
Skitter: A Distributed Stream Processing Framework with Pluggable
Distribution Strategies

Mathijs Saeya , Joeri De Kostera , and Wolfgang De Meutera
a Software Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract
Context Distributed Stream Processing Frameworks (DSPFs) are popular tools for expressing real-time Big
Data applications that have to handle enormous volumes of data in real time. These frameworks distribute
their applications over a cluster in order to scale horizontally along with the amount of incoming data.
Inquiry Crucial for the performance of such applications is the distribution strategy that is used to partition
data and computations over the cluster nodes. In some DSPFs, like Apache Spark or Flink, the distribution
strategy is hardwired into the framework which can lead to inefficient applications. The other end of the
spectrum is offered by Apache Storm, which offers a low-level model wherein programmers can implement
their own distribution strategies on a per-application basis to improve efficiency. However, this model conflates
distribution and data processing logic, making it difficult to modify either. As a consequence, today’s cluster
application developers either have to accept the built-in distribution strategies of a high-level framework or
accept the complexity of expressing a distribution strategy in Storm’s low-level model.
Approach We propose a novel programming model wherein data processing operations and their distribution
strategies are decoupled from one another and where new strategies can be created in a modular fashion.
Knowledge The introduced language abstractions cleanly separate the data processing and distribution logic
of a stream processing application. This enables the expression of stream processing applications in a high-level
framework while still retaining the flexibility offered by Storm’s low-level model.
Grounding We implement our programming model as a domain-specific language, called Skitter, and use it to
evaluate our approach. Our evaluation shows that Skitter enables the implementation of existing distribution
strategies from the state of the art in a modular fashion. Our performance evaluation shows that the strategies
implemented in Skitter exhibit the expected performance characteristics and that applications written in
Skitter obtain throughput rates in the same order of magnitude as Storm.
Importance Our work enables developers to select the most performant distribution strategy for each operation
in their application, while still retaining the programming model offered by high-level frameworks.

ACM CCS 2012
Software and its engineering → Domain specific languages; Software performance; Abstraction, modeling
and modularity;

Keywords stream processing, distributed programming, programming model, meta-programming

The Art, Science, and Engineering of Programming

Submitted October 1, 2024

Published February 15, 2025

doi 10.22152/programming-journal.org/2025/10/4
© Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter
This work is licensed under a “CC BY-NC 4.0” license
In The Art, Science, and Engineering of Programming, vol. 10, no. 1, 2025, article 4; 32 pages.

https://orcid.org/0000-0002-9481-4181
https://orcid.org/0000-0002-2932-8208
https://orcid.org/0000-0002-5229-5627
https://doi.org/10.22152/programming-journal.org/2025/10/4
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en


Skitter: A DSPF with Pluggable Distribution Strategies

1 Introduction

Over the past decade, Distributed Stream Processing Frameworks (DSPFs) such as
Spark Streaming [3, 27], Flink [7] and Storm [23], emerged as important tools
to create scalable data processing applications that respond to incoming streams
of “Big Data” in real time [2]. These frameworks gained traction thanks to their
ability to distribute these applications over multiple machines connected in a cluster
configuration, enabling them to scale with the amount of computational resources.
In such frameworks, applications are expressed by transforming data streams

through the use of various operations which may, in turn, emit new data streams,
such as visually exemplified in Figure 1. The DSPF can then transparently distribute
these applications over the cluster computer. When distributing an application, a DSPF
is responsible for deciding how the state belonging to each operation is distributed
over the cluster, for determining the cluster node on which the computations of each
operation are executed, and for communicating between these nodes. We call the
logic which governs these decisions for an operation the distribution strategy of the
operation. Since distribution strategies determine how the work for the operations in
an application is divided over the cluster nodes and, since communication between
cluster nodes is a costly operation [14], distribution strategies have a major impact
on the performance characteristics of a stream processing application [12, 24, 29].
Many modern DSPFs, including Apache Spark and Flink, impose a programming

model wherein applications are expressed through a predefined set of operations (such
as map, join or reduce), each of which is associated with a built-in distribution strategy.
This fixed dependency between operation and distribution strategy is problematic, as
the chosen distribution strategy may be a poor fit for the operation or application, and
possibly degrade its performance. An example of this can be found in the join operation
of Apache Flink, the performance of which is degraded when faced with heavily
skewed data [11]. The alternative to this model is offered by Apache Storm, which
offers a lower-level programming model that is flexible enough to allow application
developers to control precisely how their application is distributed over a cluster.
Unfortunately, this flexibility comes at the cost of substantial additional accidental
complexity. Moreover, Storm offers no abstractions for keeping the distribution strategy
separate from the application code. Instead, a distribution strategy is specified by
modifying several distinct locations in the application code. Nevertheless, Storm is
the current “gold standard” for expressing distribution strategies, as it is the only
framework which is flexible enough for their implementation [12, 13, 17, 18, 24, 29].
This state of affairs forces stream processing application developers in a problematic
position: they must choose between using the rigid high-level programming model offered
by tools such as Spark or Flink (at the risk of the performance of their application being
hampered by the hardwired distribution strategy imposed by their DSPF of choice), or
they use the programming model offered by Storm to gain control over the distribution
of their application (at the cost of having to deal with the substantial complexity imposed
by Storm’s programming model).
In this paper, we present a novel programming model, called Skitter (Section 4).

Skitter is a dual model: it introduces separate programming abstractions for the

4:2



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

expression of data processing logic and distribution strategies. Separating the defini-
tion of these concerns allows both of these concerns to be modified independently.
The model to express distribution strategies is open: expert developers can use the
provided abstractions to write and adapt distribution strategies, allowing novel or
existing strategies to be implemented as needed. Thus, Skitter offers a rigid, high-level
programming model which still enables developers to select the most performant
distribution strategy for each operation in their application. The set of abstractions we
introduce through Skitter, which enable the implementation of distribution strategies
in a modular fashion, form the main contribution of this paper.
Skitter is a domain-specific language built on top of Elixir1 (Section 5). Validating

our work is done by implementing several existing distribution strategies [8, 13, 17,
18] from the literature in both Skitter and Storm, after which we reproduce the
benchmarks described in these papers. These benchmarks serve as the basis for both
a quantitative and a qualitative evaluation. Our qualitative evaluation discusses the
implementations of both benchmarks and argues that Skitter enables the implemen-
tation of distribution strategies from the state of the art in a modular fashion. Our
quantitative evaluation compares the performance of both implementations and shows
that distribution strategies expressed in Skitter exhibit the expected performance
characteristics and that the throughput rate of these applications falls within the same
order of magnitude as those obtained by Storm. Our performance evaluation also
compares the performance of the Skitter benchmarks with an ad-hoc implementation
of the same benchmarks to measure the overhead introduced by Skitter’s abstractions.
Finally, we compare the behavior of several distribution strategies and show that the
most performant strategy for a given operation is situational. Thus, we show that the
performance of a stream processing application can be improved by selecting the most
appropriate distribution strategy and that Skitter enables this without polluting the
data processing logic of the application with accidental complexity.

