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Abstract

Developers often require different concurrency models to
fit the various concurrency needs of the different parts of
their applications. Many programming languages, such as
Clojure, Scala, and Haskell, cater to this need by incorporat-
ing different concurrency models. It has been shown that, in
practice, developers often combine these concurrency mod-
els. However, they are often combined in an ad hoc way and
the semantics of the combination is not always well-defined.
The starting hypothesis of this paper is that different con-
currency models need to be carefully integrated such that
the properties of each individual model are still maintained.

This paper proposes one such combination, namely the
combination of the actor model and software transactional
memory. In this paper we show that, while both individual
models offer strong safety guarantees, these guarantees are
no longer valid when they are combined. The main contri-
bution of this paper is a novel hybrid concurrency model
called transactional actors that combines both models while
preserving their guarantees. This paper also presents an im-
plementation in Clojure and an experimental evaluation of
the performance of the transactional actor model.

CCS Concepts « Software and its engineering — Con-
current programming languages; Parallel programming
languages;
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1 Introduction

The multi-core revolution has marked the end of an era in
which software developers benefitted from the exponential
increase of processor clock speeds to improve the perfor-
mance of their applications. This revolution has led to an in-
creased interest in concurrency models. Over the past decade,
many researchers have revisited old and invented new con-
currency models. Today, several of these concurrency models
have found their way into modern programming languages.
For example, Scala and Clojure provide a plethora of con-
currency models. However, these concurrency models are
often integrated in an ad hoc way and the semantics of the
combination is not always well-defined [19].

This paper argues that developers often combine concur-
rency models and that these should be carefully integrated
such that the properties and guarantees of each model are
maintained. Most concurrency models fall into one of two cat-
egories: message-passing and shared-memory models [21].
This paper proposes a hybrid programming model in which
a concurrency model of both categories, the actor model and
software transactional memory respectively, are carefully
integrated. This results in a hybrid concurrency model that
enables developers to arbitrarily mix concepts and constructs
from both models while maintaining the guarantees of both.

The actor model [1] is a message-passing concurrency
model that avoids deadlocks and low-level data races by
design. Actors are concurrent entities with strict isolation:
the state of an actor is fully encapsulated and can only be
accessed using asynchronous communication. While the ac-
tor model strictly prohibits shared memory, software trans-
actional memory (STM) [17] is at the opposite side of the
spectrum. STM introduces transactions: blocks of code in
which shared memory locations can be read and modified
safely. STM simplifies concurrent access to shared memory,
as transactions are executed atomically and are guaranteed
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to be serializable. Depending on the type of STM, this can
be implemented by storing modifications locally, and com-
mitting them at the end of the transaction. Transactions
that want to commit conflicting updates are rolled back and
retried.

The fact that transactions can be arbitrarily rolled back
and retried makes STM particularly hard to integrate with
other concurrency models. Any operation performed within
a transaction needs to be either idempotent or a compen-
sating action needs to be available for when the transaction
is aborted. This is particularly problematic for several op-
erations of the actor model such as creating a new actor or
sending a message from within a transaction.

In this paper, we introduce transactional actors. Trans-
actional actors combine the actor model with software trans-
actional memory with a well-defined semantics. Using this
hybrid concurrency model, developers can arbitrarily mix
concepts from each concurrency model while maintaining
their individual guarantees. In particular, we make the fol-
lowing contributions:

e In Section 3, we show that combining a message-passing
model and a shared-memory model is useful, and happens
in practice. Furthermore, we show that a naive combi-
nation of actors and transactions in existing languages
violates the guarantees provided by the separate models.

e We propose transactional actors, by specifying a well-
defined semantics for the combination of the actor model
and software transactional memory (Section 4).

e Transactional actors maintain the guarantees of the sepa-
rate models: serializability, freedom from low-level data
races, and freedom from deadlocks (Section 5).

e We present an implementation of transactional actors as
an extension of Clojure (Section 6), and evaluate its per-
formance using a representative benchmark (Section 7).

2 Background: Actors and Transactional
Memory

We first describe the actor model and software transactional
memory separately. We specify the constructs of each model,
describe their use cases and list their properties. Through-
out this paper, we will use a flight reservation system as a
running example.

2.1 Actors

The actor model used in this paper is based on Agha et al. [2].
A program consists of multiple actors that run concurrently.
An actor has three elements: a unique address, an inbox of
messages, and a behavior. A message is a tuple of values,
similar to Erlang.
In our language, a behavior is defined as follows:
1 (def airline-behavior
2 (behavior [flights] [orig dest n]

3 (let [flight (search-flight flights orig dest)
4 flight' (reserve flight n)
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5 flights' (replace flights flight flight')]
6 (become airline-behavior flights'))))

This behavior specifies an actor that represents an airline.
Messages can be sent to this actor to reserve a flight. The
behavior of an actor defines how it responds to an incoming
message. A behavior is parameterized by two types of pa-
rameters: first, the internal state of the actor (here, flights,
a list of all flights by that airline), second, the values of the
received message (here, the details of a reservation: its origin
orig, destination dest, and the number n of seats to reserve).

An actor can be spawned using spawn, e.g.

7 (def airline (spawn airline-behavior
8 [{:orig "LHR" :dest "YVR" :seats-available 211}1))

This creates a new actor with airline-behavior as initial
behavior and the list of flights as internal state. spawn returns
the address of the new actor.

