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Abstract—This paper explores hardware specialization of low-
power processors to improve performance and energy efficiency.
Our main contribution is an automated framework that analyzes
instruction sequences of applications within a domain at the loop
body level and identifies exactly and partially-matching sequences
across applications that can become custom instructions. Our
framework transforms sequences to a new code abstraction, a
Merging Diagram, that improves similarity identification, clusters
alike groups of potential custom instructions to effectively reduce
the search space, and selects merged custom instructions to
efficiently exploit the available customizable area. For a set of
11 media applications, our fast framework generates instructions
that significantly improve the energy-delay product and speed-
up, achieving more than double the savings as compared to a
technique analyzing sequences within basic blocks. This paper
shows that partially-matched custom instructions, which do not
significantly increase design time, are crucial to achieving higher
energy efficiency at limited hardware areas.

I. I NTRODUCTION

Hardware specialization has recently become a hot topic
due to the end of Dennard scaling [1], which forces chip
designers to focus on optimizing not only performance, but
also power. Customizing hardware for each of the myriad of
modern applications is infeasible. We instead explore specia-
lization for a domain of applications, which are more likely
to run on the same machine and perform similar tasks [2].
Moreover, using reconfigurable hardware to implement spe-
cialization facilitates adaptation for both new applications and
different domains, extending the lifetime of the hardware.

In this paper, we identify common code sequences across
applications, which can be transformed into custom instruc-
tions (CIs) that are accelerated in hardware in a domain-
specialized functional unit (DSFU). We assume that CIs are
executed in a low-power application-specific instruction-set
processor (ASIP) [3], with an instruction-set architecture con-
figurable either in the field (with an FPGA) or at design time.

There exists a wealth of prior work in CI design. However,
this prior work is either limited to identifying acceleration op-
portunities within a single basic block [4], [5], and/or targeting
isolated applications [6], [7]. In contrast, in this work wetarget
CI acceleration across a domain of applications which was
previously found to achieve larger speedups at small (realistic)
area overheads [5]. Finding acceleration opportunities across
applications, however, is challenged by the difficulty of finding
exact matches of code sequences beyond the basic block level,
which is why this work contributes by studying acceleration
opportunitiesacross basic blocksthroughpartial matchingof
different implementationsof code sequences.

The overarching contribution of this work is a complete and
automatic methodological framework to identify fruitful CIs
across a set of applications from a domain. While this search
space can grow exponentially, we develop steps to tractably
generate a set of potential CIs by preferably merging those
with high similarity. We first use profiling to extract hot loops
from the applications. We use high-level synthesis to gather
execution time and hardware area measurements for several
implementation versions of the potential CIs. Our framework
then transforms the sequences into a newMerging Diagram, a
canonical representation to facilitate similarity identification,
and merges CIs that could be executed in the same DSFU
pipeline to reduce specialized area. We cluster CIs to identify
not only those that have exact functional similarity but also
those with partial similarities that could cover more code
while reducing the needed area for the DSFU. Finally, our
framework selects a set of CIs that fit into a particular hardware
area, maximizing energy efficiency and performance speedup
across the applications. We demonstrate the effectivenessof
the framework using 11 media benchmarks in the context of
a superscalar in-order processor. We report average speed-up
improvements of up to1.98× for performance and3.35× for
EDP.

Overall, this paper presents the following key contributions:

• An automated framework to quickly and tractably
explore the design space of accelerating a domain
of applications, also exploring many code implemen-
tations of each custom instruction that will run on
domain-specialized functional units.

• The Merging Diagram, a canonical representation of
CIs across basic blocks, or at the loop body level,
which facilitates similarity detection, which in turn
achieves more than double the performance and en-
ergy improvements than for CIs within basic blocks.

• Clustering-based partial matching of code sequences
to expand the opportunity for CIs to accelerate more
computation within a limited area budget, which im-
proves performance from1.73× to 1.88× and energy-
delay product (EDP) by2.53× to 3.04× over exact
matching for a limited area budget, or alternatively
saves significant area for a given energy efficiency.

• A constraint-based selection mechanism that, with a
novel objective function, solves the problem of choos-
ing an energy-efficient set of specialized hardware to
fit in limited area while accelerating a domain.
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Fig. 1. Block diagram of a modified Atom processor pipeline that includes
a DSFU.

