing 1 shows how such a counter CRDT could be used
in LuAT, an extension to Lua featuring CRDTs that we will
use for our experiments. We will further describe LuAT in
section 5, but this section briefly introduces the necessary
syntax to illustrate a counter CRDT. CounterCRDT takes a
string representing a nominal type used for other nodes in
the network to discover this CRDT, and a callback function
which will be applied when the CRDT is updated. It then cre-
ates a counter CRDT instance which can be discovered in the
network by means of the shared_counter string. Mutation
of the CRDT happens by calling the increment or decre-
ment operations on the CRDT reference. The underlying
framework will ensure that these operations are replicated
to all other nodes.

Another example of CRDT is an OR-Set as seen in listing
2, which replicates a set of items.

1 | local set = ORSet("shared_set", function (set)
print('Set updated: ', table.concat(set:toList(), ", ")
)

[N}

end)

3

4

5 | set:add("element")

6 | set:add("this is another item")
7 add (5)

8

remove ("element")

set:
set:

10 | if set:lookup(5) then

11 print("Element 5 is in the set")

12 | else

13 print("Element 5 is not in the set")
14 | end

Listing 2. Using an OR-Set CRDT

Just like CounterCRDT, ORSet takes a string representing
a nominal type for linking replicas together, and a callback
function which is applied when the set is updated. Mutation
of the set happens by calling the add or remove operations
on the set reference. Using the 1lookup method items can be
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tested if they exist in the set. The toList method returns a
Lua table containing all elements as a non-replicated list.
At implementation level, the OR-Set CRDT generates a
unique identifier per add operation, and uses these tags to
determine the causal ordering of add operations. Remove op-
erations leave tombstones behind and record causal ordering
of remove operations. This causal information is required
to ensure the add-wins semantics that the OR-Set promises,
e.g. by ordering adds over removes in concurrent situations.

2.2 Problem Statement

Most CRDTs rely on timestamps or unique identifiers to
help determine causal ordering of operations. For example,
as explained in the previous section an OR-Set uses unique
identifiers and tombstones for this purpose, and both ac-
cumulate over the lifecycle of an OR-Set. This meta-data
becomes useless as soon as operations fully converge and no
concurrent operations are possible anymore. Because this
meta-data is useless, it should be removed in order to have a
more efficient memory usage. We call operations that have
been observed by all replicas and thus aren’t able to have
any concurrent operations ongoing "causally stable".

In order to be able to determine if an operation if causally
stable, the CRDT middleware needs to be able to access
causality information. Baquero et al. [3] have proposed to
rely on a Reliable Causal Broadcast [5] (RCB) middleware
which tracks causal information for all messages sent in a
system. They define causal stability as follows:

A timestamp 7, and a corresponding message,
is causally stable at node i when all messages
subsequently delivered at i will have timestamp
t > 7. (Baquero et al., 2017)

This means that if a node has received an operation o with
a timestamp t for source node n, and subsequently it receives
operations from all other nodes where the timestamp for
node n is larger than ¢, o is said to be causally stable as every
other node must have observed it.

Note that this definition of causal stabilities implies that
some nodes may not yet be aware of the causal stability status
for an operation, while others do. Because causal stability is
used to remove redundant meta-data, it is possible that a node
that is not yet aware of the causal stability of an operation
receives an operation with lacking meta-data. Baquero et al.
solve this by making that the RCB middleware buffers the
operation until the node is aware of the causality state.

Note also that this definition is limiting: it is only possible
to determine causal stability for an operation if and only if
every other node sends a message following the operation, in
order to collect enough causal information. This means that if
one node doesn’t issue any operation, no causal stability can
be determined at any node. Baquero et al. also assume a fixed
network, i.e. that every replica in the network is known at set-
up. This is problematic as it limits the applicability of CRDTs.
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Many modern distributed applications are collaborative or
require that the number of replicas can grow dynamically.
Consider for example, collaborative text editors like Google
Docs in which an unknown number of users can join an
editing session. Even web-shop applications such as Amazon
allow the same user to hold several replicas of a shopping
list or card which can be accessed via different devices (e.g.
mobile phone, tablet, laptop..).