2 Background

Before we present our solution, we briefly discuss DSPFs and how they distribute
stream processing applications over a cluster. We do this based on an example, namely
a stream processing application calculating the conversion rate of ads, which we use
throughout the paper. This cluster application receives a stream of clicks, representing
users clicking on ads, and a stream of sales, representing users purchasing products.
Based on these inputs, the application calculates how many of the clicks on a given
ad result in a sale; this value is recalculated as new data enters the application and
published to some external system (e.g. a dashboard).

Programming model Stream processing applications are expressed by combining
various data sources and data processing operations. Sources emit data on streams

1 https://elixir-lang.org/, visited on 2025-01-21.

4:3

https://elixir-lang.org/


Skitter: A DSPF with Pluggable Distribution Strategies

publishratejoin

clicks

sales

Figure 1 DAG of a stream processing application calculating ad conversion rates.

publish

publish

rate

rate
…

…

57

24

…

…

10

32

joiner
preprocessor

monitor

dispatcher joiner

monitor

dispatcherpreprocessor

joiner

joinerjoinerjoiner

clicks

clicks

sales

sales

sales join rateclicks publish

Cl
us

te
r 

N
od

e 
2

Cl
us

te
r 

N
od

e 
1

Figure 2 Possible run-time view of the application shown in Figure 1 distributed over two
cluster nodes. Each row depicts a cluster node; columns depict the sources and
operations of the application.

while operations ingest data from one or more streams, possibly emitting data on
another stream. These connected sources and operations typically form a Directed
Acyclic Graph (DAG). The DAG of our running example is shown in Figure 1. This
application is implemented in terms of two sources: clicks and sales, and three oper-
ations: join, rate and publish. Both sources are linked to some external system and
emit data records corresponding with sales or clicks into the rest of the application.
The join operation ingests data from both sources: it buffers the clicks and sales that
occur; when a sale of a particular product occurs within the same browser session
where an ad for that product was clicked, it emits a data record indicating the ad that
caused a sale to occur. The rate operation ingests data emitted by the join operation
and the clicks source; it maintains two counters for each ad: one counting the number
of times the ad has been clicked and another counting the number of times clicks on
the ad resulted in a sale. Each time the rate operation receives a data record for an
ad, it updates the counters associated with the ad, after which it emits an updated
conversion rate for the ad. The conversion rate is received by the publish operation,
which sends it to an external system.

Distribution strategies To run a stream processing application on a cluster, its op-
erations and sources must be distributed over the cluster nodes. This is done by the
distribution strategy of the operation or source which makes the following decisions:
How many workers are spawned to process data for the operation or source?
Which information is exchanged among these workers?
What is the exact task of each of these workers?
How is the state of the operation or source partitioned among these workers?

Figure 2 visualizes a potential deployment of our ad conversion rate application
distributed over a cluster with two nodes (for the sake of the example). Below, we

4:4



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

discuss the strategies used to distribute the operations and sources that constitute the
application.
publish The strategy for publish spawns a worker on every cluster node, as shown
in Figure 2. Since the publish operation is stateless, no state is partitioned among
these workers. When the publish operation needs to process a data record, it is
sent to the worker of this operation on the current cluster node, which processes
the data record, sending it to an external system.

clicks and sales These sources are stateless and distributed similarly to publish.
rate Similarly to publish, a worker is spawned on every cluster node to process data
for the rate operation. Unlike publish, the rate operation is stateful, as it needs
to maintain two counters for every ad. These counter pairs are partitioned over
both of the operation’s workers: when an ad click or sale needs to be processed,
the distribution strategy needs to ensure that the event is correctly dispatched to
the worker which maintains the counters for this particular ad. The worker which
receives the event updates the relevant counter for the ad, after which it calculates
the new conversion rate for the ad and emits it.

join The join operation uses the so-called “FastJoin” strategy [29]. We do not explain
this strategy here for the sake of brevity. We do draw attention to the fact that this
distribution strategy spawns different worker types (i.e. preprocessor, dispatcher,
monitor and joiner), each with their own specific purpose. While other strategies
exist for the join operation (e.g. [8, 13, 28]), we specifically include FastJoin here
to showcase a complex distribution strategy which requires multiple worker types.
Distribution strategies determine how the work to be performed is balanced over the

nodes of a cluster and which communication occurs between these nodes. A balanced
distribution of work is essential to utilize the parallelism of a cluster environment, while
sending a message over the network between cluster nodes introduces a significant
amount of overhead. As such, distribution strategies are key to the performance of a
distributed stream processing application.
Unfortunately, there is no one-size-fits-all distribution strategy for a given operation.

This is the case as the performance of a strategy is impacted by the properties of its
operation [18], the properties of the data it receives [9, 28] and the properties (e.g.
heterogeneity) of the cluster on which the application is executed [18, 26]. In spite of
this, modern DSPFs make it difficult to select an appropriate distribution strategy for
an operation in a stream processing application, as we discuss in the next section.

3 Distributed Stream Processing Frameworks

Modern DSPFs offer a programming model in which stream processing applications
are built by combining well-known operators such as map, reduce and filter. Listing 1
depicts an implementation of the running example in such a model. We discuss how
the operations shown in Figure 1 are represented in this implementation below:
clicks and sales Sources which receive events corresponding with ad clicks and sales
are created on lines 1 and 2, respectively.