II. BACKGROUND AND MOTIVATION

The CIs we target in this paper aim to accelerate a
domain of applications. They are executed on a domain-
specialized functional unit (DSFU) integrated within the low-
power processor core’s datapath, as shown in Figure 1. This
would be technically feasible with the last generation of
FPGAs, connecting a processor core to a reconfigurable array
seamlessly [8]. Deployment of DSFUs is more effective than
specializing a complete processor and they are easier to
program than bigger off-core accelerators. However, this kind
of acceleration presents several challenges in existing design
methodologies.

With a limited hardware area for implementation, we want
to maximize the CIs’ utilization. We can achieve this by
targeting regions of code beyond basic blocks, although we
must keep the number of data transfers from and to the DSFU
limited to avoid high transfer overhead. In spite of the factthat
there exist CIs with memory support [9], our CIs read and write
data from and to the processor’s register file to simplify the
design and to not increase energy consumption significantly.

There are many techniques that select CIs targeting differ-
ent objectives and systems. A recent survey on those methods
can be found in [10]. Most known previous works extract
patterns of code within a basic block [11], [12], [13]. Going
beyond the basic block level is key to improve performance
and justify the design effort of custom instructions, espe-
cially if the platform is an FPGA, which is reported to run
a circuit implementation up to 4.6x slower than its ASIC
equivalent [14]. Previous work reduces energy for general-
purpose computing using a co-processor that extracts execution
pipelines from the loop body [15]. Within the application-
specific field, DySER [7] accelerates applications by extracting
computation that runs on accelerated functional units.

Identification of CIs for a domain is challenging, because
we must find similar code patterns that repeat across ap-
plications to improve hardware reusability. Inside the basic
block, small patterns of partially-matched subgraphs havebeen
identified via heuristics working on the data-flow graph [4].
Several works discuss the challenges of merging the data-
flow graph representation of a CI [2], [16], [17]. We have

TABLE I. PERCENTAGES OF AREA OCCUPANCY ANDEDP
IMPROVEMENT FOR DIFFERENTCI IMPLEMENTATIONS.

Benchmark ID Implementation % area
% EDP improvement

cjpeg gsmdec

cjpeg
ci1.1 no unroll 0.0020 +5.3 −1.0

ci1.2 unroll 4 0.0080 +7.1 −1.0

gsmdec
ci2.1 unroll 4 0.0013 −1.0 +218.7

ci2.2 unroll 8 0.0027 −1.0 +290.6

cjpeg+gsmdec
mci1 ci1.1 + ci2.1 0.0029 +4.5 +217.0

mci2 ci1.2 + ci2.2 0.0087 +6.2 +227.0

previously proposed domain-specific acceleration, analyzing
code sequences within the basic block, and doing exact-
matching using a canonical representation [5]. While com-
monly used control and data flow graphs (CDFGs) hold the
exact structure of a program, a canonical diagram represents
the program’s functionality, thus exposing common functions
across applications that can become the same CI. In this paper,
we also use a canonical representation, but extend the CI
beyond the basic block and add partial matching.

Another issue less explored in the CI design literature is
considering different circuit implementations for a CI repre-
sentation as part of the CI exploration. We consider different
implementations of each CI, i.e. several unrolling factors
and vectorization, because they offer divergent tradeoffsand
benefits. Consider, for instance, the CIs listed in Table I. For
each CI, we show the benchmark where it was extracted, the
ID, implementation details, the percentage of area it takeson
a Virtex 7 FPGA and the EDP improvement (higher is better)
of each application when that CI is implemented in the DSFU.
The first four rows are application-specific CIs, while the last
two ones merge the previous CIs into domain-specific ones. By
exploring different implementations, we can vary the choice of
which to include depending on the available area and potential
EDP gains. Note that different implementations present the
additional challenge of a bigger search space. We try to avoid
exponential search algorithms, keeping the execution timeof
the framework linear with the search space size.

As we focus on low-power acceleration, the area budget is
a key constraint that guides our design methodology. RISPP [6]
is an adaptable ASIP where instructions also compete for area
resources. Their selection objective is founded on minimizing
a specific application’s total time in a reconfigurable processor
context, without optimizing energy. QsCores [18], although tar-
geting coarser acceleration units, identifies and merges similar
code patterns. Their selection heuristic relies on instruction
coverage and area, only an approximation of our selection
objective. In contrast, our design methods target not only the
area budget, but try to optimize both energy and performance.

