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Abstract—Non-volatile memory (NVM) has the potential to
disrupt the boundary between memory and storage, including the
abstractions that manage this boundary. Researchers comparing
the speed, durability, and abstractions of hybrid systems with
DRAM, NVM, and disk to traditional systems typically use
simulation, which makes it easy to evaluate different hardware
technologies and parameters. Unfortunately, simulation is ex-
tremely slow, limiting the number of applications and dataset
sizes in the evaluation. Simulation typically precludes realistic
multiprogram workloads and considering runtime and operating
system design alternatives.

Good methodology embraces a variety of techniques for
validation, expanding the experimental scope, and uncovering
new insights. This paper introduces an emulation platform for
hybrid memory that uses commodity NUMA servers. Emulation
complements simulation well, offering speed and accuracy for
realistic workloads, and richer software experimentation. We use
a thread-local socket to emulate DRAM and the remote socket
to emulate NVM. We use standard C library routines to allocate
heap memory in the DRAM or NVM socket for use with explicit
memory management or garbage collection. We evaluate the
emulator using various configurations of write-rationing garbage
collectors that improve NVM lifetimes by limiting writes to
NVM, and use 15 applications from three benchmark suites
with various datasets and workload configurations. We show
emulation enhances simulation results. The two systems confirm
most trends, such as NVM write and read rates of different
software configurations, increasing our confidence for predicting
future system effects. In a few cases, simulation and emulation
differ, offering opportunities for revealing methodology bugs or
new insights. Emulation adds novel insights, such as the non-
linear effects of multi-program workloads on write rates. We
make our software infrastructure publicly available to advance
the evaluation of novel memory management schemes on hybrid
memories.

I. INTRODUCTION

Systems researchers and architects have long pursued bridg-
ing the speed gap between processor, memory, and storage.
Despite many efforts, the increase in processor performance
has consistently outpaced memory and storage speeds. Recent
advances in memory technologies have the potential to disrupt
this speed gap.

On the storage side, emerging non-volatile memory (NVM)
technologies with speed closer to DRAM and persistence
similar to disk promise to narrow the speed gap between
processors and storage. Recent work engineers new filesystem
abstractions, storage stacks, programming models, wear-out
mitigation schemes, and prototyping platforms to integrate
NVM in the storage hierarchy [1], [2], [3], [4], [5], [6], [7].

On the main memory side, NVM promises abundant memory.
DRAM is facing scaling limitations [8], [9], and recent
work combines DRAM and NVM to form hybrid main

memories [10], [11]. DRAM is fast and durable whereas NVM
is dense and has low energy. Hardware mitigates NVM wear-
out in both its storage and memory roles using wear-leveling
and other approaches [11], [10], [12], [13], [14], while the
OS keeps frequently accessed data in DRAM [15], [16], [17],
[18], [19], [20]. Recent work also explores managed runtimes
to mitigate wear-out [21], [22], tolerate faults [23], and keep
frequently read objects in DRAM [24]. Collectively, prior
research illustrates the substantial opportunities to exploit NVM
across all layers including software and language runtimes.

In this paper, we expand on the methodologies for evalu-
ating NVM and hybrid memories. The dominant evaluation
methodology in prior work is simulation; see for example [11],
[10], [12], [13], [14], [15], [16], [17], [19]. A few researchers
have complemented simulation with architecture-independent
measurements [25], [21], [22], but these measurements have
limited value because they miss important effects such as CPU
caching. This paper shows emulation confirms the results of
simulation and architecture-independent analysis and enables
researchers to explore richer software configurations.

The advantage of simulation is that it eases modeling
new hardware features, revealing how sensitive results are
to architecture. Its major limitation is that it is many orders
of magnitude slower than running programs on real hardware.
Because time and resources are finite, it thus reduces the
scope and variety of architecture optimizations, application
domains, implementation languages, and datasets one can
explore. Popular simulators also trade off accuracy to speed up
simulation [26], [27]. Furthermore, frequent hardware changes,
microarchitecture complexity, and hardware’s proprietary nature
make it difficult to faithfully model real hardware.

Other research evaluations are increasingly embracing em-

Simulation	 Architecture	
Independent	

Emulation	

Speed	 Slow	 Fast	 Native	
Hardware	Diversity	 High	 N/A	 Modest	
Workload	Diversity	 Low	 High	 High	
Production	Datasets	 ✗	 ✔ ✔

Full	System	Effects	 ✗	 ✗ ✔

Realistic	Hardware	 ✗	 ✗ ✔

TABLE I: Comparing the strengths and weaknesses of
evaluation methodologies for hybrid memories. Emulation
enables native exploration of diverse workloads and datasets
on realistic hardware.
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ulation. For instance, emulating cutting-edge hardware on
commodity machines to model: asymmetric multicores using
frequency scaling [28], [29], die-stacked and hybrid memory
using DRAM [18], [24], [1], and wearable memory using fault
injection software [23]. Recent work using emulation for explor-
ing hybrid memory is either limited to native languages [18],
[1], or is limited to simplistic heap organizations in the case
of managed languages [24] (See also Section VI). Table I
compares the methodologies for evaluating hybrid memories,
showing all can lead to insight and that emulation has distinct
advantages in speed and software configuration.

We present the design, implementation, and evaluation of
an emulation platform that uses widely available commodity
NUMA hardware to model hybrid DRAM-NVM systems.
We use the local socket to emulate DRAM and the remote
socket to emulate NVM. All threads execute on the DRAM
socket. Our heap splits virtual memory into DRAM and NVM
virtual memory, which we manage using two free lists, one for
each NUMA node by explicitly specifying where to allocate
memory in the C standard library. We expose this hybrid
memory to the garbage collector, which directs the OS where
in memory (which NUMA node) to map heap regions. Contrary
to most prior work, our platform handles both manual memory
management routines from the standard C library and memory
management using an automatic memory manager (garbage
collector). We redesign the memory manager in the popular
Jikes research virtual machine (RVM) to add support for hybrid
memories. Our software infrastructure is publicly available at
<link-anonymized-for-blind-reviewing>.