4:5



Skitter: A DSPF with Pluggable Distribution Strategies

join Lines 4 to 7 implement the join operation which matches events from both sources
with one another to find ad clicks that resulted in a sale. Sales of a product are
paired with clicks on ads related to that product if the click occurred in the same
browser session as the sale. The where and equalTo operators are used to extract a
key from the sales and clicks streams, respectively. In both cases, the product_id
and browser session are extracted from the received event to form a tuple which
serves as the key. The apply operator receives an ad click matched with a sale and
produces a {:sale, ad_id} tuple, indicating the ad resulted in a sale.

rate DSPFs typically feature a reduce operator to perform any aggregations. However,
such an operator only accepts a single input. Therefore, on line 8, we use the union
operator to combine the stream resulting from the join operation with the stream
of ad events. We use the map operator to wrap these events in a {:click, ad_id} tuple
in order to distinguish ad clicks and sales from one another. The KeyBy operator
on line 9 is used to group the various incoming data records for reduce by key. In
this case, we group the events based on their ad_id. On lines 10 to 12, the reduce
operator is used to update the amount of sales or clicks for an ad, depending on
the received event. After each reduction, the current state for the ad is emitted. On
line 14, the map operator is used to calculate the current conversion rate of the ad,
based on the numbers of clicks and sales.

publish Each conversion rate emitted by the map operator is published on line 15.
Developers using such a high-level model only need to specify the data processing

logic of their application as the DSPF distributes each operator over the cluster auto-
matically. This implies that the developer retains very little control of the distribution
of each operator, as all distribution logic is handled by the DSPF. To alleviate this issue
somewhat, most high-level DSPFs offer built-in distribution operators which can be
used to configure the behavior of the distribution strategies of the DSPF. For instance,
both Spark and Flink introduce operators which can be used to specify the amount
of parallel instances spawned for an operation; Flink’s join operator also takes an
optional argument which configures the behavior of its built-in distribution strategy.
However, these operators do not offer developers control over how the computations

of an operator are distributed over the cluster or over the communication between
these computations. In other words, these operators enable developers to slightly
configure existing distribution strategies, but do not allow them to select a radically
different strategy to use for an operator or to create new strategies.
As a consequence, developers who aim to implement a distribution strategy often

use Apache Storm [23] for this purpose [12, 13, 17, 18, 24, 29], as it is the only
framework flexible enough for their implementation. Storm applications are written
by building a graph, called a topology in Storm, which consists of various sources,
called spouts, and operations, called bolts. Spouts and bolts can be connected to each
other through the use of groupings, which represent edges. An example of a Storm
topology can be seen in Listing 2, which depicts a Storm topology implementing the
running example. This code is essentially a textual description of the run-time DAG
shown in Figure 2: each worker type shown in Figure 2 is added to the application’s
topology through the use of setBolt or setSpout. Bolts and spouts are instantiated with

4:6



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Listing 1 Pseudocode representing a high-level DSPF implementation of the running
example.

1 clicks = source()
2 sales = source()
3
4 sales.join(clicks)
5 .where(fn sale -> {sale.session, sale.product_id} end)
6 .equalTo(fn ad_click -> {ad_click.session, ad_click.product_id} end)
7 .apply(fn ad_click, sale -> {:sale, ad_click.ad_id} end)
8 .union(clicks.map(fn ad_click -> {:click, ad_click.ad_id} end))
9 .keyBy(fn {_, ad_id} -> ad_id end)
10 .reduce({0,0}, fn
11 {:click, ad_id}, {clicks, sales} -> {ad_id, {clicks + 1, sales}}
12 {:sale, ad_id}, {clicks, sales} -> {ad_id, {clicks, sales + 1}}
13 end)
14 .map(fn {ad_id, {clicks, sales}} -> {ad_id, sales / clicks} end)
15 .publish()

Listing 2 Simplified version of a Storm topology implementing the running example.
1 builder = new TopologyBuilder();
2
3 builder.setSpout("sales", new SalesSpout(), 2)
4 builder.setSpout("clicks", new ClicksSpout(), 2)
5
6 builder.setBolt("join-preprocessor", new PreProcessBolt(), 2)
7 .localGrouping("clicks")
8 .localGrouping("sales")
9 builder.setBolt("join-dispatcher", new DispatcherBolt(), 2)
10 .globalGrouping("join-preprocessor")
11 .globalGrouping("join-monitor")
12 builder.setBolt("join-joiner", new JoinBolt(), 8)
13 .customGrouping("join-dispatcher", new FastJoinGrouping())
14
15 builder.setBolt("rate", new RateBolt(), 2)
16 .fieldsGrouping("clicks", "ad-id")
17 .fieldsGrouping("joiner", "ad-id")
18 builder.setBolt("publish", new PublishBolt(), 2)
19 .localGrouping("rate")

an object which encapsulates the logic performed by the bolt or spout when it receives
data, and with a parallelism hint, which determines how many parallel copies of these
bolts and spouts are spawned at run-time.
Storm groupings are responsible for linking spouts and bolts to each other and also

determine which parallel copy of the receiving bolt will process the received data at
run-time. Storm defines several built-in groupings (such as the localGrouping shown on
lines 7 and 8), but also offers a generic interface, customGrouping, for the definition of
custom groupings, as shown on line 13. In this way, Storm offers developers full control
over where each data record processed by their application is sent and processed.

4:7



Skitter: A DSPF with Pluggable Distribution Strategies

The programming model offered by Storm allows for the implementation of distri-
bution strategies. However, it is significantly more complex than the one introduced
by high-level DSPFs and was not designed to express distribution strategies in a mod-
ular fashion. Concretely, three key hurdles make it difficult to express and modify
distribution strategies in Storm.
Scattered distribution logic A distribution strategy must specify how many workers
are created for an operation, how the state of this operation is partitioned over
these workers, and how information is exchanged among them. In Storm, the
number of workers created is specified in the topology definition, while state is
handled in spout and bolt classes; communication between workers is handled in
grouping definitions. Thus, the definition of a distribution strategy is scattered over
several locations, making it harder to modify. In Listing 2, this is most obvious in the
definition of the FastJoin strategy (lines 6–13), the definition of which is scattered
across three different bolt classes, one grouping class and the application’s topology.

Tangled distribution and application logic Storm does not distinguish application from
distribution logic. In simple cases, groupings handle the distribution logic of an
operation, while bolts and spouts handle the application logic. In practice, however,
complex distribution strategies often require distribution-level logic to be present
in bolts or spouts. As a result, distribution and application-level logic is often
entangled in Storm, making it hard to modify either [5]. This is also clearly visible
in the definition of the FastJoin strategy in Listing 2: the PreProcessBolt, DispatcherBolt,
FastJoinGrouping and the various grouping declarations (i.e. uses of localGrouping and
globalGrouping) define distribution logic while the JoinBolt defines both distribution
and application logic.

Lack of support for creating different task types Complex distribution strategies often
require the creation of different workers, each of which performs a different task
for the distribution strategy. In Storm, any task spawned for a spout or bolt executes
identical logic when invoked. As a result, distribution strategies that require different
worker types can only be expressed in Storm by introducing multiple spouts, bolts
and groupings, thus polluting the definition of the application’s topology and
worsening both the scattering of distribution logic and its entanglement with
application logic. This issue is also visible in Listing 2, which describes the run-
time DAG of the application (shown in Figure 2), rather than its application DAG
(Figure 1).

Conclusion
High-level DSPFs provide an operator-based programming model which makes
it easy for developers to specify the data processing logic of their applications.
However, each of these operators is strongly tied to its distribution strategy, which
makes it impossible for developers to pick another distribution strategy.
Storm offers a low-level model which enables developers to implement their own
distribution strategies, but is not designed for this purpose, which leads to several
issues that make it hard to implement and modify distribution strategies in Storm.