III. C USTOM INSTRUCTIONSDESIGN PLATFORM

We assume an in-order Intel Atom as our baseline proces-
sor, modified accordingly to the model in Figure 1. CIs execute
on a DSFU that features several configurable pipelines and
input and output registers of16× 128-bit entries. The DSFU
reads and writes data from the processor’s register files. Data is
transferred into the DSFU at the beginning of the computation,
and results are written back after it finishes. Loads and stores
are therefore completely decoupled from CI execution. CIs that
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Fig. 2. Automatic framework for the implementation of merged custom
instructions.

execute on the DSFU are multi-cycle and have variable latency.
We do not consider parallel execution of the DSFU with the
processor’s functional units because it has been proven that
the performance improvement is not significant enough [19].
Thus, when the DSFU executes, the rest of the pipeline stalls.

Figure 2 shows a high-level representation of our automatic
framework that is a contribution of this paper. Starting with
a set of applications from a domain, theCustom Instruction
Generation module (on the top) will detect and generate
CIs based on profile information. The subsequentCustom
Instruction Selectionmodule (on the bottom) merges those CIs
to reduce area and selects the best subset for the target domain.

IV. CUSTOM INSTRUCTIONGENERATION

In our Generationmodule (upper half of Figure 2), we
first profile each of the input applications, identifying their hot
loops in step1A. We extract those hot loops’ bodies in step
1B. As our target CIs operate on data transferred from and to
the register file, there is a transfer time before the execution
starts and when it ends. Thus, memory operations are sliced
and placed before and after the loop body computation. In
step 1C, we simulate the applications and their hot loops
to measure cycles and energy consumption in the baseline
processor. In step1D, we implement CIs in hardware with a
High Level Synthesis (HLS) tool. We apply different unrolling
and vectorization factors in the HLS transformation. Therefore,
besides the implicit instruction-level parallelism of theCIs,
we have also potential data-level parallelism from the HLS
optimizations. From now on, we defineCI as the high-level
representation of aloop body that can be accelerated in
hardware, and we talk aboutCI variants or only variants to
specify distinct implementations of a CI (for example, withdif-
ferent unrolling factors). Thus, depending on the optimizations
applied, we can obtain several variants of the same CI, as we
saw in Table I. TheGenerationmodule produces application-
specific CI variants with their implementation details.

V. CUSTOM INSTRUCTIONSELECTION

Most of our main contributions of this paper are imple-
mented in theSelectionmodule of the automatic framework
(bottom half of Figure 2), which reduces the gigantic search
space of identifying a good set of CIs across a domain of
applications. We start with CI variants that are expressed
in the compiler’s Intermediate Representation (IR). Step2A
transforms them into a new canonical representation:Merging
Diagrams. Because we use a canonical representation and
create a global ordering of variables, the identification of
similarities between CIs in step2B is computed quickly
and efficiently. This step quantifies similarity by thedistance
between pairs of CI variants. The clustering, in step2C,
allows the framework to do both exact andpartial matchingof
CI variants, the latter expanding the acceleration potential at
smaller areas. In step2D, we perform an estimation of the new
area, energy and speedup of each clustered group of variants.
Finally, in step2E, our area-aware selectionstep solves the
optimization problem of fitting the best group of candidates,
that save the most energy, into a limited area.

A. Merging Diagram: Step 2A

Identifying similarity between CI variants in a non-unified
representation is difficult due to the amount of unnecessary
information a modern compiler IR includes. Also, a represen-
tation such as a CDFG, which expresses structural relations
between operators, does not expose functional similarities,
since different coding styles among applications may hide
them. Therefore, we transform the codes of the CI variants
expressed initially in a compiler IR, into an abstract, canonical
representation: the Merging Diagram (MD).