We evaluate this emulation platform on recently proposed
write-rationing garbage collectors for hybrid memories [21].
Write-rationing collectors keep highly mutated objects in
DRAM in hybrid DRAM-NVM systems to target longer NVM
lifetime. We use 15 applications from three benchmark suites:
DaCapo, Pjbb, and GraphChi; two input datasets; seven garbage
collector configurations; and workloads consisting of one, two,
and four application instances executing simultaneously. We
find emulation results are very similar to simulation results
and platform-independent measurements in most cases, but
we can generate a lot more of them in the same amount
of time and explore much richer software configurations and
workloads. The emulator reveals trends not identified previously
by simulation and platform-independent measurements. We
summarize our key findings below.
• Simulation, emulation, and architecture-independent analysis

reveal similar trends in write rate reductions and other
characteristics of garbage collectors designed for hybrid
memories, increasing our confidence in all the evaluation
methodologies.

• Managed workloads use a lot of C/C++ code. Garbage
collection strategies for hybrid memories should protect
against both writes to the managed heap and writes to
memory allocated using explicit C and C++ allocators.

• Executing multiple applications simultaneously super-linearly
increases NVM write rates due to LLC interference, a
configuration that is not practical to explore in simulation. A

major portion of the additional writes to memory are due to
nursery writes. Kingsguard collectors isolate these writes on
DRAM and thus are especially effective in multiprogrammed
environments.

• Modern graph processing workloads use larger heaps and
their write rates are also higher than widely used Java
benchmarks. Future work should include such benchmarks
when evaluating hybrid memories.

• Addressing large objects’ behaviors are essential to memory
managers for hybrid memories. Graph applications can
see huge reductions in write rates when using Kingsguard
collectors, because they have a lot of large objects that benefit
from targeted optimizations.

• Changing a benchmark’s allocation behavior or input changes
write rates. Future work should eliminate useless allocations
and use a variety of inputs for evaluating hybrid memories.

• LLC size impacts write rates. Future work should use suitable
workloads with emulation on modern servers with large
LLCs, or report evaluation for a range of LLC sizes using
simulation.

• Graph applications wear PCM out faster than traditional Java
benchmarks. Multiprogramming workloads can also wear
PCM out in less than 5 years. Write limiting with Kingsguard
collectors brings PCM lifetimes to practical levels.

II. BACKGROUND

This section briefly discusses characteristics of NVM hard-
ware and the role of DRAM in hybrid DRAM-NVM systems.
We then discuss write-rationing garbage collection [21] that
protect NVM from writes and prolongs memory lifetime. We
will evaluate write-rationing garbage collectors in Section V
using our emulation platform.
A. NVM Drawbacks and Hybrid Memory

A promising NVM technology currently in production is
phase change memory (PCM) [30]. PCM cells store information
as the change in resistance of a chalcogenide material [31].
During a write operation, electric current heats up PCM cells to
high temperatures and the cells cool down into an amorphous
or a crystalline state that have different resistances. The read
operation simply detects the resistance of the cell. PCM cells
wear out after 1 to 100 million writes because each write
changes their physical structure [10], [11], [31]. Writes are
also an order of magnitude slower and consume more energy
than in DRAM. Reading the PCM array is up to 4× slower
than DRAM [10].

Hybrid memories combine DRAM and PCM to mitigate
PCM wear-out and tolerate its higher latency. Frequently
accessed data is kept in DRAM which results in better
performance and longer lifetimes compared to a PCM-Only
system. The large PCM capacity reduces disk accesses which
compensates for its slow speed.
B. Garbage Collection

a) Generational Garbage Collection: Managed languages
such as Java, C#, Python, and JavaScript use garbage collection
to accelerate development and reduce memory errors. High-
performance garbage collectors today exploit the generational
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hypothesis that most objects die young [32]. With generational
collectors, applications (mutators) allocate new objects con-
tiguously into a nursery. When allocation exhausts the nursery,
a minor collection first identifies live roots that point into
the nursery, e.g., from global variables, the stack, registers,
and the mature space. It then identifies reachable objects
by tracing references from these roots. It copies reachable
objects to a mature space and reclaims all nursery memory
for subsequent fresh allocation. When the mature space is
full, a full-heap (mature) collection collects the entire heap.
Recent work exploits garbage collectors to manage hybrid
memories [21], [23] and to improve PCM lifetimes.

b) Write-Rationing Garbage Collection: Write-rationing
collectors keep frequently written objects in DRAM in hybrid
memories to improve PCM lifetime [21]. They come in
two main variants: The Kingsguard-nursery (KG-N) collector
allocates nursery objects in DRAM and promotes all nursery
survivors to PCM. The nursery is highly mutated and KG-
N reduces write rates significantly compared to PCM-Only
which leads to a longer PCM lifetime. Kingsguard-writers (KG-
W) monitors nursery survivors in a DRAM observer space.
Observer space collections copy objects with zero writes to
a PCM mature space, and copy written objects to a DRAM
mature space. KG-W incurs a moderate performance overhead
over KG-N due to monitoring and extra copying of some
nursery survivors but further improves PCM lifetime over KG-
N.

KG-W includes two additional optimizations to protect
PCM from writes. Traditional garbage collectors allocate large
objects directly in a non-moving mature space to avoid copying
them from the nursery to the mature space. Large Object
Optimization (LOO) in KG-W allocates some large objects,
chosen using a heuristic, in the nursery giving them time
to die. Like standard collectors, the mutator allocates the
remaining large objects directly in a PCM mature space. The
collector copies highly written large objects from PCM to
DRAM during a mature collection. Garbage collectors also
write to object metadata to mark them live. Marking live objects
generates writes to PCM during a mature collection. MetaData
Optimization (MDO) places PCM object metadata in DRAM
to eliminate garbage collector writes to object metadata.

Kingsguard collectors build on the best-performing collector
in Jikes RVM: generational Immix (GenImmix) [33]. GenIm-
mix uses a copying nursery and a mark-region mature space.

III. DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
our emulator for hybrid memory systems. It includes a hybrid-
memory-aware memory manager built on top of the standard
NUMA hardware platforms widely available today.
A. Heap layout and management

We allocate memory using the Linux OS calls for specifying
a memory allocation on a local or remote memory socket on
a NUMA machine. We use the local socket as the DRAM
socket and the remote socket as the PCM socket. We use a
NUMA specific version of the C memory allocator to call these

PCM	

Free-List-Lo	

Start	 +	1G	
Mature		

DRAM	

2G	
Young	

Free-List-Hi	

Mature	

size					=	4	MB	
free					=	true/false	
owner	=	space	id	

Fig. 1: The organization of our heap in hybrid memory. Memory
composition is exposed to the language runtime. Two free lists
keep track of available virtual pages in DRAM and PCM.

routines. We modify the Java Virtual Machine to call the C
routines for DRAM and PCM allocation. Figure 1 shows the
high-level layout of our heap in hybrid memory.

We use Jikes RVM, but our approach generalizes to other
JVMs. Jikes RVM is a 32-bit virtual machine, and each program
has 4 GB of virtual memory. The Linux OS and system libraries
use the low virtual memory for its own purposes. We use the
upper 2 GB heap for the Java heap. This memory is sufficient
for our applications, although it is possible to use more than
2 GB. We partition the heap into two parts. Each 1 GB portion is
logically divided into 4 MB chunks and managed independently
by a free-list data structure. Figure 1 shows Free-List-Hi
and Free-List-Lo that keep track of free DRAM and PCM
memory respectively. Each entry in the free-list contains meta-
information about the chunk: (1) size of the chunk, (2) status
of the chunk (free or in use), and (3) the current owner of the
chunk. The lower 1 GB portion in virtual memory maps to
PCM, and the upper portion maps to DRAM.

Jikes RVM includes a memory management tool kit (MMTk)
to manage the Java heap. Standard MMTk configurations
flexibly manage portions of the heap using different allocation
and collection mechanisms. Each such portion is called a
space in MMTk terminology. For example, the nursery is a
contiguous space and uses a bump pointer allocator, and its
memory is reclaimed using copying collection. Each space
in our implementation reserves virtual memory by requesting
the allocator associated with Free-List-Lo or Free-List-High.
The allocator finds a free chunk and returns the address to
the requesting space. The space then makes sure the chunk is
mapped in physical memory. In our approach, once a chunk is
mapped in physical memory, we do not remove its mapping in
the OS page tables even if the chunk is no longer in use by the
requesting space. The chunk is recycled by the allocator when
another space requests a free chunk. We modify the chunk
allocator to map memory on DRAM or PCM.

Alternative approaches are possible although their efficiency
might be low. For instance, a monolithic Java heap with a
single free-list would require unmapping free chunks from the
physical memory. Because otherwise, a DRAM space could
end up using a logical chunk that is physically mapped in
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PCM. The flexibility of leaving the free chunks mapped in
physical memory is a result of our design with two free lists.

Spaces such as the nursery have their address ranges reserved
at boot-time. On the other hand, mature spaces use a request
mechanism to acquire chunks. These spaces share the pool
of available chunks with other spaces. Both types of spaces
can be placed in either DRAM or PCM. Each space specifies
DRAM or NVM as a flag in its constructor.

Similar to the baseline design, we place the young generation
(nursery) at one side of the virtual memory. This configuration
enables the standard fast boundary write-barrier for generational
collection. Other contiguous spaces such as the observer space
in KG-W are placed next to the nursery.

MMTk uses mmap() for reserving virtual memory if none
is available as indicated by the free lists. To bind a virtual
memory range to a particular socket, we call mbind() with the
socket number after each call to mmap().
B. Emulation on NUMA Hardware

Hardware requirements: Our hardware requirement is
a commodity NUMA platform with two sockets. We require
both sockets be populated with DRAM chips. Threads run on
one socket, referred to as the local DRAM socket. No threads
execute on the other remote PCM socket. Figure 2 shows an
example NUMA hardware platform. Allocation on Socket 0
(S0) is local to the threads and we use it to allocate DRAM
memory. Memory accesses on Socket 1 (S1) are remote and
emulates PCM.

Space to Socket Mapping: Table II shows the space to
socket mapping in three of the collectors we evaluate in this
work on our emulation platform. KG-W and its variants use
extra spaces in DRAM that are mapped to socket 0 (S0).
The observer space in KG-W is placed in DRAM and used to
monitor object writes. KG-W has a mature, large, and metadata
space in both DRAM (S0) and PCM (S1). KG-W–MDO
does not include the metadata optimization (see Section II).
Therefore, it does not use an extra metadata space in DRAM.

D	
R	
A	
M	

D	
R	
A	
M	

mbind(DRAM)
Language	Runtime	

App	+	WM	

OS	

Socket	0	
DRAM	

CPU	
D	
R	
A	
M	

D	
R	
A	
M	

Socket	1	
PCM	

CPU	✕	

mbind(PCM)

remotelocal

QPI	

Fig. 2: Our platform for hybrid memory emulation. The
application and write rate monitor (WM) runs on socket 0.
The memory on socket 0 is DRAM and socket 1 is PCM.

KG-N	 KG-W	 KG-W	-	MDO	
S0	 S1	 S0	 S1	 S0	 S1	

Boot	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	
Nursery	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	
Observer	 ✗	 ✗	 ✔	 ✗	 ✔	 ✗	
Mature	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	
Large	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	
Metadata	 ✗	 ✔	 ✔	 ✔	 ✗	 ✔	

TABLE II: Spaces in Kingsguard collectors and their mapping
to socket 0 (S0) or socket 1 (S1). S0 is DRAM and S1 is PCM.
KG-N does not use an observer space. KG-W uses a mature,
large, and metadata space in both DRAM and PCM. Our virtual
heap layout enables a range of collector configurations for
hybrid memory.

The boot space contains the boot image runner that boots
Jikes RVM and loads its image files. Except for PCM-Only,
we always place the boot image in DRAM because we observe
a large number of writes to it.