2.3 Our Approach

In this paper we explore a memory efficient implementa-
tion approach for CRDTs which can work in a dynamic
environment in which the number of replicas is not known
beforehand. In order to achieve this we first need to design
a mechanism to allow new nodes to be added to a system
and obtain a replica. We call this a join model. We show how
such a system could be set-up and what is required to allow
new nodes to join during the life time of a system. Conse-
quently, we design a memory management model taking
into account the join model for dynamic networks. More
concretely, we adapt the definition of causal stability by Ba-
quero et al. to a dynamic environment, and combine it with
a memory management model that aims to remove meta-
data eagerly without relying on operations to be issued to
garbage collect causal information.

3 A Join Model for CRDTs

We design a join model in which new nodes can join the
network and are able to construct a proper state for their
local replica and start collaborating with others. We focus on
operation-based CRDTs in this model, but will later discuss
the impact on state-based CRDTs.

3.1 Assumptions

The original paper on CRDTs [16] actually assumes that all
replicas are in a correct state when performing updates, and
does not specify how to ensure this for replicas that have
not started with the same initial state. Follow-up papers on
CRDTs targeting systems that are typically used in dynamic
environments, such as for use in collaborative tools, gen-
erally rely on a centralised approach with a membership
protocol [12, 13]. To the best of our knowledge this is the
first paper to describe a join model for CRDTs, in particular,
for a dynamic environment.

In our approach we do not assume a centralised design,
but rather a full-mesh peer-to-peer configuration. We define
a node in the system as a VM or machine which hosts a
replica of a CRDT. We employ the term network as the set of
nodes hosting a replica for one CRDT. We assume that every
node in the network holds a single replica of a CRDT. In the
case that a node disconnects we assume this to be a transient
failure [18], and expect that the node will eventually recover
and return to the network. In other words, we assume a
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fail-and-recover failure model. Messages that cannot be de-
livered due to transient failures are assumed to be buffered
until the network is restored. Furthermore, we assume that
eventually all messages arrive, i.e. reliable communication
with no message lost nor duplication, e.g. TCP/IP, and that
there are no byzantine failures, i.e. no malicious nodes. We
expect that the middleware relies on acknowledgement mes-
sages in order to ensure message delivery and processing,
which is a reasonable expectation as TCP/IP and similar pro-
tocols also make use of handshakes and acknowledgements
for ensuring in-order delivery of messages.

3.2 Defining a Join Model

The challenge in defining a join model for a dynamic envi-
ronment is getting the new node an up-to-date state without
missing operations or performing operations multiple times.
In our approach for a new node to join it has to make contact
with only one node within the network, and request to join.
This can be seen in Figure 1 where the white N node sends
a join message to grey node A. Grey nodes represent nodes
that are fully part of the network. Dashed lines between
nodes represent a ’knows’ relation. In our example nodes A,
Band C all know each other.

request AN
/, \\
/ \

//I \\‘
/
—» message ‘E’ ___@

knows relation
Figure 1. Step 1: A node requests to join a network

When a node receives a join request, it responds by send-
ing network information about its known nodes to the new
node, and will then add the new node to its known nodes.

The new node can start receiving updates from nodes that
know it, but it has to buffer all incoming messages until it
has been fully acknowledged by all members of the network.

The new node then uses the network information that it
has received to link to all other nodes in the network, as can
be seen in Figure 2. This is done so that the new node can
start receiving updates from the entire network.

When the new node has been acknowledged by the entire
network, it is still missing a full state. This is solved by re-
questing the state from the node it sent its join request to,
as visualised in Figure 3.

The new node can now apply the received state as its initial
state and start applying any buffered operations that do not
have a timestamp earlier than the state that was received,
as there may be duplicate operations between the state and
operations received from other nodes.
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Figure 2. Step 2: The new node contacts all other nodes in
the network

Figure 3. Step 3: The new node performs a state request
once it has been fully acknowledged

The state has to be transferred when the new node is fully
linked to the network, as otherwise operations concurrent
to the link requests may never be delivered to the new node.

