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Abstract—This paper explores hardware specialization of low-
power processors to improve performance and energy efficiency
Our main contribution is an automated framework that analyzes
instruction sequences of applications within a domain at the loop
body level and identifies exactly and partially-matching sequences
across applications that can become custom instructions. Our
framework transforms sequences to a new code abstraction, a
Merging Diagram that improves similarity identification, clusters
alike groups of potential custom instructions to effectively redae
the search space, and selects merged custom instructions to
efficiently exploit the available customizable area. For a set of
11 media applications, our fast framework generates instructions
that significantly improve the energy-delay product and speed-
up, achieving more than double the savings as compared to a
technique analyzing sequences within basic blocks. This paper
shows that partially-matched custom instructions, which do not
significantly increase design time, are crucial to achieving higher
energy efficiency at limited hardware areas.

. INTRODUCTION
Hardware specialization has recently become a hot topi
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The overarching contribution of this work is a complete and
automatic methodological framework to identify fruitfull<C
across a set of applications from a domain. While this search
space can grow exponentially, we develop steps to tractably
generate a set of potential Cls by preferably merging those
with high similarity. We first use profiling to extract hot lp®
from the applications. We use high-level synthesis to gathe
execution time and hardware area measurements for several
implementation versions of the potential Cls. Our framdwor
then transforms the sequences into a Merging Diagram a
canonical representation to facilitate similarity idéingtion,
and merges Cls that could be executed in the same DSFU
pipeline to reduce specialized area. We cluster Cls to ifyent
not only those that have exact functional similarity butoals
those with partial similarities that could cover more code
while reducing the needed area for the DSFU. Finally, our
framework selects a set of Cls that fit into a particular hanew
area, maximizing energy efficiency and performance speedup
across the applications. We demonstrate the effectiveokess
the framework using 11 media benchmarks in the context of

due to the end of Dennard scaling [1], which forces chipa superscalar in-order processor. We report average sgeed-
designers to focus on optimizing not only performance, buimprovements of up td.98x for performance angd.35x for
also power. Customizing hardware for each of the myriad ofEDP.

modern applications is infeasible. We instead explore iapec
lization for a domain of applications, which are more likely
to run on the same machine and perform similar tasks [2]

Overall, this paper presents the following key contribagio

Moreover, using reconfigurable hardware to implement spe- ® An automated framework to quickly and tractably

cialization facilitates adaptation for both new applioag and
different domains, extending the lifetime of the hardware.

explore the design space of accelerating a domain
of applications, also exploring many code implemen-
tations of each custom instruction that will run on

In this paper, we identify common code sequences across domain-specialized functional units.

applications, which can be transformed into custom instruc

tions (Cls) that are accelerated in hardware in a domain- e The Merging Diagram, a canonical representation of
specialized functional unit (DSFU). We assume that Cls are Cls across basic blocks, or at the loop body level,

executed in a low-power application-specific instructsmt-
processor (ASIP) [3], with an instruction-set architeetaon-
figurable either in the field (with an FPGA) or at design time.

There exists a wealth of prior work in Cl design. However,
this prior work is either limited to identifying accelerati op-
portunities within a single basic block [4], [5], and/ordating
isolated applications [6], [7]. In contrast, in this work teeget

which facilitates similarity detection, which in turn
achieves more than double the performance and en-
ergy improvements than for Cls within basic blocks.

e Clustering-based partial matching of code sequences
to expand the opportunity for Cls to accelerate more
computation within a limited area budget, which im-
proves performance from73x to 1.88x and energy-

Cl acceleration across a domain of applications which was delay product (EDP) by.53x to 3.04x over exact

previously found to achieve larger speedups at small &te)li
area overheads [5]. Finding acceleration opportunitigesac
applications, however, is challenged by the difficulty ofifirg

exact matches of code sequences beyond the basic block level

which is why this work contributes by studying acceleration
opportunitiesacross basic blockghroughpartial matchingof
different implementationsf code sequences.

matching for a limited area budget, or alternatively
saves significant area for a given energy efficiency.