Thread to Socket mapping: When a particular thread
uses the C or C++ library to allocate memory, the OS places
that memory on the socket where the thread is executing. Thus
we have to control to which socket each thread is mapped. Our
JVM calls down to these C and C++ libraries for allocation.
For the Kingsguard configurations, we always bind threads,
including application and JVM service threads, to socket 0
(see Figure 2). When emulating a PCM-Only system, we bind
threads to socket 1 for accurately reporting write rates. We
do not pin threads to specific cores and use the default OS
scheduler.

This work focuses on PCM lifetimes. PCM lifetime in years
depends directly on its write rate. We measure write rates on
our emulation platform using a write rate monitor (WM in
Figure 2) that also runs on socket 0. Threads are not pinned
to specific cores and we use the default OS scheduler. We
experimentally find out that scheduling WM on socket 0 leads
to more deterministic write rate measurements. When scheduled
on socket 1 and all allocation isolated to socket 0, we continue
to observe memory traffic on socket 1.

IV. EXPERIMENTAL METHODOLOGY

Java Virtual Machine: We use Jikes RVM 3.1.2 because
it uses software practices that favor ease of modification, while
still delivering good performance [34], [35], [36], [37]. As a
comparison point, it took Hotspot [38], [39] 10 years from
the publication of the G1 collector [40] to its release. Jikes
RVM is a Java-in-Java VM with both a baseline and a just-in-
time optimizing compiler, but lacks an interpreter. Jikes RVM
has a wide variety of garbage collectors [41], [33], [42]. Its
memory management tool kit (MMTk) [41] makes it easy to
compose new collectors by combining existing modules and
changing the calls to the C and OS allocators. Jikes RVM also
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offers easy-to-modify write barriers [43] which makes it easy
to implement a range of heap organizations.

Evaluation Metrics: We use two metrics to evaluate write-
rationing garbage collectors: write rate and execution time.
PCM lifetime is directly proportional to its write rate [11], [44],
[45]. We report execution time both for single application and
multiprogrammed workloads. Our multiprogrammed workloads
consist of multiple instances of the same application. On
a properly provisioned platform, all instances should finish
execution at the same time. However, due to shared resources,
there is variation in the execution time of individual instances.
We find the variation on our platform to be low.

Measurement Methodology: We use best practices from
prior work for evaluating Java applications on our emulation
platform [46], [47]. To eliminate non-determinism due to the
optimizing compiler, we use replay compilation as used in
prior work. Replay compilation requires two iterations of a Java
application in a single experiment. During the first iteration, the
VM compiles each method to a pre-determined optimization
level recorded in a prior profiling run. The second measured
iteration does not recompile methods leading to steady-state
behavior. We perform each experiment four times and report
the arithmetic mean.

We use Intel’s Performance Counter Monitor framework for
measuring write rates. We use the pcm-memory utility in
the framework for measuring write rates. We make modest
modifications to support multiprogrammed workloads and to
make it compatible for use with replay compilation. In a
multiprogrammed workload, all applications synchronize at a
barrier and start the second iteration at the same time.

Java Applications: We use 15 Java applications from
three diverse sources: 11 DaCapo [48], pseudojbb2005
(Pjbb) [49], and 3 applications from the GraphChi framework
for processing graphs [50]. The GraphChi applications we use
are: (1) page rank (PR), (2) connected components (CC),
and (3) ALS matrix factorization (ALS). Compared to recent
work [21], we drop jython as it does not execute stably with
our Jikes RVM configuration. To improve benchmark diversity,
we use updated versions of lusearch and pmd in addition to
their original versions. lu.Fix eliminates useless allocation [51],
and pmd.S eliminates a scalability bottleneck in the original
version due to a large input file [52]. Similar to recent prior
work, we run the multithreaded DaCapo applications, Pjbb,
and GraphChi applications with four application threads.

Unless otherwise stated, we use the default datasets for
DaCapo and Pjbb. Our default dataset for GraphChi is as
follows: for PR and CC, we process 1 M edges using the
LiveJournal online social network [53], and for ALS, we
process 1 M ratings from the training set of the Netflix
Challenge. The DaCapo suite comes packaged with large
datasets for a subset of the benchmarks. Our large dataset
for GraphChi consists of 10 M edges and 10 M ratings.

Even though we do not include C and C++ benchmarks in
this work, many of our Java benchmarks exhibit the common
behavior of mixing some C/C++ with Java because Java

standard features, such as IO, use C implementations. For
example, the DaCapo benchmarks execute a lot of C code [54].

Workload Formation: Multiprogrammed workloads re-
flect real-world server workloads because: (1) A single ap-
plication does not always scale with more cores, and (2)
multiprogramming helps amortize server real-estate and cost.
Our multiprogrammed workloads consist of two and four
instances of the same application. We do not restart applications
after they finish execution. To avoid non-determinism due to
sharing in the OS caches in multiprogrammed workloads, we
use independent copies of the same dataset for the different
instances.

Garbage Collectors and Configurations: We explore
seven write-rationing garbage collectors.

Our collector configurations include KG-N, and a variant
called KG-B, that uses a bigger nursery than KG-N. KG-B and
its variants use a 12 MB nursery for DaCapo and Pjbb, and
a 96 MB nursery for the GraphChi applications. The reason
to use KG-B is to understand if simply using large nurseries,
equal to the sum of nursery and observer space in KG-W,
could reduce PCM write rates similar to KG-W.

For the GraphChi applications, we evaluate KG-N and KG-B
with the Large Object Optimization (LOO) to form KG-N +
LOO and KG-B + LOO. We include the original KG-W and
two variants: one that removes LOO to form KG-W–LOO and
one that removes the MetaData Optimization (MDO) to form
KG-W–MDO. We configure the Kingsguard collectors to have
the observer space twice as large as the nursery. Prior work
reports this to be a good compromise between tenured garbage
and pause time.

We compare to PCM-Only with the baseline generational
Immix collector [33]. We configure the baseline collector
similar to prior work [21]. All our experiments use two garbage
collector threads.