4:8



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Listing 3 Workflow definition of the running example.
1 workflow do
2 node(ClicksSource, as: clicks)
3 clicks.out ~> join.right
4 clicks.out ~> rate.clicks
5
6 node(SalesSource, as: sales)
7 ~> node(Join, with: FastJoin, as: join)
8 ~> node(Rate, with: KeyedState, as: rate)
9 ~> node(Publish)
10 end

In the next section, we introduce Skitter, which aims to combine the ease-of-use of
high-level DSPFs with the expressive power and flexibility offered by Storm.

4 The Skitter Programming Model

In Skitter, stream processing applications are implemented using three main abstrac-
tions: workflows, operations and strategies. Operations define the data processing
logic of an application, while strategies define the distribution logic for an operation.
Workflows combine operations and their associated strategies into a DAG to create a
stream processing application. We discuss each of these concepts below.

4.1 Workflows

A Skitter workflow is defined as a DAG consisting of several connected nodes. Each of
these nodes represents a single data processing step and embeds an operation (i.e.
the data processing logic of the step) and the strategy associated with this operation
(i.e. the distribution logic of the data processing step); optionally, arguments can be
passed to a node. Nodes are connected through links, which wire the in- and outputs
of the various nodes to each other. In this way, stream processing applications can be
built by combining several operations into a DAG.
Listing 3 defines our running example as a Skitter workflow. This workflow definition

is a textual representation of the application DAG shown in Figure 1. The various
sources and operations which define the data processing steps of the application are
defined as nodes, while data dependencies between the nodes are expressed through
the use of the link operator, ~>. The link operator can be used to link a specific output
of a node to the input of another node, as on lines 3 and 4, or it can be used to “chain”
nodes after each other, as shown on lines 7 to 9; when this is done, the first output of
a node is linked to the first input of the next chained node.

Specifying the distribution strategy of a node The main goal of Skitter is to enable
developers to select distribution strategies for their operations. Therefore, the with:
operator can be used to specify which strategy is used to distribute the operation of

4:9



Skitter: A DSPF with Pluggable Distribution Strategies

Listing 4 Operator-style definition of a word count application.
1 workflow do
2 source()
3 ~> flatmap(fn text -> String.split(text) end, with: RepartitionedOutput)
4 ~> keyed_reduce(fn word -> word end, fn count -> count + 1 end, 0)
5 ~> print()
6 end

a particular node. For instance, on line 7, we specify that the FastJoin distribution
strategy has been chosen to distribute the Join operation. In many cases, developers
may not want to tweak the distribution strategy of an operation. Therefore, operations
may feature a default distribution strategy which is used when with: is omitted.

Well-known generic operators High-level DSPFs offer various well-known operators
which can be used to build stream processing applications. While convenient, these
operators can be restrictive when an application does not fit into their constraints.
For instance, in Listing 1, we used the union and map operators to merge two steams
because the reduce operator can only operate on a single stream. To avoid this issue,
nodes in a Skitter workflow are created with an operation, similar to how spouts
and bolts are instantiated with an object in Storm. However, Skitter provides several
operations, such as Map, Filter and KeyedReduce which behave like these well-known
operators. Moreover, Skitter introduces syntactic sugar for defining nodes which use
these operations; these can be mixed with regular node definitions which makes it
possible to write (parts of) a stream-processing application in the operator style. An
example of this can be seen in Listing 4, which uses the operator style to define a
workflow which counts words.

4.2 Operations

A Skitter operation defines a conceptual data processing step which can be embedded
in a workflow. At run-time, an operation is distributed by some distribution strategy.
Operation definitions consist of meta-information, which is used to embed the opera-
tion inside a workflow, and of various callbacks, which implement the data processing
logic provided by the operation. Listing 5 shows the definition of the Rate operation
used in Listing 3. Recall that this operation calculates the conversion rate of ads. It
does this by maintaining two counters for each ad: one counting the number of times
the ad has been clicked, and another counting the number of times clicks on the ad
resulted in a sale. When the operation receives a click or sale event, it increments the
appropriate counter after which it calculates and publishes the updated conversion
rate for the ad.2

2 Note that this operation can be implemented using operators, similar to how this was done
in Listing 1. We provide an operation definition here instead for the sake of the example.

4:10



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Listing 5 Definition of the Rate operation.
1 defoperation Rate, in: [sales, clicks], out: conversion_rate, strategy: KeyedState do
2 initial_state {0, 0}
3
4 defcb key(data), do: data.ad_id
5
6 defcb react(data) do
7 {clicks, sales} = state()
8 {new_clicks, new_sales} = case port_of(data) do
9 :sales -> {clicks, sales + 1}
10 :clicks -> {clicks + 1, sales}
11 end
12 state <~ {new_clicks, new_sales}
13 {data.ad_id, new_sales / new_clicks} ~> conversion_rate
14 end
15 end

The first line of the operation definition defines the meta-information of the opera-
tion: it specifies that this operation responds to two input streams: sales and clicks,
and that it produces a single output stream, conversion_rate. It also specifies the default
distribution strategy of the operation, KeyedState. The second line in Listing 5 specifies
the initial state of the operation, which can be retrieved by the strategy when needed,
as we discuss later. The initial state of the Rate operation is a tuple containing two
counters, each starting at 0. Lines 4 and 6–14 define the callbacks of the Rate operation;
the key callback obtains a key for an incoming data element while the react callback
defines how a data element is processed. We discuss both callbacks in depth in the
following paragraphs.

Required callbacks The data processing logic of an operation is implemented in
terms of callbacks. In the most simple case, an operation only needs to define a single
callback which specifies how the operation responds to incoming data records (such
as the react callback). However, a distribution strategy often requires several strategy-
specific callbacks to be present. For instance, the KeyedState distribution strategy used
by Rate needs to ensure each ad is processed by the worker which maintains the
counters for this particular ad, as discussed in Section 2. Typically, a key is used to
identify this worker. However, obtaining this key for a particular data record belongs
to the data processing logic of an application. Therefore, the KeyedState distribution
strategy requires an operation to implement a key callback, which extracts such a key
from an incoming data record. Embedding this logic inside the operation definition
ensures that the KeyedState strategy can remain agnostic to the data processing logic
of the operation it distributes. The key callback, defined on line 4, obtains the key of
an incoming data record by extracting its ad_id.