A constraint-based selection mechanism that, with a
novel objective function, solves the problem of choos-
ing an energy-efficient set of specialized hardware to
fit in limited area while accelerating a domain.
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| P ——— l matching using a canonical representation [5]. While com-
monly used control and data flow graphs (CDFGs) hold the
Fig. 1. Block diagram of a modified Atom processor pipelinet thaludes exact structure of a program, a Canon!cal diagram repre_sent
a DSEU. the program’s functionality, thus exposing common funtsio
across applications that can become the same ClI. In this,pape
we also use a canonical representation, but extend the CI
[l. BACKGROUND AND MOTIVATION beyond the basic block and add partial matching.

The Cls we target in this paper aim to accelerate a Another issue less explored in the Cl design literature is
domain of applications. They are executed on a domaineonsidering different circuit implementations for a Cl mrep
specialized functional unit (DSFU) integrated within tlosvt  sentation as part of the CI exploration. We consider differe
power processor core’s datapath, as shown in Figure 1. Thignplementations of each CI, i.e. several unrolling factors
would be technically feasible with the last generation ofand vectorization, because they offer divergent tradearfis
FPGAs, connecting a processor core to a reconfigurable arrdenefits. Consider, for instance, the Cls listed in Tableot. F
seamlessly [8]. Deployment of DSFUs is more effective thareach CI, we show the benchmark where it was extracted, the
specializing a complete processor and they are easier D, implementation details, the percentage of area it takes
program than bigger off-core accelerators. However, tiis kK a Virtex 7 FPGA and the EDP improvement (higher is better)
of acceleration presents several challenges in existisggde of each application when that Cl is implemented in the DSFU.
methodologies. The first four rows are application-specific Cls, while thstla
two ones merge the previous Cls into domain-specific ones. By
exploring different implementations, we can vary the cbat

hich to include depending on the available area and patenti

DP gains. Note that different implementations present the
additional challenge of a bigger search space. We try todavoi
exponential search algorithms, keeping the execution tine
ethe framework linear with the search space size.

With a limited hardware area for implementation, we want
to maximize the CIs’ utilization. We can achieve this by
targeting regions of code beyond basic blocks, although w
must keep the number of data transfers from and to the DSF
limited to avoid high transfer overhead. In spite of the thett
there exist Cls with memory support [9], our Cls read andewrit
data from and to the processor’s register file to simplify th
design and to not increase energy consumption significantly  As we focus on low-power acceleration, the area budget is
A key constraint that guides our design methodology. RISPP [
&%an adaptable ASIP where instructions also compete far are
resources. Their selection objective is founded on mirimgiz

There are many techniques that select Cls targeting diffe
ent objectives and systems. A recent survey on those metho

can be found in [10]. Most known previous works extract o ST = X
a specific application’s total time in a reconfigurable pssoe

patterns of code within a basic block [11], [12], [13]. Going ; L2
beyond the basic block level is key to improve performance-Ontext without optimizing energy. QsCores [18], althiotg-
and justify the design effort of custom instructions, espe_getmg coarser acceleration units, identifies and mergetasi

cially if the platform is an FPGA, which is reported to run code patterns. Their selection heuristic relies on insitvac
a circuit implementation up to 4.6x slower than its AsIC COverage and area, only an approximation of our selection

equivalent [14]. Previous work reduces energy for generalg?ézcg\lﬁ Ier; %%Tt{fsﬁ)%”rtiﬁqeiifﬂoThetehr?;S ta;ggt ré??ocrj“rgntce
purpose computing using a co-processor that extracts taacu 9get, y P 9y P

pipelines from the loop body [15]. Within the application-
specific field, DySER [7] accelerates applications by exitngc [1l. CUSTOMINSTRUCTIONSDESIGN PLATFORM

computation that runs on accelerated functional units. . .
We assume an in-order Intel Atom as our baseline proces-

Identification of Cls for a domain is challenging, becausesor, modified accordingly to the model in Figure 1. Cls execut
we must find similar code patterns that repeat across amn a DSFU that features several configurable pipelines and
plications to improve hardware reusability. Inside theitas input and output registers d6 x 128-bit entries. The DSFU
block, small patterns of partially-matched subgraphs leeen  reads and writes data from the processor’s register files Ba
identified via heuristics working on the data-flow graph [4]. transferred into the DSFU at the beginning of the computatio
Several works discuss the challenges of merging the datand results are written back after it finishes. Loads andestor
flow graph representation of a Cl [2], [16], [17]. We have are therefore completely decoupled from Cl execution. as t
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Max. Finally, in step2F, our area-aware selectiostep solves the
--------- area optimization problem of fitting the best group of candidates
that save the most energy, into a limited area.