Nursery and Heap Sizes: Nursery size has an impact on
performance, response time, and space efficiency [55], [41],
[56], [57]. Similar to prior work [21], we use a nursery of
4 MB for DaCapo and Pjbb. Although recent prior work uses
a 4 MB nursery for GraphChi applications, we find a 32 MB
nursery improves performance, and we use this size for our
experiments with GraphChi applications. We use a modest
heap size that is twice the minimum heap size. Our heap sizes
reflects those used in recent work [58], [33], [59], [57], [60].

Hardware Platform: Figure 2 shows the NUMA platform
we use to emulate hybrid memory. Each socket contains one
Intel E5-2650L processor with 8 physical cores each with two
hyperthreads, for 16 logical cores. The platform has 132 GB of
main memory. Physical memory is evenly distributed between
the two sockets. We use all the DRAM channels in both sockets.
The 20 MB LLC on each processor is shared by all cores. The
maximum bandwidth to memory is 51.2 GB/s; more than the
maximum bandwidth consumed by any of our workloads. The
two sockets are connected by QPI links that support up to
8 GT/s. We use Ubuntu 12.04.2 with 3.16.0 kernel.
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V. RESULTS

This section evaluates Kingsguard collectors using emulation.
We first compare emulation results to results of simulation
and architecture-independent analysis. Emulation results match
prior results boosting our confidence in our newly proposed
methodology. We use emulation to explore a richer space of
software configurations and workloads. This enables us to
discuss previously unseen writes to memory due to interfer-
ence patterns in multiprogrammed workloads, simpler heap
organizations for graph applications, and the implications of
production datasets. We conclude this section with reporting
raw write rates and PCM lifetimes in years.
A. Quantitative Comparison of Evaluation Methodologies

Each evaluation methodology for hybrid memories has its
strengths and weaknesses. Simulation models real hardware
features but limits evaluation to a few Java applications.
Architecture-independent (ARCH-INDP) studies are fast and
improve application diversity but assume unrealistic hardware.
ARCH-INDP counts the writes to virtual memory without
taking cache effects into account [21]. Our goal in this section
is to explore if the major conclusions hold regardless of the
evaluation methodology, including the reduction in PCM write
rates. Lacking PCM hardware, we can not compare accuracy.

We first compare emulation results to simulation results.
We reproduce simulation results from previous work [21].
Lack of full-system support and long simulation times limit
evaluation using the simulator to 7 DaCapo benchmarks:
lusearch, lu.Fix, avrora, xalan, pmd, pmd.S, and bloat.
We use two configurations of simulated hardware: (1) 4 cores
and 4 MB LLC, and (2) 4 cores and 20 MB LLC, which more
closely matches the emulation platform.

Table III shows the percentage reduction in PCM write
rates reported by the three methodologies. Intuition suggests
Kingsguard collectors should be more effective with a smaller
LLC. Smaller LLC absorbs fewer writes which increases the
writes to PCM memory. The results from two simulated systems
in Table III confirm this intuition.

LLC pressure is high on the simulated system with a 4 MB
LLC and the emulation platform running a multiprogrammed
workload with four instances. The nursery size of the seven
simulated benchmarks is 4 MB, and the nursery is highly
mutated, so using an emulation system with four applications
creates more LLC interference and thus more PCM writes,
similar to the simulated system with a 4 MB LLC. The average
reduction in PCM write rate for both cases is similar.

Simulated results with a 4 MB LLC are different from
emulation results with one and two program workloads. This
is because the nursery is a major source of writes which are
absorbed by the 20 MB LLC in the emulation platform.

We observe that simulation results for KG-N and a 20 MB
LLC report a 4% reduction in PCM writes. On the contrary,
emulation results report a 29% reduction in PCM writes. This
discrepancy is due to full-system effects in the emulation
platform. When emulating KG-N, we place explicit memory
allocations by the C and C++ libraries in DRAM. In PCM-Only,

SIM	
4	MB	LLC	

SIM	
20	MB	LLC	

	
ARCH-INDP	

EMU		
N	=	1	

EMU		
N	=	2	

EMU		
N	=	4	

KG-N	 81%	 4%	 78%	 29%	 45%	 79%	
KG-B	 85%	 -7%	 80%	 41%	 54%	 84%	
KG-W	 91%	 62%	 97%	 66%	 73%	 89%	

TABLE III: Comparing PCM write reduction using simulation
(SIM), architecture independent (ARCH-INDP) analysis, and
emulation (EMU) on 7 simulated benchmarks. N is the number
of program instances in our multiprogrammed workloads.
Simulation results confirm emulation results. The differences
are due to cache sizes and full system effects.

	
ARCH-INDP	

EMU		
N	=	1	

EMU		
N	=	2	

EMU		
N	=	4	

KG-N	 70%	 47%	 58%	 77%	
KG-B	 76%	 44%	 60%	 80%	
KG-W	 94%	 77%	 84%	 90%	

TABLE IV: Comparing PCM write reduction using ARCH-
INDP and EMU for all benchmarks. ARCH-INDP over-reports
the reduction in PCM writes for 1 and 2 program workloads.
For a balanced workload that utilizes all cores on Socket 0,
EMU results match ARCH-INDP results.

these allocations are placed in PCM, which is why emulation
reports a larger reduction in PCM writes for KG-N.

We observe another discrepancy between the simulation and
the emulation results for KG-B with a 20 MB LLC. Simulation
results suggest increasing the nursery size to 12 MB leads
to more PCM writes compared to a 4 MB nursery. On the
other hand, emulation results suggest a 41% reduction in
PCM write rate. This discrepancy opens up opportunities for
future investigations. Bugs in one or both environments could
misreport PCM writes with larger nurseries. Alternatively, the
discrepancy could arise because of full system effects – the
simulation environment isolates Java heap allocations from
OS and native library allocations. We leave investigating this
discrepancy further to future work.

ARCH-INDP results over predict reductions when compared
to emulation results with a single program instance. They
over predict because ARCH-INDP counts successive writes to
PCM virtual memory as writes to PCM physical memory.
In reality, some of those writes are filtered by the CPU
caches. When workloads exhibit large LLC interference, such
as multiprogrammed workloads with four instances, emulation
results are in the ballpark of ARCH-INDP. We observe the
same behavior when comparing ARCH-INDP and emulation
results for all benchmarks in Table IV.
Finding 1. LLC size impacts PCM write rates. Simulation and
emulation results converge with similar nursery to LLC size
ratios. Full-system effects may cause discrepancies for some
configurations.
Finding 2. Architecture-independent metrics over-report the
reduction in PCM write rates.
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Fig. 3: PCM write rates with various Kingsguard collectors
normalized to PCM-Only for GraphChi applications. KG-B +
LOO works well for graph applications.