The MD represents arithmetic and logic operations (within
the basic block), and predicate information (at the loop level),
both with unrestricted number of inputs and outputs. Its
representation is partially based on Taylor Expansion Diagrams
(TEDs) [20] and Binary Decision Diagrams (BDDs) [21]. We
have used TEDs previously for exact similarity detection ofCIs
within a basic block [5]. However, this work improves upon
the representation by including more types of computations
and code sequences across basic blocks. In addition, MDs
are built to facilitate the identification of partial matches in
a reasonable computational time. The following definitions
explain the details of our new representation, which include
both a modified versions of TEDs and BDDs.

Definition 1: An Augmented TED (AugTED), is a directed
acyclic graph based on linearized and reduced TEDs. It is
composed of a labeled set of nodesV , a weighted set of
edgesE, and the terminal node. In normal TEDs,V represents
variable names andE are additions/subtractions or multiplica-
tions. AugTEDs expand TED nodes to represent any kind of
computation, using variable renaming. Here, labels inV can
be integer, float or special. Integer and float labels represent
variable types, and special labels denote a function that cannot
be represented by a Taylor expansion.

Definition 2: A Linking BDD (LinBDD) is a directed
acyclic graph based on reduced and ordered BDDs. It consists
of a labeled set of nodesV ′, a set of edgesE′ and terminal
nodes0 and1. LinBDDs have a third edgeLink to BDDs’ 0-1
decision edges, which references an outside diagram, namely
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Fig. 3. Example of Merging Diagram for the IR on the left.

an AugTED. A LinBDD is constructed with the Shannon
expansion of boolean functions created with the If-Then-Else
(ITE) operator:ITE (I, T,E) = I · T + Ī · E.

Definition 3: A Merging Diagram is a data structure that
provides a canonical representation of a predicated code
region. It consists of a setA of AugTEDs that represent
computations and a setL of LinBDDs that represent control
flow execution. EachLink node from the members inL
references a member inA.

Figure 3 shows an example of an MD for a given code
sequence. The left part of the MD is a LinBDD and its nodes
are linked to AugTEDs on the right byLink edges. There is
a special label (SA(slt)) that stands for a relational operator
that cannot be expressed by Taylor expansions.

MDs have several advantages over CDFGs. They detect
more functional similarities, and their node-labeling conven-
tions and edge-node connections are standardized after con-
struction. This results in a subgraph isomorphism detection
of reduced complexity – linear instead of exponential for the
general case – which is used in the distance calculation of
Section V-B, improving the overall application performance.

1) Merging diagram construction:To build a canonical
MD, we follow the steps of Algorithm 1, whose input consists
of the IR of the region of code of a CI variant, which in the
example of Figure 3 would be the code on the upper left. First,
in lines 3− 5, we extract the polynomial representation of the
computations and the branch predication of the code. With the
base polynomials, we establish a precise variable renamingthat
unifies the variable name space in lines6−20, which facilitates
fast similarity identification in step2B. We decompose each
polynomial into its monomials, and we rename each variable
based on the type of monomial where it is found. We find
primarily adding and multiplying types of monomials, but
also cover floating point and predicated types. For instance,
in Figure 3 variables are renamed asA (adding) andM
(multiplying) preceded byP (predicated) orS (special).

Then, in lines21− 22 we define a strict variable ordering
to perform the expansions, common to all variables implicated.
As we have multiple polynomials that expand with the same
set of variables, we first put variables in ascending order based
on the number of times they occur. This ensures that we will
have a minimum number of expansions, resulting in a more
compacted MD. For the same reason, in the case of a tie in the
number of instances between multiplying and adding variables,
we prioritize the multiplying ones.

Algorithm 1 : Merging Diagram construction
input : A region’s IR codeIR
output: A Merging DiagramMD

Array P, P ′ ←− ∅1

2D arrayR←− ∅2

P1← ComputationPolynomials(IR)3

P2← PredicationPolynomials(IR)4

P ← P1 ∪ P25

for p ∈ P do6

M ← GetMonomials(p)7

for m ∈M do8

K ← GetMonomialType(m)9

VM ← GetV ariablesNames(m)10

for vm ∈ VM do11

if vm /∈ R then12

vm′ ← RenameV ar(vm,K)13

add< vm, vm′ > to R14

end15

end16

end17

p′ ← ReplaceV ars(p,R)18

addp′ to P ′19

end20

Q← CountOccurrencesV ars(P ′)21

O ← AscendingOrderV ars(Q)22

s← size ofO + 123

MD ← < Diagram: s× s array,Link: 2D array>24

MD.Link ← LinkToAugTEDV ars(P,R)25

for p′ ∈ P ′ do26

diagramExpansions(p′,MD.Diagram,O)27

end28

return MD29

Finally, in lines23 − 28 we create an MD structure with
a Diagram that contains all the nodes and edges from the
AugTEDs and LinBDD, except for theLink edges that are
kept apart. Following the variable ordering, for each rewritten
polynomial we build the MD expanding each term recursively
as it is done regularly with TEDs and BDDs. The resulting
representation is still canonical for the assumed variableorder,
as is the case for regular TEDs and BDDs.