Fig. 2.  Automatic framework for the implementation of merged eost A, Merging Diagram: Step 2A
instructions.
Identifying similarity between CI variants in a non-unified

. ) representation is difficult due to the amount of unnecessary
execute on the DSFU are multi-cycle and have variable 18tencntqrmation a modern compiler IR includes. Also, a represen
We do not consider parallel execution of the DSFU with theyaiion such as a CDFG, which expresses structural relations
processor's functional units because it has been proven th@enyeen operators, does not expose functional similsyitie
the performance improvement is not significant enough [19]gjnce different coding styles among applications may hide
Thus, when the DSFU executes, the rest of the pipeline stallghem. Therefore, we transform the codes of the CI variants

Figure 2 shows a high-level representation of our automati€xpressed initially in a compiler IR, into an abstract, ¢zoal
framework that is a contribution of this paper. Startinghwit representation: the Merging Diagram (MD).

a set of applications from a domain, ti€@ustom Instruction The MD represents arithmetic and logic operations (within
Generationmodule '(on' the top) will detect and generate the basic block), and predicate information (at the loogllgv

Cls based on profile information. The subsequeémistom i, yith unrestricted number of inputs and outputs. Its
Instruction Selectioomodule (on the bottom) merges those Clsrepresentation is partially based on Taylor Expansion Riag

to reduce area and selects the best subset for the targetn:ioma(TEDS) [20] and Binary Decision Diagrams (BDDs) [21]. We
have used TEDs previously for exact similarity detectioCts

IV. CUSTOMINSTRUCTION GENERATION within a basic block [5]. However, this work improves upon

In our Generationmodule (upper half of Figure 2), we the representation by including more types of computations
first profile each of the input applications, identifyingitheot ~ and code sequences across basic blocks. In addition, MDs
loops in stepl A. We extract those hot loops’ bodies in step are built to facilitate the identification of partial matehan
1B. As our target Cls operate on data transferred from and t@ reasonable computational time. The following definitions
the register file, there is a transfer time before the exeouti explain the details of our new representation, which inelud
starts and when it ends. Thus, memory operations are slicdebth a modified versions of TEDs and BDDs.

and placed before and after the loop body computation. In Kefinition 1: An Augmented TED (AugTED), is a directed
step 1€, we simulate the applications anq th.elr hot IOOp.SacycIic graph based on linearized and reduced TEDs. It is
to measure cycles and energy consumption in the b.ase“n(?t)mposed of a labeled set of nodés a weighted set of
processor. In ste[nl?, we implement CIs in h_ardware W'th. a edgesk, and the terminal node. In normal TEDS,represents
High Level Synthesis (HLS) tool. We apply different unroi | 5 a6 names an#l are additions/subtractions or multiplica-
and vectorization factors in the HLS transformation. Tfene tions. AugTEDs expand TED nodes to represent any kind of
besides the implicit instruction-level parallelism of tids, combutation using variable renaming. Here, labeld/ircan

we have also potential data-level parallelism from the HLS,, integer, float or special. Integer and float labels reptese

optimizations. From now on, we defirn@l as the high-level variable types, and special labels denote a function thatata
representation of doop body that can be accelerated in be represented by a Taylor expansion

hardware, and we talk abo@l variants or only variants to
specify distinct implementations of a Cl (for example, wdif Definition 2: A Linking BDD (LinBDD) is a directed
ferent unrolling factors). Thus, depending on the optiiizes  acyclic graph based on reduced and ordered BDDs. It consists
applied, we can obtain several variants of the same ClI, as wef a labeled set of nodeg’, a set of edgess’ and terminal
saw in Table I. TheGenerationrmodule produces application- nodes) and1. LinBDDs have a third edgéink to BDDs' 0-1
specific Cl variants with their implementation details. decision edges, which references an outside diagram, gamel