Callback definition The react callback, defined on lines 6 to 14, specifies the data
processing logic that is invoked when the Rate operation receives a new data record.
This operation needs to update the state associated with a particular ad, and publish

4:11



Skitter: A DSPF with Pluggable Distribution Strategies

the new conversion rate obtained from the updated state to downstream operations.
Managing state, however, is a concern to be managed by distribution strategies, as
it determines where computations of an operation may be executed. For instance,
we have already discussed that the state of the Rate operation is partitioned over
several workers. Similarly, a distribution strategy should have control over when an
operation can send data to its downstream operations (e.g. to execute a computation
multiple times, as in [24]). To reconcile these concerns, Skitter conceives callbacks as
functions which accept a state along with their regular arguments and which return a
potentially updated state, emitted data and a return value. In other words, a callback
is a function, γ : state, args 7→ state′, retval, emit. Distribution strategies can then call
these callbacks, providing the state on which the callback may operate.
The KeyedState strategy calls the react callback with the state associated with a

particular ad. Inside the body of a callback, the state() operator may be used to access
this state, as on line 7. On lines 8 to 11, the callback updates either the clicks or the
sales counter, depending on whether a value was received on the sales or clicks input
stream. The updated counters are then stored as the new state, through the use of the
<~ primitive. Finally, the operation calculates the new conversion rate of the ad, and
publishes it along with the ad_id through the use of the emit operator, ~>. The callback
DSL ensures the emitted values, updated state and return value of the callback are
returned to the strategy, which we discuss below.

4.3 Distribution Strategies

Skitter introduces distribution strategies as a means for expert (meta) programmers
to specify how an operation is distributed over a cluster. A distribution strategy is
implemented by defining a set of hooks, called by the runtime system in response
to predefined events. Writing these hooks involves dealing with workers, which are
computational entities based on the actor model [1], which maintain state and perform
computations for operations. Distribution strategies are implemented by defining the
deploy, deliver and process hooks:
deploy Creates an initial deployment of the operation over the cluster, typically by
spawning workers.

deliver Delivers data emitted by an upstream operation to a worker of this operation.
process Processes a single value received by a worker of this operation.
We discuss these hooks using our running example. We first provide a brief overview,
after which we provide a detailed discussion in the paragraphs below. An overview of
the hooks, the events that trigger them, and their purpose is provided in Table 1.
Listing 6 shows the definition of the KeyedState strategy, used to distribute the Rate

operation of the running example. This strategy partitions the state of an operation
based on a set of keys: inside the deploy hook, a worker is created for each cluster
node; each of these workers maintains the state of several keys. When the operation
receives a new data record, the deliver hook is invoked; inside this hook, the key of the
received record is extracted and hashed. Based on this hash, the data record is relayed
to the appropriate worker. When this worker receives the data record, the process

4:12



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Listing 6 Definition of the KeyedState distribution strategy.
1 defstrategy KeyedState do
2 defhook deploy(args) do
3 Remote.on_all_workers(fn -> local_worker(Map.new(), :aggregator) end)
4 |> Enum.map(fn {remote, worker} -> worker end)
5 end
6
7 defhook deliver(data) do
8 key = call(:key, args: [data]).result
9 aggregators = deployment()
10 idx = rem(Murmur.hash_x86_32(key), length(aggregators))
11 worker = Enum.at(aggregators, idx)
12 send(worker, data)
13 end
14
15 defhook process(data, state_map, :aggregator) do
16 key = call(:key, args: [data]).result
17 state = Map.get(state_map, key, initial_state())
18 res = call(:react, state: state, args: [data])
19 emit(res.emit)
20 Map.put(state_map, key, res.state)
21 end
22 end

hook is invoked, which will fetch the state associated with the received data record
and call the react callback of the operation with this state. The state and emitted
data returned by react will be used as the new state for the received key and sent to
downstream operations, respectively. We discuss every hook and its implementation
in the KeyedState strategy in detail in the following paragraphs.

Initial deployment over a cluster The deploy hook is responsible for distributing an
operation over the cluster nodes. When a Skitter application is started, the Skitter
runtime system calls the deploy hook of the distribution strategy of each operation in
the application with the arguments passed to the workflow node. The deploy hook
is responsible for creating the resources required for the operation to respond to
incoming data records. These resources include references to workers, which will
perform work for the operation, and any constants maintained by the operation (e.g.
a function provided to a higher-order operator such as map). The result of the deploy
hook is returned to the runtime system which stores it as the so-called deployment data.
This data is automatically copied to every node in the cluster and can be accessed by
the deliver and process hooks. Typically, the deploy hook creates a set of workers, after
which references to these workers are returned to be stored inside the deployment
data.
In our example, the deploy hook is used to create one worker for each worker

node on the cluster (line 3). This is done through the use of on_all_workers, which
calls a provided function on every worker node in the cluster, and through the use
of local_worker, which creates a worker with an initial state (an empty map), and a

4:13



Skitter: A DSPF with Pluggable Distribution Strategies

role (which we discuss later). On line 4, we transform the result of on_all_workers (a
mapping of node names to worker references) into a list of worker references, which
is returned to be stored in the deployment data.

Delivering data to workers Skitter’s workers perform computations and manage state
for the distribution strategy. The deliver hook is responsible for selecting which worker
a data record is sent to. When an operation’s strategy emits data, the deliver hook of
the strategy of each of its downstream operations is called. The hook must then make
sure that the received data record is sent to a worker, where it can be processed. Since
a node in a Skitter workflow may select any distribution strategy for an operation in
their application, the deliver hook cannot make any assumption about the current
location of the data to be sent. Typically, the deliver hook selects a worker from the
deployment data to send the data to.
The deliver hook of our example calls the key callback of its operation to obtain

the key associated with the incoming data record (line 8). Afterwards, it fetches
the worker references from the deployment data through the use of the deployment
primitive (line 9). Next, the key is hashed and reduced modulo the amount of workers
to obtain an index (line 10), which is used to obtain a worker reference (line 11).
Finally, the send primitive is used to send the data to the selected worker (line 12).

Processing data The send primitive can be used to send a message to a worker.
Messages sent to a worker are stored in a queue and are processed sequentially in
the order of arrival. When a worker receives a message, the process hook is called
with the message, the current state of the worker and the worker’s role. This hook
specifies how a worker processes a single message in its queue. The value returned by
this hook is used as the new state of the worker. Typically, the process hook invokes a
callback of the operation to process the received data with the appropriate state.
In our example, the process hook calls the key callback of the operation to obtain

the key associated with the incoming data record (line 16). This key is then used
to fetch the state of this particular key from the worker’s state, a map. When the
worker’s state does not contain a value for the key, the initial state of the operation
is used instead (line 17). Next, the react callback of the operation is called, with the
received message and the obtained state, to process the incoming data record (line
18). The value emitted from the operation is emitted through the use of the emit
primitive (line 19), which causes the Skitter runtime system to call the deliver hook
of any downstream operations. Finally, the updated state returned from calling react
is inserted into the state map and returned as the result of the process hook, which
will store it as the state of the worker.
The deploy, deliver and process hooks discussed above are the key mechanism

through which Skitter enables the expression of distribution strategies. The purpose
of each of these hooks is summarized in Table 1, while the primitives available for
use inside these hooks is shown in Table 2. In the following paragraphs, we discuss
two additional features, which enable the implementation of complex distribution
strategies in Skitter.