B. Workload Analysis Using Emulation

This section evaluates write-rationing garbage collectors
much more fully than prior work. All trends previously
observed for a narrow set of applications and datasets are
confirmed by emulation on a richer workload space. These
results make the case for using PCM as main memory even
stronger.

a) Garbage Collection Strategies for GraphChi: Contrary
to prior work, emulation provides us the opportunity to
evaluate Kingsguard collectors for GraphChi applications.
We find these applications allocate large objects frequently.
We show that combining the optimization for large objects
in KG-W with the heap organization of KG-N is effective.
This configuration simplifies heap management and improves
performance. GraphChi applications have more mature space
collections than DaCapo and Pjbb. We tease apart the impact
of the metadata optimization here by evaluating KG-W–MDO.
We also evaluate KG-W–LOO to tease apart the impact of the
large object optimization from KG-W.

We show the write rates for single-program workloads
normalized to PCM-Only in Figure 3. The absolute write rates
increase for multiprogrammed workloads but the normalized
trends remain the same. GraphChi applications benefit from
KG-N and KG-B that allocate new objects in a DRAM nursery.
This reduces write rates by 74%, 75%, and 91% for PR, CC,
and ALS respectively. KG-B uses a bigger nursery compared
to KG-N but still reduces write rates similar to KG-N. This
confirms previous findings with simulated benchmarks that
we need novel heap organizations and other optimizations to
reduce PCM write rates further.

The graph applications allocate large objects and some follow
the generational hypothesis and thus benefit from the LOO
optimization. KG-N + LOO and KG-B + LOO both reduce
write rates on top of KG-N and KG-B respectively. KG-N +
LOO reduces write rate by up to an additional 11% compared
to KG-N. KG-B + LOO is even more effective for PR and
CC: a 3% additional reduction in write rate. KG-N + LOO and
KG-B + LOO are effective and have smaller execution time
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Fig. 4: Average PCM write rates with PCM-Only normalized
to single-program write rates. Writes rates increase with the
number of benchmark instances. The write rates of Pjbb and
DaCapo grow super-linearly from 1 to 4 instances.
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Fig. 5: Average PCM write rates with KG-W normalized to
single-program write rates. The growth in write rates is close
to linear except Pjbb.

overhead compared to KG-W. Nevertheless, KG-W reduces
write rates to PCM more than KG-B + LOO for PR and CC.

Excluding LOO from KG-W (KG-W–LOO) increases the
write rate because of large object allocation in PCM of short-
lived objects. Large object allocation in PCM further fills up
the heap quickly leading to more frequent mature collections.
Mature collections are a source of PCM writes because of
the collector updates to the object mark states. The write rate
increases by 3.3× for PR, 2.6× for CC, and 1.5× for ALS.

Without the metadata optimization (MDO), PCM write
rates increase, proving that eliminating metadata writes during
mature collections is effective. With one instance of PR, the
write rate increases by 1.32× for PR and 1.13×for CC. MDO
benefits multiprogrammed workloads even more (not shown).
Finding 3. Graph applications allocate many large objects
that benefit greatly from Kingsguard collectors that use the
large object optimization.

b) Interference in Multiprogrammed Workloads: Long
simulation times impede the evaluation of hybrid memories
for multiprogrammed Java workloads. The native execution
speed of these workloads on our emulation platform reveals
interference patterns in the LLC which results in writes to
PCM memory. Figure 4 and Figure 5 shows the growth in
average PCM write rates for PCM-Only and KG-W for each
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Fig. 6: Write rates with large datasets normalized to write rates
with default datasets (PCM-Only). Normalized write rates may
change with production datasets. PCM write rate still reduces
with KG-N and KG-W.

benchmark suite and for all benchmarks.
We observe a variety of trends in write rates from the three

suites. On average for PCM-Only, the increase in write rate
from 1 to 2 program instances is 2.3×, which is as we expect,
but from 1 to 4 instances, the increase is non-linear at 6.4×.
DaCapo applications encounter high interference in the LLC.
The average increase in write rate from 1 to 4 instances for
DaCapo is 9× (2.4× from 1 to 2 instances). The increase
for Pjbb is even higher. From 1 to 2 instances, the write rate
increases by 5×, and from 1 to 4 instances, the write rate
increases by 12×. GraphChi applications on average show a
linear trend. The increase in write rate from 1 to 4 instances
is 1.9×, and 3.5× from 1 to 4 instances.

Contrary to PCM-Only, KG-N and KG-W exhibit a linear
increase in write rates from 1 to 2 and 4 program instances
across the three suites: with 2 instances, the increase is 1.8×,
2.8×, and 2.6× for DaCapo, Pjbb, and GraphChi; with four
instances, the increase is 3.1×, 4.8×, and 4.7× respectively.
With KG-W, the increase is less than linear except for Pjbb,
which increases 6× with 4 program instances.
Finding 4. PCM write rates grow super-linearly with the
number of concurrently running program instances for two
popular Java benchmark suites. Write rationing garbage
collection significantly reduces the growth in write rates.

c) Modest versus Production Datasets: The native speed
of emulation admits larger datasets, previously unexamined.
The normalized writes rates for PCM-Only with large datasets
shown in Figure 6 follow three trends: The write rates of
lusearch.fix and xalan stay the same. The write rates of
avrora, sunflow, and PR for PCM-Only decrease by 0.7×,
0.9×, and 0.72× compared to default datasets. The compute-
to-write ratio of these applications increases with larger inputs.
Conversely for pmd, the write rate increases by 1.7×. Although
absolute write rates change for some benchmarks, we observe
a similar reduction in PCM write rates with KG-N and KG-W.
Finding 5. Production datasets sometimes shift the balance
between compute and memory-writes, changing PCM write
rates.
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Fig. 7: Average write rates in MB/s for DaCapo, Pjbb, and
GraphChi with PCM-Only. The numbers on top of Pjbb and
GraphChi bars show the PCM write rate normalized to DaCapo.
Write rates increase for multiprogrammed workloads. Pjbb and
GraphChi have greater write rates compared to DaCapo.