IR Merging Diagram Algorithm 1: Merging Diagram construction
input : A region’s IR codelR
output: A Merging DiagramM D
1 Array P, P’ < ()

%sub = sub nsw i32 %q11, %q21
%shl = shl 32 %sub, %c

%cmp = icmp slt i32 %shl, 0
%subl = sub nsw i32 0, %shl

%cond = select i1 %cmp, i32 %subl, i32 %shl 22D arrayR — @
: 3 P1 « ComputationPolynomials(IR)
y— — 4 P2 + PredicationPolynomials(IR)
PM1: %cmp; PM2: %sub1; PM3: %shl _Eml(e:%gg% 5 P« PlUP2
SA(stt): icmp slt; M1: %q11; M2: %q21; M3: 2°(%c) d 6 for pe P do
7 M + GetMonomials(p)
Fig. 3. Example of Merging Diagram for the IR on the left. 8 for m € M do .
9 K + GetMonomialType(m)
10 VM «+ GetVariablesNames(m)
an AugTED. A LinBDD is constructed with the Shannon 11 for vm € V.M do
expansion of boolean functions created with the If-TheseEl 12 if vm ¢ R then
(ITE) operator:ITE (I,T,E)=1-T+1-E. 13 vm' <= RenameVar(vm, K)
14 add < vm,vm’ > to R
Definition 3: A Merging Diagram is a data structure that 5 end
provides a canonical representation of a predicated codgg end
region. It consists of a sefl of AugTEDs that represent i, end
computations and a sdt of LinBDDs that represent control g p' « ReplaceVars(p, R)
flow execution. EachLink node from the members il 19 addp’ to P’

references a member iA. 20 end

21 Q + CountOccurrencesVars(P’)
22 O « AscendingOrderVars(Q)
23 s + size of O +1
24 M D < < Diagram: s X s array, Link: 2D array>
25 M D.Link < LinkToAugT EDVars(P, R)
26 for p’ € P/ do

MDs have several advantages over CDFGs. They detect7 | diagramExzpansions(p’, M D.Diagram,O)
more functional similarities, and their node-labeling wem 28 end
tions and edge-node connections are standardized after cons return MD
struction. This results in a subgraph isomorphism detectio
of reduced complexity — linear instead of exponential fag th
general case — which is used in the distance calculation of
Section V-B, improving the overall application performanc

Figure 3 shows an example of an MD for a given code
sequence. The left part of the MD is a LinBDD and its nodes
are linked to AugTEDs on the right biyink edges. There is
a special label { A(sit)) that stands for a relational operator
that cannot be expressed by Taylor expansions.

Finally, in lines23 — 28 we create an MD structure with
a Diagram that contains all the nodes and edges from the
1) Merging diagram construction:To build a canonical AugTEDs and LinBDD, except for théink edges that are
MD, we follow the steps of Algorithm 1, whose input consists kept apart. Following the variable ordering, for each réemi
of the IR of the region of code of a CI variant, which in the polynomial we build the MD expanding each term recursively
example of Figure 3 would be the code on the upper left. Firstas it is done regularly with TEDs and BDDs. The resulting
in lines 3 — 5, we extract the polynomial representation of therepresentation is still canonical for the assumed variahder,
computations and the branch predication of the code. With thas is the case for regular TEDs and BDDs.
base polynomials, we establish a precise variable renathétg
unifies the variable name space in liries20, which facilitates
fast similarity identification in ste@B. We decompose each
polynomial into its monomials, and we rename each variabl
based on the type of monomial where it is found. We find
primarily adding and multiplying types of monomials, but
also cover floating point and predicated types. For instanc
in Figure 3 variables are renamed s (adding) and M
(multiplying) preceded byP (predicated) oiS (special).