(send airline "LHR" "YVR" 2) sends a message to this
actor: it puts a message containing the values "LHR", "YVR",
and 2 in the inbox of the actor with address airline. When
the receiving actor processes the message, it will execute the
code in the behavior defined above (lines 3-6), with flights
bound to the list of flights given when the actor was spawned,
and orig, dest, and n bound to the message’s values.

An actor can change its behavior and internal state using
become. On line 6 in the example, (become airline-behavior
flights') updates the airline actor, keeping its behavior
identical but updating its internal state to the new list of
flights, in which two seats were reserved.

An actor alternates between two states: ready to accept
a message, or busy processing a message. A turn is the pro-
cessing of a single message by an actor, that is, the process
of an actor taking a message from its inbox and processing
that message to completion [5].

The actor model provides the isolated turn principle: a
turn can be seen as a single, isolated step. This is a result
of three properties of the actor model: (1) an actor’s state
cannot be observed by other actors except through messages,
(2) an actor processes its messages one by one, there is no
parallelism inside an actor, and (3) the actor model does not
contain any blocking operations, guaranteeing that once a
turn started, it always runs to completion. The isolated turn
principle guarantees that the actor model is free from low-
level data races and free from deadlocks. Thanks to the isolated
turn principle, a developer can reason about an actor system
at the level of turns. When two actors execute in parallel, it
does not matter in which order the instructions in their turns
are interleaved, only in which order the turns are executed.
This makes the program easier to understand, reason about,
and debug.

2.2 Transactional Memory

Software Transactional Memory (STM) is a concurrency
model that allows multiple threads to safely access shared
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variables, grouping the accesses into transactions [17]. Appli-
cations using STM typically contain complex data structures,
of which the pieces that are modified by multiple threads are
encapsulated in transactional variables. In our case, these
transactional variables are memory locations that contain a
value, and are created using (ref v). In Haskell these are
called TVars, in Clojure they are refs. A transaction (dosync
e) encapsulates an expression that can contain a number
of primitive operations to the shared objects, such as reads
(deref r) (abbreviated to @r) and writes (ref-set r v).

For example, the code below reserves two flights. Lines 1-3
define a map of all flights. Each flight has a number of avail-
able seats, encapsulated in a transactional variable. Lines 5—
11 contain a transaction that reserves two seats. If enough
seats are available on the outbound and the return flight, the
number of available seats on those flights is decreased by
two; else, no reservation is made.

(def flights
{"AC854" {:orig "YVR" :dest "LHR" :seats (ref 211)}
"AC855" {:orig "LHR" :dest "YVR" :seats (ref 211)} ..})

(let [outbound (get (get flights "AC855") :seats)
return  (get (get flights "AC854") :seats)]
(if (and (>= @outbound 2) (>= @return 2))

9 (do (ref-set outbound (- @outbound 2))
10 (ref-set return (- @return 2)))
11 (println "Not enough seats available"))))

1
2
3
4
5 (dosync
6
7
8

Transactional systems guarantee serializability: trans-
actions appear to execute serially, so that the steps of one
transaction never appear to be interleaved with the steps
of another [10]. The result of a transactional program must
always be equal to the result of a serial execution of the
program. In the example, this entails that the values of the
transactional variables on line 8 and on lines 9 and 10 must
be equal, even if another thread modified them in the mean-
time. Due to serializability, the developer can reason about
the program at the level of transactions: when transactions
execute in parallel, it does not matter in which order their
instructions are interleaved, only in which order the trans-
actions are committed. This too makes the program easier
to understand and debug.

In Clojure and Haskell, STM is implemented using mul-
tiversion concurrency control (MVCC) [3, 8, 9]. Each trans-
actional variable contains a (limited) history of its values.
During a transaction, reading a transactional variable will
return the value it had when the transaction started. Writing
a transactional variable will store its new value locally. At
the end of the transaction, it will attempt to commit, and
the new values become visible for new transactions. In case
of a conflict during the commit, which occurs when two
transactions wrote to the same variable, the later transaction
is aborted. This means it discards its changes, and retries.

Because transactions can be retried, a transaction should
not contain operations with a side effect, such as I/O. In the
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next section we will see that this can lead to problems when
STM is combined with other concurrency models.

3 Motivation and Problem Statement

In this section, we motivate the combination of both actors
and transactional memory in one application. On the one
hand, it can be useful to add transactional memory to an
actor system, to allow memory to be shared safely between
the actors (Section 3.1). On the other hand, it can be useful
to send messages to actors in a transaction, to distribute and
coordinate work between transactions (Section 3.2).

3.1 Transactions in Actors, to Share Memory

For some applications, it is desirable to introduce shared
memory in an actor system. We discuss two types of actor
systems: pure and impure systems [4].

Pure actor systems are actor systems that enforce strict
isolation between the actors: the state of an actor is fully
encapsulated and can only be accessed asynchronously. The
developer benefits from strong safety guarantees: low-level
data races are prevented by design. However, representing
shared state in pure actor systems is complex [4]. The diffi-
culty of preventing race conditions and deadlocks is pushed
to the developer.

Impure actor systems do not enforce strict isolation. These
are often libraries for languages that do not have actors built
in. Here, developers can use the underlying shared-memory
model of the language when shared memory is the most
natural or efficient solution.

Tasharofi et al. [20] performed a study of 15 large, mature,
and actively maintained actor programs written in Scala.
They found that 80% mix the actor model with another con-
currency model. In 6 out of 15 cases (40%), developers circum-
vent the actor model in the places where it is not a good fit.
In some cases, developers introduce shared memory, which
they protect using locks. However, the disadvantage of this
approach is that the guarantees of the actor model are lost:
the isolated turn principle is broken, hence low-level data
races and deadlocks become possible.