3.3 Concurrent Joins

We now detail how our model handles concurrent joins, i.e.
when two (or more) nodes of a network are simultaneously
handling the join request of other new nodes. To this end,
consider the scenario shown in Figure 4, where node N is
sending a join request to node A and concurrently node O is
a sending a join request to node C. Following the protocol
described above, O will receive the network state from node
C, however this state may still lack information about node
N. Similarly, the network state that node N receives may be
lacking information on node O. As both nodes may not be
aware of each other they will not be able to link with each
other as-is.

Figure 4. Two nodes perform simultaneously join requests
to different nodes in the network
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Iink/®<\“nk
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Figure 5. Node A forwards a link message from node O to
node N

In order to handle such concurrent join request, our ap-
proach makes that nodes that have received join request
send copies of the link requests they received to the new
nodes they are handling. In the example in Figure 5, node
A forwards a link request from node O to node N (the new
node being handled by A). Similarly, node O will eventually
receive a forwarded link request from N.

By forwarding the link requests, nodes that join concur-
rently will always receive link requests from each other
before they can finalise joining the network. The nodes han-
dling the join request (e.g. A and C in Figure 4) will reject
state requests from new nodes if they have not handled addi-
tionally forwarded links, e.g. a node is only allowed to finalise
its join if it has connected to all nodes from the network state
plus later forwarded link messages.

4 Memory Management

Recall that memory management in CRDTs is all about being
able to remove meta-data that is used for causal tracking of
operations. This meta-data is necessary in order to enforce
ordering between concurrent operations. However, when an
operation can no longer be concurrent with other operations,
e.g. all subsequent operations have a greater timestamp, this
meta-data is no longer required and needlessly consumes
resources. The operation is said to be causally stable.

In this section we first explore how causal stability can be
determined in our join model and then we explain how we
can determine causal stability in a more eager way and thus
speed up time to garbage collection.

4.1 Causal Stability in Dynamic Environments

In order to determine causal stability, we need to examine
operations that are sent between replicas. Depending on the
node that issued the operation, actions may need to be taken
that diverge from the causal stability algorithm for fixed
networks. We will look at the different cases an operation
on the system can be categorised in, when performed in
a network where a node is actively joining. With this, we
look at what information is required for determining causal
stability. Operations in a network where a node is joining
can be categorised as follows:

52

VMIL ’19, October 22, 2019, Athens, Greece

1. Operations sent from the node contacted in the join
request

2. Operations sent from the new node

3. Operations sent from other nodes

Most of these cases can be divided into sub-cases, depend-
ing on the state of the operation and node.

First, in the case where operations originate from the node
responding to the join request there are two sub-cases.:

1. The operation is already (causally) stable: the opera-
tion will be transferred in compacted state to the new
node, there is no impact on causal stability determina-
tion.

2. The operation is not yet stable: in this case the node
will need to add the new node to its list of nodes that it
needs to receive a message from in order to determine
causal stability. This is because causal stability can
only be determined if a node receives causal informa-
tion from all nodes. This is no exception for the node
handling the join request, it will eventually need this
information from the new node as well.

In the case that the operation originates from the node that
is joining, the new node should buffer all applied operations
until that the node itself is fully acknowledged by all other
nodes in the network. As soon as it’s fully acknowledged, it
can issue its operation just as any other node that is part of
the network.

When the operation originates from neither the new node
nor the node handling the join request, we there are two
sub-cases that have to be checked:

1. The node has already acknowledged the new node: in
this case, the source node can issue an operation as
usual: the operation will be stable if all nodes, including
the new node, eventually send a message to the node
so that it has enough causal information to decide on
stability.