d) Classical versus Modern Suites: The DaCapo bench-
mark suite is the dominant choice for prior research in garbage
collection and some studies use Pjbb. We compare the average
write rates of Pjbb and GraphChi to DaCapo in Figure 7. The
average write rates of Pjbb and GraphChi are greater than
DaCapo. Pjbb and GraphChi also have the largest heap sizes
of all of our benchmarks. The average heap size of DaCapo is
100 MB, Pjbb is 400 MB, and GraphChi is 512 MB. Pjbb has
1.7× the write rate of DaCapo with single-program workloads.
Although we expect both Pjbb and GraphChi to have higher
write rates than DaCapo, it is interesting that GraphChi has a
4.7× higher write rate than DaCapo.
Finding 6. Future studies on hybrid memories should use a
diversity of applications, including large heaps.

The write rates of Pjbb and GraphChi are higher even for
multiprogrammed workloads. The difference is less pronounced
compared to single-program workloads because with four
instances, DaCapo applications on average experience greater
interference in the LLC. The DaCapo rates increase super-
linearly whereas the increase is less than super-linear for Pjbb
and GraphChi.

The difference in write rates between DaCapo and GraphChi
is less pronounced with KG-N and KG-W. GraphChi has the
same average write rate as DaCapo with KG-N and single-
program workloads. The write rate with two and four instances
is 1.5× and 1.6× higher than DaCapo. Thus, a large reason for
the gap in write rates of DaCapo and GraphChi for PCM-Only
is the nursery writes.

The write rates of Pjbb with KG-N and KG-W are still
higher compared to the average DaCapo rates. For instance,
with KG-W and single-program workloads, the write rate of
Pjbb is 3× that of DaCapo (2× for KG-N). For two and four
instances with KG-W, Pjbb incurs a 5.7× and 5× higher write
rate compared to DaCapo.
Finding 7. Pjbb and GraphChi have higher write rates than
DaCapo.

e) PCM Write Rates and Implications for Lifetime: We
now show the raw write rates to PCM for our benchmarks
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Fig. 8: Write rates in MB/s for one instance workloads.
Benchmarks exhibit a range of write rates. Applications that
allocate large objects frequently have the highest write rates.
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Fig. 9: Write rates in MB/s with 4 instance workloads.
Write rates reduce significantly across all benchmarks with
Kingsguard collectors.

and reduction in write rates using KG-W. We also discuss
PCM lifetime in years for our workloads. Lifetime is a linear
function of write rate and PCM cell endurance. We compute
PCM lifetimes similar to prior work assuming a PCM write
endurance of 10 M writes per cell [10], [11], [12], [21]. We
assume a 32 GB PCM system with hardware wear-leveling that
delivers endurance within 50% of the theoretical maximum [12].
Table V shows worst-case PCM lifetimes in years for the
three benchmark suites. We choose the shortest lifetime of all
benchmarks for DaCapo and GraphChi. We only consider the
fixed version of lusearch in the worst-case lifetime analysis.

Figure 8 shows the write rates for PCM-Only and three
Kingsguard configurations for single programs. The average
PCM write rate for PCM-Only is 126 MB/s and write rates
vary from 14 MB/s for avrora to 480 MB/s for PR. lusearch
is excluded from the average. Higher write rates of GraphChi
applications limit memory lifetime of PCM-Only to only 10.5
years with single programs. The worst-case lifetime in DaCapo
is 14 years for xalan. Wear-leveling and write filtering by LLC
alone can make PCM last for 41 years when running a single
instance of Pjbb.
Finding 8. Graph processing applications wear out PCM much
more quickly than DaCapo and Pjbb.

Of all the DaCapo benchmarks, lusearch has the highest
write rate of 320 MB/s. Interestingly, lusearch.fix fixes an
allocation bug in the original lusearch and has a write rate of
only 27 MB/s. We also observe a change in write rate between
the two versions of pmd. The original benchmark has a write

rate of 75 MB/s on our platform. The version of the benchmark
that removes an input file for better scaling with the number of
threads, pmd.S, has a write rate of 114 MB/s. The execution
time of pmd.S reduces significantly compared to pmd leading
to this higher write rate.

A widely used application in the DaCapo suite, eclipse, has
a write rate of 50 MB/s. This write rate is less than transaction
(hsqldb and Pjbb) and graph processing applications. On the
other hand, it is higher than applications that do lexical analysis
such as antlr and bloat. ALS with 170 MB/s has the lowest
write rate of the three GraphChi applications.
Finding 9. Applications from different benchmark suites and
from different domains within a suite exhibit a variety of PCM
write rates. Applications that allocate large objects abundantly
have higher write rates.
Finding 10. Allocation behavior and input sets influence write
rates.

Kingsguard collectors significantly reduce PCM write rates
across the three benchmark suites. KG-N reduces the average
write rate by 50% for single programs. The average write rate
of KG-N is 60 MB/s. KG-B with its bigger nursery results in
the same PCM write rates as KG-N. GraphChi applications
write much less to PCM with KG-N. This shows that the
nursery is highly mutated even in modern graph processing
applications. The benchmarks that do not benefit a lot from
KG-N are those that: (1) profusely allocate large short-lived
data structures such as lusearch and xalan, and (2) have more
mature-object writes than nursery writes, such as Pjbb [21].
Finding 11. Simply using DRAM for larger nurseries does not
reduce PCM write rates in hybrid memory systems.

KG-W reduces the average write rate by 80% and the raw
average write rate is 24 MB/s. These low write rates greatly
improve PCM lifetime. PCM lifetime with KG-W for single
programs is practical across all three benchmark suites. For
instance, GraphChi applications with KG-W will wear out PCM
after 72 years. PCM will also be used for persistent storage
which can have many more writes. The lifetimes shown in
Table V are therefore optimistic.