These guarantees can be re-introduced by sharing mem-
ory between actors using transactions. STM guarantees the
absence of low-level races by encapsulating atomic sections
in a transaction. Moreover, in contrast to traditional locking,
STM guarantees the absence of deadlocks. Thus, using STM,
memory can safely be shared between actors.

3.2 Actors in Transactions, to Distribute and
Coordinate Work

Not only are transactions useful to share memory between
actors, conversely, actors are also useful to coordinate work
between transactions. In this section, we demonstrate how
actors can be used to distribute and coordinate work from
within a transaction, again using a flight reservation system.
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1 (def flights [(ref {:id "AC855"
2 (def rooms  [(ref {:id 101

3 (def cars [(ref {:id "ABC123" :price 42

4 (def customers [(ref {:id @ :orig "London" :dest "Vancouver"

5

6 (defn reserve-flight [orig dest date seats]

:price 499 :orig "London" :dest "Vancouver" :available ["1A" "1B" ..]
:price 100 :location "Vancouver" :beds 5
:location "Vancouver"
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roccupied [1}) ..1)
:available ["2017-10-01" ..] :occupied [1}) ..1)
:seats 5 :available ["2017-10-01" ..] :occupied [1}) ..1)
:n 3 :start "2017-10-22" :end "2017-10-27" :password nil}) ..]1)

; Finds the cheapest flight from orig to dest on date, and reserve seats.

7 (let [filtered (filter (fn [f] ..@f..) flights) ; Filter flights from orig to dest on date, with sufficient seats

8 cheapest (get-cheapest filtered)]

; Find the cheapest of these flights

9 (ref-set cheapest (occupy cheapest seats)))) ; Move seats from :available to :occupied

10 ; Functions reserve-room and reserve-car are similar

12 (defn process-customer [c]
13 (dosync

14 (reserve-flight (:orig @c) (:dest @c) (:start @) (:n @c)) ; Find and update two flights (outbound & return),

15 (reserve-flight (:dest @c) (:orig @c) (:end @c) (:n @c))
(:dest @) (:n @c) (:start @c) (:end @c))
(:dest @) (:n @c) (:start @c) (:end @c))

16 (reserve-room
17 (reserve-car
18 (ref-set c (assoc @c :password (generate-password)))))

; a room, and a car, using details from the customer

; Attach a generated password to the customer.

Listing 1. The Vacation example. (Code has been modified for clarity.)

(defn process-customer [c]
(dosync

(send (rand-nth sec-workers) :flight (:orig @c) ..)
(send (rand-nth sec-workers) :flight (:dest @c) ..)

sec-workers) :room (:dest @c) ..)
(send (rand-nth sec-workers) :car (:dest @c) ..)

1
2

3

4

5 (send (rand-nth
6

7 (ref-set c (assoc @c :password (generate-password)))))
8

9

(def sec-worker-behavior
10 (behavior [id] [type & args]

1 (case type

12 :flight (dosync (apply reserve-flight args))

13 :room  (dosync (apply reserve-room args))

14 :car (dosync (apply reserve-car args)))))

Listing 2. An adapted version of the Vacation benchmark,
with secondary worker actors.

This example is inspired by the Vacation benchmark from
STAMP [14], a suite of eight applications that use STM.

The code of the example is shown in Listing 1. Its input
consists of a number of customers, who want to reserve two
flights, a hotel room, and a car (line 4). These items are stored
in transactional memory, so that multiple customers can
reserve them in parallel (lines 1-3). A reservation consists
of looking for these items, reserving them, and updating the
reservation (lines 12-20).

In the original Vacation benchmark, there are a config-
urable number of worker actors, over which the customers
are evenly distributed. However, we believe better perfor-
mance may be achieved by processing the items that form
a reservation in separate actors. (We will verify this in Sec-
tion 7.) Hence, we create a variation of Vacation, in which
the workers send the reservations of the individual items to
one of a configurable number of ‘secondary’ worker actors.

The code then looks as shown in Listing 2. However, us-
ing traditional actors and STM, this code does not work as
expected! In the transaction, four messages are sent, and
afterwards the transactional variable c is updated. If another
thread updates the same variable, this causes a conflict, and
the transaction will be aborted. When the transaction retries,

the messages are sent again. The problem is that when a
transaction aborts, the messages it sends are not rolled back.
As a result, in our example multiple items can be reserved
for the same customer.

We observe that communicating with actors in a transac-
tion breaks its serializability: the result of a parallel execution
is no longer equal to the result of a serial execution.

3.3 Problem Statement

We see that combining a message-passing model and a shared-
memory model can be useful, and occurs in practice. How-
ever, combining actors and transactions leads to issues:

e When memory is shared in an actor system, the isolated
turn principle is broken. Consequently, race conditions
that were prevented by the actor model can re-appear.

e When sending messages in a transaction, the serializability
is broken. Sending messages is a side effect that is not
rolled back when the transaction is.

These issues complicate combining both concurrency mod-
els in a single application, as the guarantees that developers
expect are no longer true. These problems hinder compos-
ability: when one model is most suitable for one component
of the application, and another model fits another compo-
nent, the developer cannot safely use both. They also hinder
re-usability: including a library that uses one model in an
application that uses another may lead to incorrect results.