2) Global diagram of variants:To have a diagram that
represents the entire design space of Cl variants, thumgutt
éjown on computation cost in later steps, we combine all the
AugTED and LinBDD polynomials to obtain a global MD
unified representation. For each variant, we locally rename
é’ts polynomial variables, saving the naming convention and
number of instances in a global structure. Then, based dn tha
locally collected information, we produce a global varebl
ordering that is fixed for the design space. Finally, MDs are

Then, in lines21 — 22 we define a strict variable ordering produced individually for each variant with the global atidg.
to perform the expansions, common to all variables impdidat
As we have multiple polynomials that expand with the sam
set of variables, we first put variables in ascending ordsetha
on the number of times they occur. This ensures that we will We need to establish a concrete metric that measures
have a minimum number of expansions, resulting in a moraimilarities among Cls to guide the subsequent clustering
compacted MD. For the same reason, in the case of a tie in thetep of the framework. Thus, we developed a new way to
number of instances between multiplying and adding vaembl measure how dissimilar two CI variants are in terms of their
we prioritize the multiplying ones. functionality, using the MD.

8. Distance Calculation: Step 2B



partially similar Cls CI00_v1, CI01_v1, CI02_vi on the distance matrix (leaves — level O in the figure). Then,
CI00 v2, CI0L V1, G2 WA - |8 Gtz distances between the newly formed clusters usetineplete
CI00_v1, IO 2, CI02_v1 [ [y~ - d . h | ve di hat &. th
= CI00.v2. CI01 2, CI02 vi method to determine the agglomerative distance, that &s, t
B e maximal distance between any two variants in the cluster
z . e (Ieve_ls 1to 3,to the roo_t). From leaves to root, we find dia‘h_atr _
B clot vt ovel 2 versions of merged variants, ordered from more to less aimil
; """""""""""""""""""""""""""""""""""" Some of the obtained clusters may include variants that
£ target the same CI. In Figure 4, level 0 includes two variants
0 S, SOSSO R Mt of the same CI:CI00 v1 and CI00 v2; a variant of CI01,
! ! and {CI01_v2, Cl02 v1}, that is the exact matching of two
I CI00_vt | CI00_v2 || clot_vt Hcml_vz, cio2. v different implementations of two different Cls. Level 1 the
— cluster{CI00 v2, CI01 v}, which has the maximum similarity
exactly similar Cls level 0

for partial matching. Varian€/00_v1 from level O is clustered
Fig. 4. Hierarchical clustering of custom instructions.aEix matching at level 2 WIth{C.IOO—VZ’ CIOl—.Vl} from level 1. However,
instructions are found at the bottom, while nodes closer ertiot group @S @ merged variant cannot implement a concrete Cl more
are increasingly less similar Cls. I1X_vy: Cl with identifier XX and  than once, we produce different versions that do not duglica
implementation variany. the loop body €' 100 or C'101) within the clusters where this
problem occurs. Thus, at level 2 we generate two solutions:
_ _ _ {Cl00_v1, CI01 v1} and{CI00 v2, Cl01 v1}. Since the latter
We perform a distance calculation for pairs of MDs of giready exists at level 1, we will eventually discard ithaligh
variants that do not implement the same loop badjx and s information is still used to generate the cluster at lleve
Cly. We use the previously built global diagrams to speed U, Note that this can induce an explosion in the number of
this calculation. If we would not have the global, uniformed ¢o| tion clusters for a given level. In the case of a large
variable space that we obtained in Section V-A2, we wouldy ymper of cluster versions, we select a reduced group chosen
have to build a pair of diagrams for each pair of Cls beingheyristically by global performance speedup. Area andggner
compared, which would be computationally very expensiveggtimations at this point would slow down the generation
Thus, based on the pre-built global diagrams, we obtain thg¢ solutions, and by experimentation we find that for this
number of AugTED-operations and LinBDD-branches that iNparticular task, performance speedup is a fair metric.
ClIx do not match with those iCIy, namelynMy, and
vice versanMy. An MD nodewv, matches another MD node . . .
vy if their labels and out edges also match. The matchingP' Merging Estimation: Step 2D
information is kept for the merging step explained below in  With the clustering formation, we obtain a bigger set of Cl
Section V-D. We also count the number of total AugTED andvariants, some of which are merged to save area. We estimate
LinBDD nodes that each MD variant hasTetx andToty.  the new area, performance and energy gains of merged \ariant
Then, we compute the distanéeas: in order to run the selection step with accurate information