2. The node has not yet acknowledged the new node: in
this case the join operation of the new node to the
source node is concurrent with the operation. The
operation can be issued as usual, however the source
node needs to add the new node to the list of nodes
it needs to hear from to determine causal stability.
Because the underlying middleware is using RCB, and
the join node has already processed messages from
the new node, the source node will have to process the
join before it can process any message from the join
node. This way there can be no issue that the new node
decides that the operation is causally stable before the
new node has been linked to it. The operation itself
will be transferred to the new node in the state message
from the join node at the end of its join process.
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4.2 Eagerly Collecting Meta-data

Relying on the determination of causal stability is not enough
to collect meta-data. Because a node needs to receive an
update from every other node before it can determine if an
operation is causally stable, this may never happen. In this
paper we propose to piggyback on the communication layer
between nodes, relying on operation acknowledgements to
determine when all nodes have observed an operation.

When a node issues an operation, it broadcasts this to all
other nodes. Once it has received acknowledgement that
all nodes have processed the operation, it follows that no
concurrent operations can occur after this, and that the op-
eration in fact is causally stable. In contrast to the classical
algorithm where all nodes need to wait on causal information
to determine causal stability, the node that issued the opera-
tion will broadcast the causal stability state of the operation
to all nodes. Receiving nodes can then use this information
to remove meta-data belonging to the operation. Naturally
this imposes a network overhead on the system, but this may
be a necessary tradeoff when memory resources are scarce.

In the pure-op based approach, the middleware notifies
the CRDT layer that an operation is causally stable. With
our approach the middleware will be able to provide this in-
formation earlier if it receives such a causally stable message
from another node.

5 Implementation Details

We implemented the pure-op based framework from Baquero
et al. along with our join model and eager stability protocol
in LuAT !. LuAT is a Lua library for distributed program-
ming which incorporates the concepts of Ambient-oriented
Programming [8]. Similar to the AmbientTalk language[7],
LuAT features an actor-based programming model that al-
lows actors to communicate and coordinate over a mobile
ad hoc network in a distributed setting. It has support for
ambient acquaintance management, non-blocking message
passing between actors, failure handling through message
buffering, leasing and future-like synchronisation constructs.
In what follows, we provide enough details on LuAT’s pro-
gramming model to follow the contributions of this work.

In order to facilitate the development of programming con-
structs for CRDTs, LuAT features a generic CRDT framework
which allows for development of CRDT data types with built-
in support for replication. Implementers can easily extend
the built-in CRDT support with new CRDTs by inheriting
from provided prototype objects and then extending it with
the required CRDT logic. A meta-object-protocol (MOP) al-
lows for inspecting and modifying CRDT implementation
concepts like upstream and downstream phases.

Thttps://gitlab.soft.vub.ac.be/jimbauwens/LuAT
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5.1 Extending LuAT CRDT Support With RCB

The heart of our implementation begins with an extension
to the existing LuAT CRDT support with reliable causal
broadcast (RCB). This ensures that all operations received
by CRDTs will be processed according to their causality.
Furthermore, the implementation also keeps track of what
timestamps are causally stable.

Listing 3 shows the core structure of the implementation.
Method implementation code has been removed for brevity.
CRDT_RCB is an abstract prototype that implements this logic,
that can be used to prototype CRDTs. Besides the behaviour
described above, it provides automatic discovery of other
replicas in the network and operation replication to known
replicas. It piggybacks on the network publication and dis-
covery mechanisms provided by LuAT for this functionality.

The prototype provides some methods that are expected
to be extended or invoked by CRDT implementations. per-
formOperation is used to apply an operation to a CRDT. It
will first trigger the onOperation hook locally, which can be
used by CRDT implementations to apply CRDT-type specific
operations and then broadcast the operation to all know repli-
cas. doOperation will be invoked on those replicas, which
will use tryOperation to see if operation is not missing any
causal dependencies. If it is not, it will issue the onOpera-
tion hook and then call tryBufferedOperations to check
if there are any buffered operation that can be applied, as
the operation received may have been a causal dependency
to operations that were buffered in an earlier stage. If the
operation does have causal dependencies it will be put in a
buffer and only be applied when its dependencies have been
resolved.

local CRDT_RCB = Object()

constructor
function CRDT_RCB:init(tagname) ... end
-- internal behavior
function CRDT_RCB:tryOperation(rclock, op,
end
8 | function CRDT_RCB:tryBufferedOperations() ...