The ideal solution is a combination of actors and transac-
tional memory that maintains the guarantees of both models.
Then, developers can freely mix concepts of both models
with a predictable outcome.

4 Solution: Transactional Actors

The problems described in the previous section occur be-
cause the semantics of the combination of two concurrency
models is not well-defined. In this section, we solve this by
creating transactional actors. Transactional actors provide
the same operations as the actor model and STM, described
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in Section 2, but also define their semantics when they are
combined.

There are two operations which contain nested code: behavior
and dosync. Hence, we study the following combinations:

Actor in Transaction
dosync containing;:

Transaction in Actor
behavior containing:

e dosync (1) e behavior 3
e ref 2 e spawn @)

e deref e send @

e ref-set @ e become

We distinguish four categories:

(D Using dosync in behavior executes a transaction in an
actor. This transaction is bound to the current actor.

@ Manipulating transactional state using ref, deref, or ref-set
follows the regular semantics of transactions: these ac-
tions are only allowed in a transaction, and operate within
its context. No special semantics are needed when this
occurs in an actor.

® A behavior can be defined in a transaction. The behavior
is separated from the transaction in which it is defined:
when the code in this behavior will run, at a later time,
it no longer has access to the transaction in which the
behavior was defined. Hence, a behavior can be defined
in a transaction as it can anywhere else, and no special
semantics is needed.

@ spawn, send, and become have a side effect. Therefore, when
they occur in a transaction, their effect should become
part of the transaction.

We now discuss these four cases in more detail.

4.1 Using Transactional Memory in an Actor

A transaction can run in an actor, inside dosync (1. Similar to
a thread-based transactional system, where each thread has
at most one active transaction, here, each actor has at most
one transaction active at a time. Therefore, transactions run
in actors as they do in thread-based systems.

Manipulating transactional state @) works within the con-
text of the transaction that is active in the current actor. This
is again as in a thread-based system.

This occurs in Listing 1, when the function process-customer
(lines 26-34) is called in an actor and executes a transaction.

4.2 Communicating with Actors in a Transaction

While defining a behavior in a transaction 3@ might seem
strange, it does not pose any particular difficulties, as it is
an idempotent operation. Defining a behavior is similar to
defining a function: the code it contains is not executed when
it is defined, but at a later time, in a new actor. It does not
have access to its encapsulating transaction, instead, any
transactional operations it contains run within the context
of the transaction that is active when its code is executed. A
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behavior can refer to variables in its lexical scope though, it
is effectively a closure.

Spawning an actor, sending a message, or becoming a new
behavior @ are actions with a side effect. Using these in a
transaction requires special semantics, so that they can roll
back. Transactional actors make these operations part of the
transaction.

Regular transactional systems use two techniques to incor-
porate side effects into a transaction. The first technique is
to delay the side effect until it is certain the transaction will
commit successfully. For example, an update to a transac-
tional variable is only visible locally at first, the global update
is delayed until the transaction commits. In case the transac-
tion aborts, the effect is discarded. The second technique is
to perform the side effect immediately, but roll back the effect
if the transaction aborts, using a compensating action. For
example, in transactional systems with open nesting [16],
one transaction can be nested in another, and commit sepa-
rately. If the outer transaction aborts, the inner transaction
needs to roll back, which relies on the developer specifying
a compensating action.

We handle the side effect of each actor operation with the
appropriate technique:

spawn In our system, spawning a new actor in a trans-
action is delayed until the transaction commits. Spawning
an actor is a costly operation: memory is allocated for the
new actor and its inbox, a thread is created, and the actor’s
execution then starts on that thread. Hence, doing this im-
mediately and rolling back if the transaction aborts is not a
good idea: each attempt of the transaction would incur this
cost. Delaying the operation until the transaction commits
ensures this cost is only paid once.

become Become is inherently delayed: its effect only takes
place upon the start of a new turn. As a transaction cannot
span multiple turns, it will always be committed before the
effect of become becomes visible. Hence, it does not matter
whether we delay or roll back become: both have the exact
same cost and result.

send In our system, we choose to immediately send out
messages, and to roll back their effects if the transaction
aborts. Sending a message is not expensive: it only consists
of putting a message in the receiver’s inbox (although this
requires taking a lock). Immediately sending the message in-
creases parallelism though: the receiver can already process
the message before the sender’s transaction has completed.

However, this implies that a message can now be retracted:
when the transaction it was sent in aborts, the message and
its effects need to be rolled back. We say that messages sent
in a transaction have a dependency on the transaction. There
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(behavior [] [msg]
(dosync
(send b :msg)—>(behavior [] [msg]
) )

wait here until t1 commits
(a) A message sent from a transaction depends on that transaction.
The turn that processes the message is tentative: at the end of the
turn, we wait for the transaction to commit or abort, upon which
the turn’s effects are persisted or discarded.
(behavior [] [msg]

(dosync
(send b :msg)(behavior [1 [msgl
) - (send ¢ :msg)——>(behavior [] [m]
) =

wait here until 11 commits
(b) When a message is sent in a tentative turn, the dependency is
forwarded: the second message also depends on transaction 1. Both
messages are processed tentatively.

wait here until t1 commits

(behavior [] [msg]

(dosync
(j:nd b :msg)(b?havior [1 [msg]

)

) wait here until t1 commits

) wait

(c) In case a is started in a tentative turn that
depends on a first transaction, the second transaction can only
commit after the first transaction. In case the first transaction fails,
the second transaction fails upon its commit and the turn is aborted
there. Note that it is no longer necessary to wait at the end of the
turn: if we reach this point, we know the first transaction succeeded.
(behavior [] [msg]

(dosync
(send b :msg)—> (behavior [] [msg]
) S [

(send c :msg))—>(behavior [] [m]
\) wait here until )

st Ll commits wait here until 2 commits

No need to We
(d) When a message is sent in a transaction in a tentative turn, the
message depends on this transaction, and not the encompassing
turn. The third actor will only proceed when commits,

which can only happen when transaction 1 committed as well.