0 (ClIx,Cly) = average (nMx /Totx ,nMy /Toty) (1) Based on the distance calculation information (Section
V-B) of non-common matches between each pair of variants,
{ve “obtain the area of operators that are shargeu(ed)
and of those that are not¢n_shared). For sharing logic,
C. Hierarchical Clustering: Step 2C we introduce multiplexers with an extra area caesterhead.
hus, we calculate the area of a merged CI variant as:

N

a; = overhead; + shared; + Z non_shared;;  (2)
j=1

One-to-one distances are saved in a condensed distande. mat

For domain-specific acceleration, merging Cls togethe;r
reduces energy consumption by shrinking the implememtatio
area, or improves performance by allocating more Cls in the
constrained area. We have to merge circuits of Cls that have
more in common to maximize area reduction, as well as mini- To model the performance of an accelerated application, we
mize the implementation overhead due to circuit multiplgxi  first obtain the cycles_I_SW that a hot loop iteration would
However, with the huge set of CI variants that we obtain whertake to execute in the baseline processor, excluding memory
we work with multiple applications, it is prohibitive to try operations, from simulation. We also obtain the number of
all the possible combinations of Cls that could be groupedterations N_it of that loop for a given execution of the
together. Therefore, we group CIs based on a hierarchicddenchmark. From hardware synthesis, we get the number of
clustering that organizes groups by more to less functionatyclesc_. HW that a Cl variant takes. We calculate the cycles
similarity, cutting down the search space to avoid thoseso c¢_T to transfer data to the DSFU local memory as a function
that are not similar enough to be worth implementing togethe of the input data size. With the previous data we obtain the

. . . . . cycles we save executing a Cl variant as:
Distances between variants help to quickly decide which y g

ones are better to merge together to reduce energy consump-  ¢_saved = (c_I_SW — (c_HW +c¢_T)) x N_it  (3)
tion. We perform hierarchical, agglomerative clusterinj o L

Cl variants, obtaining a dendrogram, a tree-like structase e calculate the new number of application cycles as:
shown in Figure 4, where tree leaves represeict matches App_cycles = c_total_SW — ¢_saved (4)
and internal nodes denoprartial matches. Starting from the - - - -

baseline CI variants, we form exact-matching clusters dasewith ¢_total_SW as the application cycles without Cls.



Finally, the modeled energy consumption of an applicatiorby merging and4; is the percentage of the total area that the
that uses Cls is calculated as: variant takes. We find that this metric selects more medium-
Eupp = Ebascline + Ecr (5)  sized variants that help to save area occupancy, and haee low

With Epyseiine as baseline processor's energy model g overhead and lower static power than larger variants. From

the CI energy consumption. The latter is modeled as the sufXPerimentation, we confirm that this objective gives sabl
of its dynamic and static components: results and maximizes EDP fairly among all applications.

ECI = denamic X TCI + P.static X Ttotal (6)
where Pyynamic @and Psq4c are, respectively, the dynamic and ) ) o
static power of the hardware components that implement the While the overall complexity of the framework varies in
Cl variant, T is the time that the Cl is active, affd,.,; is the ~ ©ach step, our methodology reduces the search space to keep
execution time of the application calculated frotpp_cycles. ~ the exploration tractable and fast. We establish boundedbas
on the number of total Cl variants. Selection is the mostoatit
step and could be exponential in the worst-case. Therefae,
try to always keep a reduced number of Cl variants candigdates

Implementation area is an expensive commodity in outwhile maintaining energy and performance efficiency.

low-power target that largely influences the energy consump
tion of the final design. However, performance gains alsg pla
an important role, because a faster application would coesu

F. Complexity

E. Area-Aware Selection: Step 2E

For each input application from the set 8f benchmarks
we have a number of CI€, and each CI is implemented as
less energy. Therefore, in the final step of tSelection a variantnumV ariants times. The total number of variants