2) Global diagram of variants:To have a diagram that
represents the entire design space of CI variants, thus cutting
down on computation cost in later steps, we combine all the
AugTED and LinBDD polynomials to obtain a global MD
unified representation. For each variant, we locally rename
its polynomial variables, saving the naming convention and
number of instances in a global structure. Then, based on that
locally collected information, we produce a global variable
ordering that is fixed for the design space. Finally, MDs are
produced individually for each variant with the global ordering.

B. Distance Calculation: Step 2B

We need to establish a concrete metric that measures
similarities among CIs to guide the subsequent clustering
step of the framework. Thus, we developed a new way to
measure how dissimilar two CI variants are in terms of their
functionality, using the MD.



CI00_v1

exactly similar CIs

partially similar CIs

m
a

x
   

   
si

m
ila

ri
ty

  
  

  
  

m
in

  

CI00_v2, CI01_v1

CI00_v1, CI00_v2,

CI01_v1, CI01_v2,

CI02_v1

CI00_v1, CI00_v2,

CI01_v1

level 0

level 1

level 2

level 3

Fig. 4. Hierarchical clustering of custom instructions. Exact matching
instructions are found at the bottom, while nodes closer to the root group
are increasingly less similar CIs. CIXX vy: CI with identifier XX and
implementation varianty.

We perform a distance calculation for pairs of MDs of
variants that do not implement the same loop body,CIX and
CIY . We use the previously built global diagrams to speed up
this calculation. If we would not have the global, uniformed
variable space that we obtained in Section V-A2, we would
have to build a pair of diagrams for each pair of CIs being
compared, which would be computationally very expensive.
Thus, based on the pre-built global diagrams, we obtain the
number of AugTED-operations and LinBDD-branches that in
CIX do not match with those inCIY , namelynMX , and
vice versa,nMY . An MD nodevx matches another MD node
vy if their labels and out edges also match. The matching
information is kept for the merging step explained below in
Section V-D. We also count the number of total AugTED and
LinBDD nodes that each MD variant has –TotX andTotY .
Then, we compute the distanceδ as:

δ (CIX , CIY ) = average (nMX/TotX , nMY /TotY ) (1)

One-to-one distances are saved in a condensed distance matrix.

C. Hierarchical Clustering: Step 2C

For domain-specific acceleration, merging CIs together
reduces energy consumption by shrinking the implementation
area, or improves performance by allocating more CIs in the
constrained area. We have to merge circuits of CIs that have
more in common to maximize area reduction, as well as mini-
mize the implementation overhead due to circuit multiplexing.
However, with the huge set of CI variants that we obtain when
we work with multiple applications, it is prohibitive to try
all the possible combinations of CIs that could be grouped
together. Therefore, we group CIs based on a hierarchical
clustering that organizes groups by more to less functional
similarity, cutting down the search space to avoid those groups
that are not similar enough to be worth implementing together.

Distances between variants help to quickly decide which
ones are better to merge together to reduce energy consump-
tion. We perform hierarchical, agglomerative clustering of
CI variants, obtaining a dendrogram, a tree-like structure, as
shown in Figure 4, where tree leaves representexact matches
and internal nodes denotepartial matches. Starting from the
baseline CI variants, we form exact-matching clusters based

on the distance matrix (leaves – level 0 in the figure). Then,
distances between the newly formed clusters use thecomplete
method to determine the agglomerative distance, that is, the
maximal distance between any two variants in the cluster
(levels 1 to 3, to the root). From leaves to root, we find different
versions of merged variants, ordered from more to less similar.