Figure 1. Different cases of messages sent in transactions,
and their dependencies. Each behavior runs in a different
actor. The blue and green lines indicate tentative sections
of code: either a transaction (in a dosync block), or a turn
that depends on a transaction. A message’s dependency is
indicated through its color and number (1 or 2).

are now two types of messages: those sent outside a transac-
tion have no dependency and are definitive, those sent in a
transaction have a dependency and are tentative.

This has an impact on the receiver of a tentative message.
When an actor takes a tentative message from its inbox, the
turn that processes it also becomes tentative: the message is
processed, but the effects it causes should not be persisted
yet. Even though this turn is not a transaction, it executes in
the same ‘tentative’ manner, as its effects can roll back. When
a tentative turn ends, the actor waits until the transaction on
which it depends has committed. After a successful commit
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Not in a transaction In a transaction
Definitive turn Tentative turn
behavior As before
become Delayed until end of turn
spawn Immediate Delayed Delayed
send Immediate Immediate, de- Immediate, depen-
pendency forwarded dency on transaction
dosync Immediate Immediate, but Immediate
wait before commit  with closed nesting
ref, deref, | Not allowed Not allowed As before
ref-set

Table 1. How the operations on actors and transactions are
executed in the three different contexts. Operations in gray
work as before, blu€ indicates the side effect is delayed until
the end of the tentative section (turn or transaction), and
green indicates the side effect is performed immediately but
rolled back on conflict.

of its dependency, the actor can continue to its next turn,
and we say the turn was successful. After an abortion of
its dependency, the tentative turn failed and its effects are
discarded. The actor processes the next message in its inbox,
as if nothing happened. This is illustrated in Figure 1a.

Now that turns can be tentative and may roll back just
like transactions, we need to look at which actions with a
side effect can occur in this context, as they can roll back
too. Firstly, let us look at the operations on actors. When
become and spawn are used in a tentative turn, their effects are
handled as above when they appeared in a transaction: their
effect is delayed until the turn is successful, or discarded if
it fails. On the other hand, send in a tentative turn immedi-
ately sends a message, but forwards the current dependency
with it, so that its receiver will also depend on the original
transaction (Figure 1b).

Secondly, a tentative turn may contain another transaction.
In other words, a first actor is executing a first transaction,
in which it sends a message to a second actor, and when
the second actor processes this message, it starts a second
transaction. We say the second transaction depends on the
first. There are two serializations of these two transactions:
either the first transaction commits before the second, or vice
versa. However, because the second transaction is executed
as a result of the first, the only valid serialization is the one
in which the second transaction is preceded by the first.
Therefore, the second transaction needs to wait before it
commits, until the transaction it depends on has committed.
This is demonstrated in Figures 1c and 1d.

The different cases described in this section are summa-
rized in Table 1. There are three execution contexts: (1) in a
transaction, (2) out a transaction but in a tentative turn, and
(3) out a transaction in a turn that is not tentative (we call
these turns definitive).
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5 Properties

Transactional actors provide several properties:

Serializability Transactional actors maintain the serializ-
ability of the transactions. In a naive combination of trans-
actions and actors, operations on actors inside a transaction
cause side effects, breaking serializability (as in the exam-
ple in Section 3.2). Transactional actors incorporate these
operations into the transaction, so that they succeed or fail
depending on whether the transaction commits or aborts, as
explained in Section 4.2. For other actors and transactions,
all effects inside a transaction thus appear to take place at
the moment the transaction commits.

Effects of a (second) transaction that depends on a first
transaction, will only occur if and when the dependency (first
transaction) succeeded and the second transaction has no
conflicts. These effects also occur in a single atomic step, and
this always happens after the dependency committed. Hence,
serializability is maintained, in a serialization in which the
transaction with a dependency succeeds its dependency.

Effects of a tentative turn that does not contain a trans-
action (these are the actors it spawned and its become op-
eration) also only occur after the dependency succeeded.
Serializability is thus maintained: the order in which effects
appear to other actors and transactions is equivalent to a
serial execution.

Freedom from races and deadlocks Transactional actors
break the isolated turn principle. When a turn contains a
transaction followed by other code, the effects of the trans-
action already become visible before the turn has finished.
Hence, the turn is no longer ‘isolated’. This is a consequence
of the fact that transactional actors introduce shared state
that can be accessed synchronously from all actors, break-
ing one of the assumptions of the isolated turn principle
(Section 2.1). However, the isolated turn principle had two
consequences which are still upheld: freedom from data races
and freedom from deadlocks.

Even though the isolated turn principle no longer holds,
transactional actors still guarantee freedom from low-level
data races, as all accesses to shared memory need to be
encapsulated in a transaction. While the actor model guar-
anteed freedom from low-level data races by prohibiting
shared memory, transactional actors allow shared memory
but require it to be protected using transactions.