NG e W

args, local_) ...

end

10 | -- public behavior

11 | function CRDT_RCB:isCausallyStable(id,
12 | function CRDT_RCB:doOperation(rclock,
end

13 | function CRDT_RCB:performOperation(op,

end
local_ ) ...

ts) ...
op, args,

args) ... end
15 | -~
16 | function
17 | function
18 | function
19 | function

hook entry points

CRDT_RCB:onOperation(rclock, op, args) end
CRDT_RCB:onNewReplica(ref) end
CRDT_RCB:onLoaded () end

CRDT_RCB:onCausallyStable(id, ts) end

Listing 3. Core structure of the CRDT RCB base prototype

Every time an operation is performed, performOperation
will check what timestamps are causally stable. If such times-
tamps exists, the onCausallyStable hook will be invoked
for this timestamp. CRDT implementations can use this hook
to remove meta-data belonging to causally stable operations.

The prototype also provides hooks for monitoring new
replicas joining the network, and for when a local CRDT is
fully initialised. It does not however decide on how a join
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has to be handled, this is left for implementations of the
prototype.

5.2 Pure-operation Based CRDT

The POLog prototype as seen in listing 4 provides an imple-
mentation for pure-operation based CRDTs with support for
our join model. This prototype extends on CRDT_RCB and
implements several of its hooks.

There are three main parts to this component: operation
handling, causal stability handling and join handling. The
prototype hooks into the onOperation method to receive
updates on applied operations. This method stores the oper-
ation in a local log and if the isRedundantByLog and isRe-
dundantByOperation hooks are implemented they will be
used to check if any existing entry in the log might be redun-
dant. If this is the case, any redundant entry will be removed
them from the log. These hooks help CRDTs that extend on
the POLog to implement custom semantics.

Meta-data removal is handled by implementing the is-
CausallyStable hook from the CRDT_RCB prototype. It uses
the hook to iterate over the operation log to find operations
that may be stable. If any operation is stable it will invoke the
setEntryStable hook and remove its associated entry from
the log. The setEntryStable hook must be implemented
by sub-prototypes to store the operation in compacted form
without meta-data.

local POLog = Object(CRDT_RCB)

--constructor

function POLog:init(tagname) ... end
-- join logic

function POLog:setupState(state) ...
function POLog:getState() ... end

9 | function POLog:join() ... end

10 | function POLog:1link(id) ... end

end

12 | -- operation from CRDT middleware
13 | function POLog:onOperation(rclock,
14 | function POLog:isCausallyStable(id,
15 | function POLog:onNewReplica(ref,

op, args) ... end
ts) end
refs) ... end
17 | -- hooks for helping with log compaction

18 | function POLog:isRedundantBylLog(entry) return false end
19 | function POLog:isRedundantByOperation(el, e2, er) return
false end

20 | function POLog:setEntryStable(entry) end

21 | function POLog:removeEntry(entry) end

Listing 4. Core structure of the pure operations based CRDT
prototype

The join model is implemented by using the on-
NewReplica hook to listen for new replicas in the network.
When a node joining the network discovers a first other
replica, it will send out the join message (as in our join
model) to the other replica. This message is handled by the
join method at the receivers side, which will respond by
returning a list of known nodes. Following this the new
node will send the link message to every node in this list.
Incoming link messages are handled by the 1ink method.
Finally, when the new node has received a response to all
link requests, the getState method will be invoked on the
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initially discovered replica to get a full state, which will then
be applied on the new replica using the setupState method.
After this process the new replica will have a full up-to-date
state and be properly linked to all other replicas.

5.3 Add-wins CRDT

Finally, on top of the pure operation-based CRDT layer we
create an actual CRDT that can be used. We implement an
add-wins CRDT, where add operations have higher prece-
dence over concurrent remove operations. Listing 5 shows
the implementation of this CRDT. By implementing the isRe-
dundantByLog and isRedundantByOperation provided by
POLog the semantics of the set are encoded: add operations
that are ordered before remove or clear operations become
redundant (they are removed from the log). The setEntryS-
table hook implementation ensures that causally stable
operations are stored in a more compacted form without
meta-data. The POLog layer will ensure that the operation is
additionally removal from the log.