Some of the obtained clusters may include variants that
target the same CI. In Figure 4, level 0 includes two variants
of the same CI:CI00 v1 and CI00 v2; a variant ofCI01,
and {CI01 v2, CI02 v1}, that is the exact matching of two
different implementations of two different CIs. Level 1 hasthe
cluster{CI00 v2, CI01 v1}, which has the maximum similarity
for partial matching. VariantCI00 v1 from level 0 is clustered
at level 2 with{CI00 v2, CI01 v1} from level 1. However,
as a merged variant cannot implement a concrete CI more
than once, we produce different versions that do not duplicate
the loop body (CI00 or CI01) within the clusters where this
problem occurs. Thus, at level 2 we generate two solutions:
{CI00 v1, CI01 v1} and{CI00 v2, CI01 v1}. Since the latter
already exists at level 1, we will eventually discard it, although
its information is still used to generate the cluster at level
3. Note that this can induce an explosion in the number of
solution clusters for a given level. In the case of a large
number of cluster versions, we select a reduced group chosen
heuristically by global performance speedup. Area and energy
estimations at this point would slow down the generation
of solutions, and by experimentation we find that for this
particular task, performance speedup is a fair metric.

D. Merging Estimation: Step 2D

With the clustering formation, we obtain a bigger set of CI
variants, some of which are merged to save area. We estimate
the new area, performance and energy gains of merged variants
in order to run the selection step with accurate information.

Based on the distance calculation information (Section
V-B) of non-common matches between each pair of variants,
we obtain the area of operators that are shared (shared)
and of those that are not (non shared). For sharing logic,
we introduce multiplexers with an extra area cost,overhead.
Thus, we calculate the areaai of a merged CI varianti as:

ai = overheadi + sharedi +
N∑

j=1

non sharedij (2)

To model the performance of an accelerated application, we
first obtain the cyclesc l SW that a hot loop iteration would
take to execute in the baseline processor, excluding memory
operations, from simulation. We also obtain the number of
iterations N it of that loop for a given execution of the
benchmark. From hardware synthesis, we get the number of
cyclesc HW that a CI variant takes. We calculate the cycles
c T to transfer data to the DSFU local memory as a function
of the input data size. With the previous data we obtain the
cycles we save executing a CI variant as:

c saved = (c l SW − (c HW + c T ))×N it (3)

We calculate the new number of application cycles as:

App cycles = c total SW − c saved (4)

with c total SW as the application cycles without CIs.



Finally, the modeled energy consumption of an application
that uses CIs is calculated as:

Eapp = Ebaseline + ECI (5)
with Ebaseline as baseline processor’s energy model andECI

the CI energy consumption. The latter is modeled as the sum
of its dynamic and static components:

ECI = Pdynamic × TCI + Pstatic × Ttotal (6)
wherePdynamic andPstatic are, respectively, the dynamic and
static power of the hardware components that implement the
CI variant,TCI is the time that the CI is active, andTtotal is the
execution time of the application calculated fromApp cycles.

E. Area-Aware Selection: Step 2E

Implementation area is an expensive commodity in our
low-power target that largely influences the energy consump-
tion of the final design. However, performance gains also play
an important role, because a faster application would consume
less energy. Therefore, in the final step of theSelection
module, we address the performance and energy trade-off
when choosing the best fitting set of CI variants for a given
hardware area. We model this optimization as a Knapsack
problem, in which one tries to fit a subsetS of a collection
of objectsC – each objectoi with an intrinsic valuevi and
weightwi – within limited massM so the sum of the values of
the final subset is maximized and the sum of the weights does
not exceedM . In our case, we try to fit then CI variants,
merged and not merged, within a limited hardware areaA.
Eachci candidate has a valuevi that we describe later, and a
hardware occupancy,hwi. We have an additional requirement
in our problem: as each CI can be selected only once, though
it can be implemented by different variants – with distinct
unrolling factors, or merged with other instructions – oncewe
select one CI variant, all other variants of the same CI are
invalidated for the following selection steps.