4:14



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Table 1 Summary of the hooks that a distribution strategy needs to implement.

Hook Arguments Return Event Goal

deploy args1 dep2 Application start. Distribute operation.
deliver data data emitted upstream. Send data to worker.
process msg, state, role state′ Worker receives msg Process msg, update

worker’s state.
1 Arguments passed to the workflow node.
2 The deployment data for the current operation.

In Section 2, we describe how the FastJoin distribution strategy creates several
distinct worker types. Later, we discussed that such a distribution strategy can only be
expressed in Storm by defining several bolts and groupings, scattering the logic of the
strategy over several classes and polluting the application’s topology by wiring these
strategy-specific bolts and groupings to each other. Skitter supports the creation of
several different worker types within a single strategy to avoid scattering distribution
logic over several locations and explicitly differentiates between inter- and intra-
strategy communication to ensure no strategy-specific data dependencies are required
in a workflow definition.
Different worker types Skitter workers are created with a role, which is passed as an
argument to the process hook. This role can be used to execute different logic
depending on the purpose of the particular worker. In our implementation, pattern
matching can be used to define several role-specific clauses of the process hook.

Inter-strategy communication Skitter distinguishes between intra-strategy communi-
cation and inter-strategy communication. The former is handled through the use
of send, which requires a reference to a worker, which is strategy-specific, while
the latter is handled through the use of emit, which causes the runtime system
to call the appropriate deliver hooks. This distinction ensures that strategies can
remain agnostic to each other, ensuring an appropriate distribution strategy can be
selected for each node in the application.

5 Implementation

We implemented Skitter as a domain-specific language built on top of Elixir. The DSL
is open-source, well-documented and available online.3 Elixir was chosen over more
traditional platforms such as the JVM due to its excellent built-in support for meta-
programming and support for cluster-oriented distribution inherited from Erlang.

3 https://github.com/mathsaey/skitter, visited on 2025-01-21.

4:15

https://github.com/mathsaey/skitter


Skitter: A DSPF with Pluggable Distribution Strategies

Table 2 Core primitives available inside hooks.

Primitive Arguments Description

call cb, state, args Call callback cb with state and args.
initial_state Fetch the initial state of the operation.
deployment Fetch the deployment data, cannot be used

in the deploy hook.
local_worker state0, role Create a worker on the local node with initial

state state0 and the given role.
remote_worker state0, role Create a worker on a remote node with initial

state state0 and the given role.
send ref , msg Send msg to the worker with reference ref .
emit data Publish data to downstream operations.
self Get a reference to the current worker.
Remote.on remote, f Execute function f on remote, a worker node.
Remote.on_n n, f Execute function f on n worker nodes.
Remote.on_all_workers f Execute function f on all worker nodes.
Remote.self Get the name of the current cluster node.

Skitter defines macros to be used to define operations, strategies and workflows.
These macros are used to transform a programmer’s operation and strategy defini-
tions into Elixir module definitions; workflows are transformed into a data structure
representing the DAG of the stream processing application.
The implementation also provides a runtime system which enables the distributed

execution of Skitter applications on a cluster. The Skitter runtime system calls the
right hooks to deploy nodes or when data is emitted or received by workers. It also
defines workers (which are implemented on top of Elixir actors) and the primitives
shown in Table 2 (which enable developers to interact with the runtime system).
Apart from the DSL and its supporting runtime system, Skitter also provides several

predefined operations and strategies, along with syntactic sugar which enables stream
processing applications to be written in the operator style. Due to the aforementioned
meta-level interface provided by Skitter, these built-in operations and their strategies
required no changes to Skitter’s implementation. Instead, these operations and their
strategies were defined using the abstractions described in the previous section.⁴

6 Evaluation

In this section, we evaluate Skitter by implementing several distribution strategies
published in the Big Data stream processing community and by reproducing their
benchmarks in Skitter. Based on these benchmarks, we aim to answer the following
questions:

4 Developers can also extend Skitter with their own — custom — operators.

4:16



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Table 3 Operations, distribution strategies and configurations used in the evaluation.

Operation Strategy Configuration Label

WordCount D-Choices [18] 80 workers D-C
W-Choices [18] 80 workers W-C
Partial Key Grouping [17] 80 workers PKG
Key Grouping 80 workers KG
Shuffle Grouping 80 workers SG

Join Join-Matrix [8] 20 workers in a 4× 5 matrix JM
Join-Biclique [13] 20 workers JB
Join-Biclique ContRand [13] 20 workers, 5 subgroups JB-CR

Q1 Does Skitter enable the expression of distribution strategies in a modular fashion?
Q2 Does Skitter influence the performance characteristics of distribution strategies?
Q3 Do the Skitter language abstractions introduce a significant amount of overhead?
Q4 Can application performance be improved by selecting an alternative strategy?

6.1 Experimental Setup

We answer our research question based on an implementation of the benchmarks
described by Lin, Ooi, Wang, and Yu [13] and Nasir, Morales, Kourtellis, and Serafini
[18]. The former work introduces distribution strategies for join operations, while the
latter introduces distribution strategies for key-based reduce operations. We selected
these particular works for several reasons:

join and reduce operations are commonly used in stream processing applications
and can have a major impact on their performance [11].
These works compare several different distribution strategies for the same operation
with each other in a single experiment.
The benchmarks described in these works operate on data that is freely available
or that can be generated synthetically.

Before describing our experiments, we elaborate on the benchmarks and the distribu-
tion strategies compared therein.