In order to obtain the state of the CRDT both the log and
set storing compacted entries have to be queried. This is
implemented by the toList method, which iterates over
the log and builds up a state, which is then merged with
the causally stable entries from the cc table. The operations
that CRDT itself accepts are implemented as simple meth-
ods which relay the operation to the CRDT_RCB layer which
ensures that they will be applied and replicated.

local AWSet = Object(POLog)

1
2
3 constructor

4 | function AWSet:init(tag, cb)
5 POLog.init(self, tag)

6 self.cb = cb

7 self.cc = {}

8 | end

10 | -- POLog hooks

12 | function AWSet:isRedundantByLog(entry)
13 local op = entry.operation
14 return op == "rmv" or op ==
15 | end

"clear"

17 | function AWSet:isRedundantByOperation(el, e2, er)

18 return VectorClock.precedes(el.clock, e2.clock) and (
e2.operation == "clear" or el.args[1] == e2.args[1] )
19 | end

21 | function AWSet:setEntryStable(entry)

22 local element = entry.args[1]
23 self.ccl[element] = true
24 | end

26 | function AWSet:removeEntry(entry)

27 local element = entry.args[1]

28 self.cc[element] = nil

29 | end

30

31

32 | -- basic api

33

34 | function AWSet:tolList() ... end

35

36 | function AWSet:add(...) return self:performOperation("add"
s {...3}) end

37 | function AWSet:remove(...) return self:performOperation("rmv"
s {...3}) end

38 | function AWSet:clear(...) return self:performOperation("
clear", {...3}) end

Listing 5. Implementation of an add-wins CRDT
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6 Evaluation

In order to evaluate our implementation we performed sev-
eral benchmarks on an add-wins set CRDT, implemented as
a pure-op based CRDT. First, we look at how the memory
consumption of a set varies with new nodes joining and
new replicas being created. Then we compare how the set
behaves under operations in several configurations where
we change how garbage collection is performed. Finally we
benchmark memory consumption in an environment with
periodic network disconnections and evaluate how it effects
garbage collection.

6.1 System Information

All experiments were performed on devices running Lua
5.1.5 on Ubuntu 19.04, with 16GiB RAM and an Intel i7-
6500U CPU. In order to correctly measure heap using the Lua
VM, a Lua garbage collect was issued before every memory
measurement.

6.2 Performance Of a System After Growth

In our first experiment we evaluated the effectiveness of our
join algorithm and its integration with the garbage collection
system.

We start out by creating an add-wins CRDT set, which
we fill with 100 distinct elements. We then dynamically start
adding nodes to the network, and for every node added we
perform an additional 1000 add operations of the same ele-
ments to the set (as to ensure that the total set size will remain
100 items large) and measure its memory usage. Figure 6
shows the stabilised memory consumption for a number
of nodes. E.g. after 8 nodes have joined the system the sta-
bilised memory consumption is 420Kb, if we keep on adding
items (without growing the network) the memory consump-
tion will stay idle. The raise in memory consumed when the
number of nodes is higher is due to extra meta-data informa-
tion on the different nodes in our middleware (this includes
references to other nodes, larger vector clocks, causal book-
keeping).

6.3 Memory Consumption Over Several Models

In this experiment we compared the memory consumption
of three variants of the add-wins set. We compare a version
without garbage collection, a version with garbage collec-
tion (using causal stability as described by Baquero et al.)
and finally a version extended with the changes proposed
in section 4.2. We performed 1000 add operations on the
set, repeatedly selecting numbers between 1 and 100. The
time between every operation was set to 400ms. Every 100
operations the source node for the operations was switched.
This test was performed on a network with 2, 4 and 8 nodes.
The results are visible in Figure 7.