Figure 9 shows PCM write rates of 4-program workloads.
Write rates increase a lot and up to 2.8 GB/s for lusearch.
KG-N reduces the write rate significantly for the 4-program
lusearch workload. The increase in write rates for multipro-
grammed workloads has implications for PCM lifetimes. The

N=1	 N=4	
PCM-Only	 KG-W	 PCM-Only	 KG-W	

DaCapo	 15	 109	 2.8	 31.5	
Pjbb	 41	 94	 3.5	 16	

GraphChi	 10.5	 72	 2.9	 20	
TABLE V: PCM lifetime in years for single-program (N=1)
and 4-program (N=4) workloads. GraphChi and multipro-
grammed workloads quickly wear out PCM. Kingsguard
collectors make PCM practical for all workloads.
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Fig. 10: Average write rates in MB/s with varying number of
benchmark instances. The numbers on top of KG-N, KG-B, and
KG-W bars show write rates normalized to PCM-Only. Write
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Kingsguard collectors are more effective for multiprogrammed
workloads.

average lifetime for the DaCapo suite is not even 5 years.
Lifetimes of Pjbb and GraphChi are worse.
Finding 12. Multiprogramming workloads can wear out PCM
memory in less than 5 years.

Figure 10 compares average write rates of single-program
and multiprogrammed workloads with PCM-Only, KG-N, and
KG-W. Write rates reach close to 1 GB/s with two program
instances and up to 2.8 GB/s with four program instances.
Fortunately, write rates to PCM drop to less than 100 MB/s on
average with KG-W across all workloads. Figure 10 also shows
that KG-N, KG-B, and KG-W are more effective in normalized
terms for multiprogrammed workloads. Write rates increase
due to interference in the LLC and most of the interference is
due to nursery writes. Contrary to KG-N reducing the write
rate to PCM by 50% with one instance, KG-N reduces the
write rate to PCM by 80% with 4 program instances.
Finding 13. Concurrently running applications in multipro-
grammed environments incur LLC interference due to nursery
writes. Kingsguard collectors are highly effective in such
environments.

Table V shows that Kingsguard collectors bring PCM
lifetimes to practical levels for multiprogrammed workloads.
The worst-case lifetime is more than 15 years for DaCapo, Pjbb,
and GraphChi. Software and hardware approaches together can
make PCM a practical replacement for DRAM.

f) Execution Time: Overall across single-program and
multiprogrammed workloads and compared to KG-N, KG-
B slightly reduces the execution time, and KG-W increases
the execution time. The average reduction with KG-B is 3%,
and average increase with KG-W is 10% for single programs.
The results are in the ballpark for multiprogrammed workloads.
hsqldb suffers the highest overhead of 28%. An exception with
KG-W is bloat whose execution time reduces up to 12%. The
low survival rate of observer collections leads to fewer mature
collections which improve overall application performance.
Finding 14. There is a price to pay for severely limiting writes
to PCM. KG-W’s overhead ranges from 0-28%.

VI. RELATED WORK

Now we discuss related work on methods to evaluate hybrid
memories, and managed runtimes for emerging hardware.
A. Evaluation methodologies

Prior work uses emulation to evaluate emerging memo-
ries [18], [24], [1]. Oskin et al. use a NUMA platform for
emulating die-stacked DRAM [18]. Their evaluation only
considers applications written in C. Dulloor et al. emulate
hybrid DRAM-NVM memory on a NUMA platform but use
it to evaluate filesystems for persistent object storage.

Two platforms today enable executing Java applications on
top of simulated hardware in a reasonable time: (1) Jikes RVM
on top of Sniper [59], and (2) Maxine VM on top of ZSim [61].
Both Sniper and ZSim are a cycle-level multicore simulators
that trade off some accuracy for speedy evaluations [26], [27].
In their publicly available versions, both platforms lack support
for full-system simulation; favoring speed over detail.

Cao et al. use emulation to evaluate managed runtimes for
hybrid memories but their infrastructure only supports simple
heap organizations. Our platform is flexible and enables the
evaluation of a range of collector configurations. We also
provide a methodology to measure write rates of Java workloads
that are run using replay compilation [46], [47].
B. Managed runtimes for emerging hardware

Prior work has looked into tailoring the managed runtime
for hybrid memories. Wang et al. use DRAM in hybrid DRAM-
NVM systems for allocating frequently read objects [24]. They
use an offline profiling phase to identify hot methods in the
program. During runtime, all object allocation that happens
from hot methods goes into DRAM. Unlike write-rationing
collectors that target lifetime, their goal is performance.

Gao et al., use the managed runtimes to tolerate PCM
failures [23]. The hardware informs the OS of defective lines
which in turn communicates faulty lines to the garbage collector.
The garbage collector masks the defective lines and moves
data away from them.

We discussed write-rationing garbage collection for hybrid
memories [21] proposed by Akram et al., in Section II. Recent
work predicts write-intensive objects using offline profiling to
reduce the overheads of online monitoring [22].

VII. CONCLUSIONS

Advances in non-volatile memory (NVM) technologies have
implications for the whole computing stack. Researchers need
fast and accurate methodologies for evaluating NVM as mem-
ory and storage. This work introduces an emulation platform
built using widely available NUMA servers to accurately
measure read and write rates and the performance of hybrid
memories that combine DRAM and NVM. This platform can
be used to evaluate applications that use manual or automatic
memory management. We evaluate our emulator with write-
rationing garbage collectors that keep frequently written objects
in DRAM to guard NVM against writes. We compare emulation
to simulation and architecture-independent analysis, showing
they have similar trends. With the emulation, we can and
do explore large graph applications and multi-programmed
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workloads with large datasets. Emulation reveals new insights,
such as that modern graph applications have much larger write
rates than DaCapo, and benefit greatly from write-rationing
collectors. Multiprogrammed environments see a super-linear
growth in write rates compared to running single programs. This
growth goes away with write-rationing collectors. Although
simulation and emulation both have their place, emulation adds
the ability to explore a richer software design and workload
space.
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