Transactional actors also maintain freedom from dead-
locks. To substantiate this, we need to look at the operations
that can block, and show that they cannot lead to a deadlock.
We introduced blocking in two instances: at the end of a
tentative turn, and at the end of a transaction in a tentative
turn. In both cases, the current thread is blocked until the
transaction on which it depends commits or aborts. Could
this lead to a deadlock? In other words, could it happen that
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a transaction A is waiting for another transaction B to finish,
and vice versa—a circular dependency between transactions?

Transactional actors prevent deadlocks. Dependencies can
never be circular: a transaction or tentative turn can only
depend on a transaction that started before it started. A de-
pendency can only be introduced at the start of a turn: when
a message is received with a dependency on A, a depen-
dency from B upon A is introduced at the start of turn B.
This message was sent from within transaction A, which was
therefore necessarily already running before the message
was received. The inverse dependency from A upon B is im-
possible: A started without a dependency on B because B did
not exist when it started, and it cannot acquire such a de-
pendency while it is running. This entails that dependencies
always point to older transactions, and that time defines an
order on dependencies. No circular dependencies can exist,
so no deadlocks can occur.

In conclusion, transactional actors maintain the serializ-
ability of transactions, and replace the isolated turn principle
of actors with freedom from low-level data races and from
deadlocks. Using transactional memory, developers can rea-
son about their code at the level of transactions; using the
actor model, they can reason at the level of turns. Trans-
actional actors enable developers to reason at the level of
transactions and turns.

6 Implementation

We implemented transactional actors as an extension of Clo-
jure, a Lisp dialect built on top of the Java Virtual Machine.!
Clojure has support for software transactional memory built
in; its implementation is described by Halloway [8, p. 182].
In this section, we first describe how we extended Clojure
to support (regular) actors, and next which modifications
were made to Clojure’s STM and the actor system to support
transactional actors.

6.1 Actors

We briefly sketch how we extended Clojure to support regu-
lar (non-transactional) actors. It is a rather simple implemen-
tation, meant to demonstrate the semantics of the model.

We first describe how behaviors are represented. In Sec-
tion 2.1, a behavior was defined as a piece of code that is
parameterized over two types of parameters: the internal
state of the actor, and the values of a message (remember
that a message is a list of values); e.g. (behavior [flights]
[orig dest n] e). Internally, this is translated into nested
functions, e.g. (fn [flights] (fn [orig dest n] e)). Thus,
to execute this code, we first apply the internal state of the
actor to it, and next the received message.

Next, we implemented an Actor class, containing three
fields: its current behavior, its current internal state (list of

10ur implementation is available at https:/github.com/jswalens/
transactional-actors.
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values), and its inbox (list of messages). The operations on
actors are implemented as follows:

e (become b v...) changes the behavior and state of the cur-
rent actor.

e (send a v...) enqueues a message consisting of the values
v... in the inbox of actor a.

e (spawn b v...) creates a new actor with initial behavior b
and v... as state. Then, a new thread is created in which the
actor executes. This consists of an infinite loop that takes
a message from its inbox, and calls its current behavior (a
function nested in a function) with its state first, and the
message’s values next.

6.2 Modifications Made to Clojure’s STM and the
Actor System to Support Transactional Actors

We made several changes to these STM and actor systems to
support transactional actors:

e Messages can have a dependency. When sending a mes-
sage in a transaction, the transaction is added as a depen-
dency. In a tentative turn but outside a transaction, the
dependency of the turn is used. In a definitive turn the
dependency remains null.

o At the start of a turn, if the message has a dependency the
turn is marked as tentative.

e In a transaction, the effects of become and spawn are not
performed immediately, but stored in the transaction.

e In a tentative turn but outside a transaction, the effects
of become and spawn are also not performed immediately;
they are stored in the actor.

e At the end of a transaction in a tentative turn, it waits for
the dependency to complete. If the dependency succeeds,
the transaction commits and its delayed effects (spawned
actors and new behavior) are performed. If the depen-
dency aborts, the transaction and the encompassing turn
are aborted.

e At the end of a tentative turn, the actor waits for the
dependency to complete. If the dependency succeeds, the
delayed effects (spawned actors and new behavior) are
performed. If it aborts, the current turn is aborted and the
actor proceeds to the next one (that processes the next
message in the inbox).

Our implementation is a simple proof of concept, aimed
to demonstrate the benefits of our approach. We can think of
several optimizations, but have not implemented those (yet).
For example, when a message with a dependency is taken
from the inbox, we could check whether its dependency has
finished already. If it finished and succeeded, the turn does
not need to be tentative, and if it aborted, the message can
be discarded immediately.

7 Evaluation: Vacation Benchmark

In this section we demonstrate the benefits of transactional
actors using the Vacation application. We first describe this
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benchmark, both the original version as well as the one using
transactional actors, and then study its performance.

Our Vacation application is inspired by the Vacation bench-
mark from the STAMP benchmark suite [14]. Its input con-
sists of ¢ customers that want to book a holiday. At the
start of the program, r flights, r hotel rooms, and r cars are
generated—we call these items—with a random price and
random number of seats/beds (between 100 and 500). Each
customer will reserve between one and five seats on two
flights, a hotel room, and a car. For each of these four items,
the customer will select a subset of g random items, pick the
cheapest with sufficient available seats, and book it. Addi-
tionally, for each customer a password is generated using a
cryptographically secure hash. We ran the experiments with
¢ = 1000, r = 50, and ¢ = 10.2

Each item and each customer is encapsulated in a trans-
actional variable. Customers are written to five times: four
times to update their bill (one for each item), and once to
store their password. Each reservation also writes to four
items: two flights, a room, and a car.