module, we address the performance and energy trade—oﬁv pmcesseg to 2‘5"" MDs bY Algorithm 1 is detgrmlned
when choosing the best fitting set of CI variants for a giverS CV = >5,=y > ;= numVariants;. The complexity of
hardware area. We model this optimization as a Knapsackalculating distances between pairs of MDs (Section V-B) is
problem, in which one tries to fit a subsstof a collection ~ O(CV x (CV — C —1)). However, the key design decision
of objectsC' — each objeck; with an intrinsic valuev; and here is to have a global MD, which obviates the need for a new
weightw, — within limited mass)M so the sum of the values of MD to be computed to compare each pair of variants, speeding
the final subset is maximized and the sum of the weights dodd® the calculation. Finally, by performing the hierarchica
not exceedM. In our case, we try to fit the: CI variants, ~CluStering step explained in Section V-C, and using a hearis
merged and not merged, within a limited hardware afea to limit the number of cluster versions per level, the final
Eachc; candidate has a \}alug that we describe later. and a Number of generated solutions that the selection of SestiEn
hardware occupancyyw;. We have an additional requirement Processes is within the bounds G{C'V). We thus retain the

in our problem: as each Cl can be selected only once, thougRoSt Promising Cl candidates, in terms of area, performance
it can be implemented by different variants — with distinct@nd energy efficiency, while making sure the selection step
unrolling factors, or merged with other instructions — omee ~ COMPplexity does not explode exponentially.

select one CI variant, all other variants of the same CI are

invalidated for the following selection steps. VI. EVALUATION

We model our problem with Mixed Integer Linear Pro- A- EXperimental Setup

gramming (MILP). We define the constraints: We now describe the setup and experimental evaluation
n n of our automated exploration framework. We evaluate the
Saxhw <A 5 Y <1 (7)  framework with eleven applications from the media domain:

i=0 i=0 i i
with b, a loop body that can be implemented by several leja\agghgji g’egr;é?,\zr;ﬂed(i: OgSSIIEI;(;] Tpni%i%ngr’]g?;;;g\g
variants. As our main goal is to accelerate execution and sa\ye identify hot regions of code with the LLVM profiler [22]
energy, our objective function tries to maximize the energy ang compile all applications with LLVM-Clang with an un-
delay product (EDP) improvement. However, the total EDPyo|jing factor of 8, automatic vectorization, and optintipa
value changes depending on the area occupancy, and thus, i) a5 the baseline. Unrolled, non-vectorized code sequences
cannot be deterministically precomputed before the select ;, ihe LLVM IR are analyzed to generate the polynomials for

starts. _Theref(_)re,. to 0btajn consistent results, we define geo Merging Diagrams. Software cycles are measured with the
specialized objecgve function: Sniper simulator [23], with changes to accurately simutate
Z e x o EDP: — maa ®) Intel Atom processor_runnin_g at6 GHz. Power measurements
£ - v on Sniper were obtained with McPAT [24]. We synthesize the
=1 DSFU's description from C code with Vivado HLZ913.3 [25]
The metricc_EDP; of a concrete Cl variant is the value to obtain the circuit design cycles and area consumptiora for
v; in the original Knapsack problem and we calculate it as: target Xilinx Virtex 7 (XC7VX690T) FPGA that runs at00
B MHz — 4x slower than the baseline processor. DSFU power
o_EDP; = Z lo_EDP;;|| x (1+0_A; x A4;)) (9) estimations are obtained with the Xilinx Power Estimator
j (XPE). Cycles and power data are fed into the models of
where B is the number of applications that the current vari- Section V-D to obtain results. Although we use an FPGA as a
ant targetsj||c_EDP;;|| is the original applicatiorj’'s EDP  testing platform, we do not consider run-time reconfigorati
minus the EDP with the variant, normalized to the observedn this work. We use the Fastcluster library [26] for hietacal
maximum for that applicationy_A; is applicable only to clustering, and the interface for the CPLEX optimizer [27] i
merged variants, since it is the percentage of area we satbe selection module is OpenOpt [28].
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Fig. 7. SpeedupRerf) and EDP improvement for each benchmark at a
limited implementation areal (8%) across basic blocks.

on average. Exploring Cls across basic blocks covers more
code, expands the acceleration opportunities, and thuewvesh
higher speedups.