Benchmarks The benchmarks compare the throughput of various distribution strate-
gies distributing the same operation. Table 3 provides a summary of the operations,
strategies and their configurations.
WordCount Nasir, Morales, Kourtellis, and Serafini [18] introduce distribution strate-
gies for key-based stateful operations geared towards handling highly-skewed
workloads (i.e. workloads where the majority of the incoming data records are
associated with a small set of keys). This work introduces the D-Choices (D-C)
and W-Choices (W-C) strategies for key-based reduce operations [18] and compare
them to the Partial Key Grouping (PKG) strategy, introduced by the same authors

4:17



Skitter: A DSPF with Pluggable Distribution Strategies

in earlier work [17], and to the Key Grouping (KG) and Shuffle Grouping (SG)
strategies.
The Key Grouping strategy refers to the use of hash-based grouping, similar to
the KeyedState strategy described in Section 4.3. Partial Key Grouping splits the
processing of data elements for each given key over two workers to remain resilient
to skewed workloads. W-Choices and D-Choices take this idea further by distributing
the processing of themost frequent keys over several (D-C) or all (W-C) workers. The
Shuffle Grouping strategy randomly distributes the processing of data elements over
the cluster and is used as a comparison point, as it achieves a uniform distribution
of work over the cluster, regardless of skew.
The authors investigate if their strategies attain an even distribution of work over the
cluster. This is done by evaluating these strategies in the context of an application
which counts random words drawn from a synthetically generated highly skewed
dataset. The dataset contains 104 words, distributed according to a Zipf distribution
with an exponent z ∈ {1.4,1.7, 2.0}; higher values for z indicate a higher level of
skew. The application does not perform any operations on the aggregated state.
Instead, work is simulated by adding a fixed delay (of 1ms) to the processing of
each message.
The W-Choices, D-Choices and PKG strategies all split the processing of data for a
single key over several cluster nodes. However, since the authors are only interested
in the even distribution of work over the cluster, the split partial results are never
merged again, as they would be in a real application.

Join Lin, Ooi, Wang, and Yu [13] introduces the Join-Biclique (JB) strategy and its
Join-Biclique ContRand (JB-CR) variant for the distribution of the join operation
and compares these to the Join-Matrix (JM) strategy [8].
The Join-Matrix strategy stores each element to be joined several times, which
can prove troublesome when joining large amounts of data. The Join-Biclique and
Join-Biclique ContRand strategy only store each data element once, but require
extra synchronization logic to ensure correctness. The Join-Biclique strategy and
its ContRand variant differ in how they distribute data over the available join work-
ers: the Join-Biclique strategy distributes data over workers randomly, requiring
potential matches to be processed in more places while the ContRand variation
uses a key-based approach to avoid this at the trade-off of becoming sensitive to
skewed input data.
Lin, Ooi, Wang, and Yu [13] compare these strategies by running two join queries
present in the TPC-H benchmark suite.⁵ Specifically, the join operations present in
queries five and seven were used. For query 5, this is (Region\Nation\Supplier)\
LineItems, while (Nation\Supplier)\ LineItems is used for query 7. The input for
this experiment is generated using the dbgen tool, which is part of the benchmark
suite. Before performing the experiments, the data is processed to only include the
values used by the application. Moreover, input data is fed to the application at a
fixed rate, which differs for each input stream.

5 https://www.tpc.org/tpch/, visited on 2025-01-21.

4:18

https://www.tpc.org/tpch/


Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

We implement all the distribution strategies and their benchmarks mentioned above
in both Skitter and Storm, and run the experiments described in the original work.
The implementations of these strategies and the accompanying benchmark code are
available as an artifact submitted along with this paper [20]. For both experiments, we
adjust the amount of created workers (or tasks for Storm) to fit the cluster environment
on which we evaluate our work (discussed below). For the WordCount experiment, we
create one worker for each hardware thread of the worker nodes of the cluster, leading
to a total of 80 workers. For the Join experiments, we aim to spawn an equal amount
of workers on every cluster node, while still obtaining a reasonable distribution of
work for the Join-Matrix strategy. For this reason, we spawn 20 workers for each join
operation in the Join experiments. Table 3 provides a summary of the strategies and
configurations considered in our evaluation.
In our performance experiments, we consider the average throughput of the appli-

cations. The average throughput is calculated by measuring the elapsed time between
the first and final data element and dividing this time by the total amount of processed
data elements. For the join experiments, input is provided to the application at a fixed
rate. A limitation of this setup is that the input rate may not be sufficient to saturate
the application, in which case the measured throughput rate may be lower than the
maximum throughput rate of the application. We work around this limitation by, for
every experiment, experimentally determining the highest input rate for which the
experiment consistently finishes within ten minutes (for the 10GB experiments) or
one hour (for the 80GB experiments) after receiving all inputs.
In Storm, programmers typically programmatically acknowledge emitted data

records which enables the framework to ensure each record is processed at least once.
The implementation of Skitter does not provide such a mechanism. Therefore, we do
not use this mechanism in the Storm implementation of the experiments for the sake
of a fair comparison.

Environment All of our experiments are performed on a cluster of ten worker nodes
and one master node. Each node is equipped with a 4-core Intel® E5–1620 Xeon® CPU
with 8 hardware threads running at 3.50GHz. Every machine has 32GB of 2133MHz
DDR4 RAM, and is configured with 32GB of swap space. The nodes are connected
with a 10 Gigabit Ethernet connection and run Ubuntu 22.04.4. We compiled and
ran our evaluation with Elixir 1.17.2 on Erlang/OTP 27.0.1 and with Storm 2.6.3 on
OpenJDK 21.0.3.

6.2 Implementation in Skitter

Before discussing the results of our evaluation we briefly discuss how Skitter impacted
the implementation of the various distribution strategies. We refer readers interested
in the full details of the implementation to our evaluation artifact [20] and the original
work describing the strategies [8, 13, 17, 18].

Stateful deliver logic The PKG, D-C and W-C distribution strategies all require stateful
logic to decide which downstream worker will process a data record. In Storm,

4:19



Skitter: A DSPF with Pluggable Distribution Strategies

groupings (discussed in Section 3) can read and modify a state which is stored inside
the task of the upstream operation. This is not the case in Skitter, where all state
is managed by workers and where the deliver hook is stateless. Instead, the Skitter
implementation of these strategies uses two different worker types: forwarders and
buckets. The deliver hook sends a data record to be processed to a forwarder worker
on the local node, after which its process hook can access the forwarder’s state to
execute the stateful logic required to select a bucket worker, which can process the
data record.

Complex worker interaction The Join-Biclique strategy and its ContRand variant
require complicated worker interaction to ensure the various workers responsible for
joining data records do not emit duplicate values. Concretely, a set of sender workers
needs to maintain a logical clock which needs to be synchronized and sent to all
join workers at a regular interval. Again, we tackle this issue by introducing different
worker types. Our implementation of the Join-Biclique strategy uses two worker
types: senders and joiners. The first is responsible for sending data to joiners and for
maintaining a logical clock which is sent to the joiners and other senders at regular
intervals. The second is responsible for joining the received data records, when this is
permitted by Join-Biclique’s synchronization logic.