In the original benchmark, there are p worker actors. The
¢ customers are evenly distributed so that each worker ac-
tor processes c¢/p customers. Each customer reserves four
items and generates a password. This is encapsulated in a
transaction, hence, there are ¢ transactions each writing to
one distinct customer and four items. This is illustrated in
Listing 1.3 There will never be a conflict on the customer, as
it is distinct for each reservation, but there can be conflicts
on the items.

In the version of the benchmark that uses transactional
actors, next to p primary worker actors, there are s secondary
worker actors. As before, the ¢ customers are distributed
evenly over the p primary worker actors. However, now each
customer’s reservation sends four messages to randomly
selected secondary worker actors, and then generates the
customer’s password (as in Listing 2). The secondary worker
actors will look for and reserve an item of the requested
type, in a transaction. Hence, in this application, there are
¢ transactions that write to one distinct customer each and
send four messages, and 4c transactions that write to one
customer and one item. In this version, there can be conflicts
on the customers as well as the items.

We benchmark both versions, varying p and s, and mea-
sure the total execution time. Each variation is repeated 15
times, of which we calculate the median and interquartile
ranges. Next, we calculate the speed-up compared to the
result for p = 1 and s = 1, for each experiment separately.

All experiments ran on a machine with four AMD Opteron

6376 processors, each containing 16 cores with a clock speed
2r = ¢ x 5/100 ensures that there are at least as many available seats as
requested. ¢ = 10 is as in the original STAMP benchmark.

3Note that the code in Listing 1 has been modified for this paper. The
full code of the benchmark can be found at https://github.com/jswalens/
vacation2.
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Figure 2. Speed-up of original version for an increasing
number of worker actors (p). Each result is the median of 15
measurements; the error bars depict interquartile ranges.
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Figure 3. Speed-up of version using transactional actors for
increasing numbers of primary (p) and secondary (s) worker
actors. Full results are in the appendix.

of 2.3 GHz, resulting in a total of 64 cores. The machine has
128 GB of memory. We implemented transactional actors as a
fork of Clojure 1.8.0, running on the Open]DK 64-Bit Server
VM (build 25.131-b11) for Java 1.8.0.

The results of the original version are shown in Figure 2.
Using a single worker actor, the program runs in 5480 ms.
As the number of worker actors increases, the run time de-
creases, reaching a minimum of 2102 ms for 42 worker actors.
This corresponds to a speed-up of 2.6. On a machine with 64
cores, this speed-up is very limited. This is a result of STM’s
optimistic concurrency: as the number of transactions that
execute in parallel increases, the chance of conflicts and thus
the number of retries increases.

Figure 3 shows a subset of the results for the version that
uses transactional actors. (Full results are in the appendix.) In
this benchmark, both the number of primary and secondary
worker actors are varied. The version using one primary
and one secondary worker actor is slower than in the orig-
inal version, at 13701 ms. However, better performance is
achieved when increasing the number of actors.

The black line in Figure 3 shows the results using only
one secondary worker actor, so customers are processed in
parallel but the reservation of individual items is not. Here, a
minimal execution time of 743 ms is reached for 46 primary
worker actors, a better result than the original version. This
is because there are far fewer conflicts: there is only one
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secondary actor reserving items, so there can never be any
conflicts on the items.

By increasing the number of secondary worker actors (the
other lines in Figure 3), a higher speed-up can be achieved.
We see that a maximum speed-up of 33.2 is reached for 42
primary and 8 secondary worker actors, on this machine. At
this point, the balance between increased parallelism and a
low chance of conflicts is optimal. Using more than 8 sec-
ondary worker actors will again lower the performance, due
to a higher chance of conflicts. The optimal result for this
version corresponds to a run time of 413 ms, compared to a
minimum of 2102 ms for the original version. This indicates
that this application benefits from being parallelized in two
places, instead of only parallelizing the processing of cus-
tomers (as in the original version) or only parallelizing the
reservation of items (the results of p = 1 in the appendix),
the optimum is found by combining both.

This experiment demonstrates another benefit of trans-
actional actors: they allow a transaction to be split up into
multiple transactions with dependencies. Every transaction
in the original version was split into one primary and three
dependent transactions. If the primary transaction fails, the
three dependent transactions fail too. However, if a depen-
dent transaction fails, this does not abort any other transac-
tion. Using transactional actors, transactions can be split up,
lowering the cost of a conflict in a dependent transaction, as
only this part needs to retry.

Finally, we note the high overhead of transactional actors,
when p = 1. Our implementation is a relatively simple pro-
totype, and we believe further optimizations could improve
the performance (some were suggested in Section 6.2).

Overall, this experiment shows that transactional actors
can be used to increase the performance of an application
that uses transactions. Distributing a transaction over multi-
ple actors allows more fine-grained parallelism and lowers
the chance and cost of conflicts. Further, we observe that this
requires only limited code changes because the properties
of the separate concurrency models are preserved.

8 Related Work

There is extensive related work on communication in trans-
actions, or shared memory in actors.

Communication in transactions Our work on transac-
tional actors is not the first to advocate communication be-
tween transactions. Using Transactions with Isolation and
Cooperation [18], a transaction’s atomicity and isolation can
be temporarily suspended, to exchange data between trans-
actions. While this allows communication between transac-
tions, it breaks their serializability.