We can observe several behavioural patterns for the differ-
ent algorithms from the graph. Firstly, the set that does not
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Figure 6. Stabilised memory usage after growing a system
with an add-wins set CRDT with additional nodes.
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Figure 7. Comparison between an add-wins set implementa-
tion without memory management and with, with a varying
number of nodes.

utilise memory management clearly uses more memory per
add, and no memory is ever reclaimed. When we add causal
stability determination and associated GC to the set, which
benchmarks are represented in the graph under the label
"causal stability", memory is reclaimed as soon as the system
has enough causal information to determine causal stability.
For 2 nodes this is as of 100 adds, every 100 adds, when the
system switches to another node for initiating operations.
For 4 and 8 nodes the period to initial cleanup is larger as the
system can only perform GC once it has learned the causal
information from all other nodes. Once causal information
has been received from every node, some cleanup can be per-
formed per 100 adds. Finally, we benchmarked our version in
which causal stability information is actively shared in the
network after every operation, and as the resulting graph
shows, meta-data is removed at a much higher pace. The only
growth in memory is directly related to the extra memory
used for the add operation. This benchmark was performed
with 4 nodes, we did not use a varying number of nodes as
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it did not impact the results for this specific measurement
greatly.

6.4 Memory Consumption Under Partial Failures

In our final test we benchmark the behaviour of our add-
wins set in a system that suffers from disconnections. We
perform 10.000 add operations, of 100 distinct elements. Ev-
ery 100 adds we toggle the network state and switch to the
next element. When offline, the CRDT is unable to sent out
operations to other replicas in the system, and is thus unable
to determine the causal stability of those operations. The
results of the benchmark can be seen in Figure 8.

6000 -
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2500

Memory usage (in KB)
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8
o-

5000 7500 10000

Add operations

0 2500

Figure 8. Comparison between an add-wins set implementa-
tion without memory management and one with. Grey bars
represent when the node of measurement is taken offline.
The system consists out of 4 nodes.

The graph shows that the set without GC is unaffected by
the offline status, which is normal as it never performs GC.
With our eager approach, the system is unable to transfer
causal stability information during an offline period, and is
thus unable to perform any meta-data removal which results
in a higher memory usage during this period. As soon as the
network returns to an online state, causal stability can be
determined and garbage collection can occur.

7 Conclusion

Conflict-free Replicated Data Types (CRDTs) are promising
programming abstraction to replicate data in a distributed
system as they guarantee that eventually all replicas will end
up in the same state. However, in order to handle concurrent
operations, some meta-data is kept in the implementation
of the data type to track causal relationships between opera-
tions. In order to remove this data and compact internal data
structures of CRDTs, the causal stability of operations has
to be determined. When an operation is causally stable, its
associated meta-data can be removed.

In this paper we show how the concept of causal stability
can be brought to dynamic environments. We first describe
a join model, in which a CRDT network can grow, and then
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how causal stability determination can work in this environ-
ment. Finally, we propose an adaptation to be more eager in
determining causal stability, allowing for quicker meta-data
removal. We evaluated our approach by performing several
experiments, and demonstrate the effectiveness of our join
model. The results show that our more eager approach to de-
termine causal stability yields benefits in garbage collection
time and remains functional after partial failures.

We believe this paper is a first milestone into having effi-
cient language implementation of CRDTs. As future work,
we envision three main tasks. First, we would like to for-
malise our join model (with eager garbage collection) and
prove its correctness. We plan to model our approach using
the the framework from Gomes et al. [9], which provides ab-
stractions for the behaviour of networks and its interaction
with CRDTs. Second, we will look into the applicability of
state-based CRDTs and their more optimised variants such as
Delta CRDTs [1] in dynamic environments. Full state-based
CRDTs may have a less complex join model due the nature
of full state sharing, but their design implies a much larger
network overhead. Delta CRDTs optimise on this network
usage, but state sharing with new nodes will be closer to
the operation-based CRDT approach in this paper. Finally,
we would like to adapt our join model to tackle permanent
failures, and to allow nodes to unanticipated leave a network.
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