We model our problem with Mixed Integer Linear Pro-
gramming (MILP). We define the constraints:

n∑

i=0

ci × hwi ≤ A ;

n∑

i=0

lbi ≤ 1 (7)

with lbi a loop body that can be implemented by several CI
variants. As our main goal is to accelerate execution and save
energy, our objective function tries to maximize the energy-
delay product (EDP) improvement. However, the total EDP
value changes depending on the area occupancy, and thus, it
cannot be deterministically precomputed before the selection
starts. Therefore, to obtain consistent results, we define a
specialized objective function:

n∑

i=1

ci × σ EDPi → max (8)

The metricσ EDPi of a concrete CI variant is the value
vi in the original Knapsack problem and we calculate it as:

σ EDPi =
B∑

j

‖σ EDPij‖ × (1 + σ Ai ×Ai) (9)

whereB is the number of applications that the current vari-
ant targets;‖σ EDPij‖ is the original applicationj’s EDP
minus the EDP with the variant, normalized to the observed
maximum for that application;σ Ai is applicable only to
merged variants, since it is the percentage of area we save

by merging andAi is the percentage of the total area that the
variant takes. We find that this metric selects more medium-
sized variants that help to save area occupancy, and have lower
overhead and lower static power than larger variants. From
experimentation, we confirm that this objective gives stable
results and maximizes EDP fairly among all applications.

F. Complexity

While the overall complexity of the framework varies in
each step, our methodology reduces the search space to keep
the exploration tractable and fast. We establish bounds based
on the number of total CI variants. Selection is the most critical
step and could be exponential in the worst-case. Therefore,we
try to always keep a reduced number of CI variants candidates,
while maintaining energy and performance efficiency.

For each input application from the set ofB benchmarks
we have a number of CIsC, and each CI is implemented as
a variantnumV ariants times. The total number of variants
CV processed to build MDs by Algorithm 1 is determined
as CV =

∑B

i=1

∑Ci

j=1
numV ariantsj . The complexity of

calculating distances between pairs of MDs (Section V-B) is
O(CV × (CV − C − 1)). However, the key design decision
here is to have a global MD, which obviates the need for a new
MD to be computed to compare each pair of variants, speeding
up the calculation. Finally, by performing the hierarchical
clustering step explained in Section V-C, and using a heuristic
to limit the number of cluster versions per level, the final
number of generated solutions that the selection of SectionV-E
processes is within the bounds ofO(CV ). We thus retain the
most promising CI candidates, in terms of area, performance
and energy efficiency, while making sure the selection step’s
complexity does not explode exponentially.

VI. EVALUATION

A. Experimental Setup

We now describe the setup and experimental evaluation
of our automated exploration framework. We evaluate the
framework with eleven applications from the media domain:
cjpeg, djpeg, gsmdec, gsmenc, mpeg2enc, optflow,
rawcaudio, rawdaudio, susan, tmndec andtmnenc.
We identify hot regions of code with the LLVM profiler [22]
and compile all applications with LLVM-Clang with an un-
rolling factor of 8, automatic vectorization, and optimization
−O2 as the baseline. Unrolled, non-vectorized code sequences
in the LLVM IR are analyzed to generate the polynomials for
the Merging Diagrams. Software cycles are measured with the
Sniper simulator [23], with changes to accurately simulatean
Intel Atom processor running at1.6 GHz. Power measurements
on Sniper were obtained with McPAT [24]. We synthesize the
DSFU’s description from C code with Vivado HLS2013.3 [25]
to obtain the circuit design cycles and area consumption fora
target Xilinx Virtex 7 (XC7VX690T) FPGA that runs at400
MHz – 4× slower than the baseline processor. DSFU power
estimations are obtained with the Xilinx Power Estimator
(XPE). Cycles and power data are fed into the models of
Section V-D to obtain results. Although we use an FPGA as a
testing platform, we do not consider run-time reconfiguration
in this work. We use the Fastcluster library [26] for hierarchical
clustering, and the interface for the CPLEX optimizer [27] in
the selection module is OpenOpt [28].
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Fig. 5. Average speedup versus percentage of area occupancyof the DSFU
for exact and partial matching methods, targeting one or many basic blocks.
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B. Results Discussion

We now present experiments and results to assess how
well our framework can identify custom instructions to be
accelerated by a DSFU in hardware, measuring both speedup
and improvement in EDP across various areas.