Similarly, Luchangco and Marathe [13] extend transac-
tional memory with transaction communicators, a special
type of object through which transactions can communi-
cate. Access to a communicator should be encapsulated in
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a txcommatomic block, which should be nested in a regular
transaction. Again, serializability is broken. This system also
introduces dependencies between transactions: when a com-
municator is read by transaction a after it was written to
by transaction b, transaction a depends on b to commit suc-
cessfully. Circular dependencies are possible, and lead to a
deadlock if both transactions are guaranteed to always abort,
e.g. when they both write to the same transactional variable.

Finally, Lesani and Palsberg [12] introduce communicating
memory transactions: a combination of transactional mem-
ory with channel-based message passing. In an atomic block,
the constructs send and receive can be used to communicate
over a channel. This introduces a dependency from the re-
ceiving transaction on the sending transaction, very similar
to our transactional actors. In case of circular dependencies,
all transactions in the cluster will attempt to commit at the
same time, while maintaining serializability. If no valid se-
rialization exists, the program is invalid. Communicating
memory transactions thus maintain serializability, but disal-
low programs with circular dependencies.

Transactional actors borrow the idea of dependencies be-
tween transactions, and thus guarantee serializability. Dead-
locks due to circular dependencies are avoided: there can
never be a cycle in a dependency chain (see Section 5), as
messages can only be sent in a transaction, and not received.
Transactional actors extend the actor model of Agha et al.
[2], which does not provide an explicit receive statement.

Shared memory in actors Our work is also not the first
to consider how to safely share memory between actors.
De Koster et al. [4] extend the actor model with domains,
containers that can be accessed from multiple actors. Access
must be encapsulated in a when_shared or when_exclusive
block, the former gives shared read-only access while the
latter gives exclusive write access. The code in these blocks
is executed asynchronously to prevent deadlocks.

Sharing actors [11] also share state between a single writer
actor and multiple reader actors, by replicating the data.
Sharing actors encode the replication pattern discussed in
Section 3.1. When the (single) writer updates the shared data,
a message is sent to the readers to update their copies.

Morandi et al. [15] separate active processors (similar to
actors) into their executing thread and their data. They in-
troduce passive processors, which consist of only the data
without the thread. Active processors can access this data
by assuming the identity of a passive processor, giving them
exclusive access to that processor’s data.

All of these approaches introduce shared state in actor sys-
tems, but they only allow one writer per container at a time.
To allow concurrent but safe access, it is important to split
data correctly over these containers. For the Vacation exam-
ple described in this paper, this is not evident: how should
the flights be split, so that multiple customers can access
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all of them consistently at the same time? By using transac-
tional memory, our approach allows multiple actors to write
to shared memory, without requiring data to be split into
containers: the transactional system ensures consistency.

Transactional communication Transactors [7] encapsu-
late changes to actors’ local state and their communication in
transactions. Communicating transactions [6] also coordinate
distributed processes using transactions. Both use transac-
tions to ensure that state that is distributed over multiple
actors can be updated consistently, but do not share memory.

9 Conclusion

Many modern programming languages support a wide vari-
ety of concurrency models. This paper shows that, in practice,
it can be beneficial for developers to mix these different con-
currency models within a single application. Not only to
structure the different parts of their application using the
concurrency model that feels most natural for that part, but
also to exploit some of the additional parallelism within those
applications. Unfortunately, current language implementa-
tions often integrate these various concurrency models in
an ad hoc way without clearly specifying the semantics of
the combination.

This paper presents transactional actors, a combination of
actors and software transactional memory with well-defined
semantics. On the one hand the actor model can be used as
a coordination mechanism between various components of
an application. Within those actors, software transactional
memory can be used to express safe access to shared state,
which was otherwise impossible to express between these
strictly isolated software entities. On the other hand, soft-
ware transactional memory can be used to coordinate various
tasks sent to different actors. Messages sent from within the
same transaction either all succeed, or all fail.

To validate that additional parallelism can be exploited
when combining actors and transactions, we presented an
experimental evaluation using a representative benchmark.
In future work, we plan to extend our evaluation with other
benchmarks, include a comparison with related work, and
optimize our implementation.

Transactional actors maintain the guarantees offered by
the separate models: they maintain the serializability of the
transactions, and guarantee freedom from low-level data
races and deadlocks. Hence, developers can freely mix both
concurrency models, increasing the composability and re-
usability of concurrent programs.
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A Appendix

Full results are in the table below:

Number of secondary worker actors (s)

10

12
15.3
12.0
10.2

14
15.3
14.9
12.0
11.4
10.8
10.5
10.3
10.4
10.2
10.3
10.3

16
15.5
17.3
14.0
13.0
12.2
12.1
11.8
11.7
11.8
11.7
11
11.8
11.8
11.8
11.8
T
11.7
11.7
11.8
11.9
12.0
11.9
11.9
11.8
11.5
11.6
11.7
11.7
11.8

12.0
11.8
11.9
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Number of primary worker actors (p)

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

14.1
18.8
15.8
14.4
14.0
13,3
13.7
13.1
13.2
11343
13.3

15.0
17.9
18.3
16.1
16.2
15.3
15.4

13.5 14.7 14.2 14.3 15.2 15.6 15.4 16.9 17.9 16.8 17.6 18.1 18.4 16.9 17.5 17.0 16.8 16.9 17.7 17.7 17.0 17.0
18.9 18.7 18.1 18.5 18.5 17.9 20.1 20.1 20.0 19.5 19.6 19.3 19.5 19.2 18.9 18.5 18.7 18.6 18.8 18.8 18.3 18.8
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