In the same figures, we analyze the efficacy of exact
versus partial matching by comparing blue and orange lines,
respectively. Note that partial matching choices includle a
those Cls matched with exact, and then additional Cls that
could be partially matched. We start seeing a differencarato
0.5% of the area across basic blocks, noting that partial
matching achieves larger speedups and EDP improvements as
compared to exact matching, given the same area. For irstanc
with a limited area budgetl(8%), we observe a speedup of
1.88x and an EDP improvement 8f04 x when using partially
matched Cls, while with exact matching we obtain a speedup
of 1.73x and an EDP improvement df.53x. At 2.2% of
the area, the EDP improvement difference is more noticeable
2.57x against3.25x. Alternatively, we see that for a given
EDP improvement, partial matching saves area. For an EDP
improvement of3x, exact matching taked% of the area,

We now present experiments and results to assess howhereas partial matching takes onlg% of the area: a savings
well our framework can identify custom instructions to be of 55% of the chip’s reconfigurable area. This is important as
accelerated by a DSFU in hardware, measuring both speedulpe area available for the reconfigurable DSFU in a low-end

and improvement in EDP across various areas.

processor like the one evaluated would be much less than the
area available in a Virtex 7.

Figure 5 presents a comparison of different configurations
of our framework, with DSFU area on the x-axis expressed Figure 7 shows results for speedup and EDP improvement
as a percentage of the Virtex 7's area, and the averag®er each benchmark at the limited ardag(%) discussed above,
performance speedup across the domain on the y-axis. FBgurecomparing exact and partial matching across basic blocks. A
shows the same comparison, but this time with average EDBur selection optimizes for EDP, we see larger EDP gains than
improvement on the y-axis. Dashed lines show improvementspeedup gains, when going from exact to partial matching.
achieved when we use Cls targeting code within basic blocksThe speedup difference is moderate because of our selection
At the larger areas, performance improvement reaches a magbjective. A power-hungry Cl with high speedup but low

imum of 1.48x and EDP improvement goes up 167x the

energy efficiency will not be selected. Looking at the EDP

baseline. We compare this to the solid lines in the figuresof particular benchmarks, only two benchmarks marginally
which target code regions across basic blocks. In this casepffer a speedup and energy efficiency reductidnpeg
speedup reaches a maximumlod8x and EDP improvement andopt f | ow. However, most benchmarks have a significant
goes up t03.35x. Considering regions with multiple basic improvement in their performance and EDP. For instance, the
blocks gives us a significant boost in both performance anénergy efficiency otj peg improves from1.06x to 2.38x,

energy efficiency, because we are able to accel@igfemore

for susan goes from&8.88x to 10.42x, and r awdaudi o

statically counted body loops than with one basic blockoAls gets4.76x with exact similarities an@.28 x with partial ones.
Cls across basic blocks covét% more dynamic instructions The average of all EDP improvements with partial matching is



positive and therefore fair to all applications. Partiahiarities [6]
contribute to area shrinking, which is key to energy efficien

For example, with partial similarities one of the selectdd C
targets hot regions in seven different benchmarks, whistlte 7]
in an area reduction of 80% compared to exact ones.

VII.

This paper presents a methodology and framework to
automatically extract custom instructions from a domain of [9]
applications, ultimately selecting those that achievehibbest
performance improvements and energy efficiency when accehO]
erated. To do so, our proposal explores the design space of
tightly-integrated configurable functional units of limit size
that accelerate applications across a domain. The presentgi]
framework transforms code sequences at the loop body level
into a canonical representation, which facilitates fasiilgirity
detection, even considering several implementations oh ea (12
custom instruction. We then cluster Cls to be able to find
partially-matching sequences to minimize specialized.aDrir 13]
experimental results with 11 media benchmarks show that
looking across basic blocks achieves a speedup3%x and
an EDP improvement df.35x, a significant gain over looking
within a single basic block (speedup df48x and EDP
improvement ofl.67x). Across basic blocks, partial matching
compared against exact matching is crucial for achievirgela ~ [1°]
performance {.88x versus1.73x) and EDP improvements
(3.04x versus2.53x) for a limited hardware areal 8%), or
for a given energy efficiency, significantly reducing theaee (14
hardware area. The presented work shows the applicabflity o
introducing configurable accelerators with limited areside
simple processors to accelerate a large number of appilicati
from a domain, improving the system’s energy efficiency.

CONCLUSIONS (8]

[14]

[17]
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