Figure 5 presents a comparison of different configurations
of our framework, with DSFU area on the x-axis expressed
as a percentage of the Virtex 7’s area, and the average
performance speedup across the domain on the y-axis. Figure6
shows the same comparison, but this time with average EDP
improvement on the y-axis. Dashed lines show improvements
achieved when we use CIs targeting code within basic blocks.
At the larger areas, performance improvement reaches a max-
imum of 1.48× and EDP improvement goes up to1.67× the
baseline. We compare this to the solid lines in the figures,
which target code regions across basic blocks. In this case,
speedup reaches a maximum of1.98× and EDP improvement
goes up to3.35×. Considering regions with multiple basic
blocks gives us a significant boost in both performance and
energy efficiency, because we are able to accelerate31% more
statically counted body loops than with one basic block. Also,
CIs across basic blocks cover41% more dynamic instructions
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Fig. 7. Speedup (Perf.) and EDP improvement for each benchmark at a
limited implementation area (1.8%) across basic blocks.

on average. Exploring CIs across basic blocks covers more
code, expands the acceleration opportunities, and thus achieves
higher speedups.

In the same figures, we analyze the efficacy of exact
versus partial matching by comparing blue and orange lines,
respectively. Note that partial matching choices include all
those CIs matched with exact, and then additional CIs that
could be partially matched. We start seeing a difference around
0.5% of the area across basic blocks, noting that partial
matching achieves larger speedups and EDP improvements as
compared to exact matching, given the same area. For instance,
with a limited area budget (1.8%), we observe a speedup of
1.88× and an EDP improvement of3.04× when using partially
matched CIs, while with exact matching we obtain a speedup
of 1.73× and an EDP improvement of2.53×. At 2.2% of
the area, the EDP improvement difference is more noticeable,
2.57× against3.25×. Alternatively, we see that for a given
EDP improvement, partial matching saves area. For an EDP
improvement of3×, exact matching takes4% of the area,
whereas partial matching takes only1.8% of the area: a savings
of 55% of the chip’s reconfigurable area. This is important as
the area available for the reconfigurable DSFU in a low-end
processor like the one evaluated would be much less than the
area available in a Virtex 7.

Figure 7 shows results for speedup and EDP improvement
for each benchmark at the limited area (1.8%) discussed above,
comparing exact and partial matching across basic blocks. As
our selection optimizes for EDP, we see larger EDP gains than
speedup gains, when going from exact to partial matching.
The speedup difference is moderate because of our selection
objective. A power-hungry CI with high speedup but low
energy efficiency will not be selected. Looking at the EDP
of particular benchmarks, only two benchmarks marginally
suffer a speedup and energy efficiency reduction:djpeg
andoptflow. However, most benchmarks have a significant
improvement in their performance and EDP. For instance, the
energy efficiency ofcjpeg improves from1.06× to 2.38×,
for susan goes from8.88× to 10.42×, and rawdaudio
gets4.76× with exact similarities and6.28× with partial ones.
The average of all EDP improvements with partial matching is



positive and therefore fair to all applications. Partial similarities
contribute to area shrinking, which is key to energy efficiency.
For example, with partial similarities one of the selected CIs
targets hot regions in seven different benchmarks, which results
in an area reduction of 80% compared to exact ones.

VII. C ONCLUSIONS

This paper presents a methodology and framework to
automatically extract custom instructions from a domain of
applications, ultimately selecting those that achieve thehighest
performance improvements and energy efficiency when accel-
erated. To do so, our proposal explores the design space of
tightly-integrated configurable functional units of limited size
that accelerate applications across a domain. The presented
framework transforms code sequences at the loop body level
into a canonical representation, which facilitates fast similarity
detection, even considering several implementations of each
custom instruction. We then cluster CIs to be able to find
partially-matching sequences to minimize specialized area. Our
experimental results with 11 media benchmarks show that
looking across basic blocks achieves a speedup of1.98× and
an EDP improvement of3.35×, a significant gain over looking
within a single basic block (speedup of1.48× and EDP
improvement of1.67×). Across basic blocks, partial matching
compared against exact matching is crucial for achieving larger
performance (1.88× versus1.73×) and EDP improvements
(3.04× versus2.53×) for a limited hardware area (1.8%), or
for a given energy efficiency, significantly reducing the needed
hardware area. The presented work shows the applicability of
introducing configurable accelerators with limited area inside
simple processors to accelerate a large number of applications
from a domain, improving the system’s energy efficiency.
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