6.3 Results

6.3.1 Modularity of Distribution Strategies in Skitter
To examine the modularity of distribution strategies in Skitter, we measure which
types of code a programmer must adjust to change the distribution strategy of an
existing application and compare it to the types of code that need to be changed in the
current state of the art, i.e. to Storm. This is done by implementing the experiments
using a basic distribution strategy (KG for the wordcount experiment, JM for the join
experiment), after which we modify the code to use a different distribution strategy
and count the lines of code that were added or modified between both versions. Since
we only changed the distribution strategy, the locations that were changed indicate
which locations in the application a programmer must adjust to change distribution
strategies. We categorize the changed lines according to the abstractions offered by
the DSPF (Topology, Component and Grouping in Storm; Workflow, Operation and
Strategy in Skitter), and the “Other” category, used to capture code expressed in
the base language. The results of this experiment are shown in Table 4, where each
row represents a strategy and every column represents the lines of code changed for
each category in both Storm and Skitter compared to the implementation of the basic
strategy. The results shown in this table are discussed per benchmark below.

WordCount The first two lines of Table 4 show that very little changes are needed to
use the PKG or SG strategies in Storm. This is the case because Storm offers a built-in
grouping for both of these strategies. Thus, this strategy can be used in Storm by
making minor changes to the topology. Skitter does not include an implementation of
these strategies by default, so changes are needed in two places: the strategy needs to

4:20



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Table 4 Lines of code added or modified to change distribution strategies compared to
the KG (WordCount) and Join-Matrix (Join) implementation.

Strategy Storm Skitter

To
po
lo
gy

Co
m
po
ne
nt

G
ro
up
in
g

O
th
er

To
ta
l

W
or
kfl
ow

O
pe
ra
tio
n

St
ra
te
gy

O
th
er

To
ta
l

W
or
dC
ou
nt

SG 1 0 0 0 1 1 0 8 0 9
PKG 1 0 0 0 1 1 0 46 0 47
W-C 1 0 29 91 121 1 0 71 25 97
D-C 1 0 59 91 151 1 0 107 25 133
PKG† 4 38 0 0 42 1 4 65 0 70
W-C† 4 38 29 91 162 1 4 90 25 120
D-C† 4 38 59 91 192 1 4 126 25 156

Jo
in Q
5 JB 29 162 46 0 237 3 0 119 0 122

JB-CR 29 162 61 0 252 3 0 134 0 137

Q
7 JB 22 162 46 0 230 2 0 119 0 121

JB-CR 22 162 61 0 245 2 0 134 0 136

† With key merge logic.

be defined, and the workflow needs to be adjusted to use the new strategy (through
the use of with:, described in Section 4.1).
The W-C and D-C strategies are not provided by Storm but can be defined as a

grouping; the Skitter implementation of these strategies are expressed as a strategy
used by the workflow, similar to how this was done for the PKG strategy. Table 4
shows that code in the “Other” category was added to implement these strategies in
both Storm and Skitter. This code contains an implementation of the “Space-saving”
algorithm [4, 15], used by the W-C and D-C strategies.
The WordCount benchmark is only concerned with how the various strategies

balance work over the cluster. Therefore, it does not merge the partial results for each
key generated by the PKG, D-C and W-C strategies. This merge logic would be present
in a realistic application, however. The PKG, W-C and D-C rows marked with † compare
an implementation of these strategies with this merge logic included compared to the
base KG implementation (which does not split keys and therefore does not need this
logic). In Storm, this results in the creation of an additional Component (a MergeBolt)
and extra changes to the topology, as the merge bolt and the connections to this bolt
need to be encoded in the topology definition. In Skitter, these changes are captured in
the strategy definition, so no additional changes to the workflow are needed. Merging
partial states associated with a key is application-specific behavior, however, which is
therefore encoded as a callback inside of the word count operation. The changes to
the operation are reflected in the PKG†, W-C† and D-C† rows of Table 4. Storing this
logic inside the operation allows the reuse of the W-C, D-C and PKG strategies which

4:21



Skitter: A DSPF with Pluggable Distribution Strategies

stands in contrast to the merge bolt in Storm, which contains both distribution logic
and application-specific behavior. The updated word count operation in the Skitter
implementation is also still usable by the KG strategy, which can simply not call the
added callback.

Join The Join benchmark consists of two queries: query 5 and query 7 from the
TCP-H benchmark. Table 4 shows the changes required to implement the Join-Biclique
strategy and its ContRand variant for each query. Implementing these strategies proves
to be troublesome in Storm, where they require the creation of a grouping, several
bolts, and spouts, all of which need to be wired together (and to other components) in
the application’s topology. In the Skitter implementation, on the other hand, changes
are contained to the strategy and workflow languages, as the strategy language is
sufficiently expressive to capture the definition of both strategies without the need
to change the workflow. Therefore, the only change made to the workflow is the
distribution strategy passed to with:⁶

Conclusion The grouping abstraction provided by Storm suffices to express simple
distribution strategies which determine how data is divided over several tasks. However,
they are insufficient when expressing more complex distribution strategies. Thus,
implementing complex distribution strategies in Storm requires changing the topology,
components, and groupings of the application. In contrast, Skitter manages to capture
all the distribution logic inside its strategy abstraction.

6.3.2 Performance of Distribution Strategies in Skitter
To evaluate if distribution strategies maintain their performance when implemented
in Skitter, we run the benchmarks in both Skitter and Storm and compare the results
with each other. In this experiment, we mainly verify that Skitter does not change the
performance properties of a distribution strategy. Therefore, our discussion focuses
mainly on the relative performance of the various distribution strategies compared to
one another.

WordCount Figure 3 compares the average throughput of the various strategies in
Skitter with those obtained by Storm. Both implementations have similar behavior:
the D-C, W-C and SG strategies remain largely unaffected by Skew, while the KG and
PKG strategies become slower as the skew level (z) increases. The rate at which these
strategies slow down seems to be similar in both implementations.

Join Figure 4 compares the average throughput of the join strategies when used to
execute both queries discussed in Section 6.1 on 10GB of data. The behavior of the
strategies is similar in both Storm and Skitter: the Join-Matrix strategy outperforms
both variants of Join-Biclique strategy, while the Join-Biclique strategy is significantly
outperformed by both the Join-Matrix and Join-Biclique ContRand strategy.

6 3 and 2 lines are modified, as query 5 uses three joins, while query 7 uses two.

4:22



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

KG PKG D-C W-C SG
strategy

10
2

10
3

10
4

10
5

el
em

en
ts

/s
 (l

og
 s

ca
le

)

Skitter

KG PKG D-C W-C SG
strategy

Storm

skew
z = 1.4
z = 1.7
z = 2.0

Figure 3 Comparison of the word count strategies written in Skitter and Storm.

Query 5 Query 7
0

200000

400000

600000

el
em

en
ts

/s

Skitter

Query 5 Query 7

Storm

strategy
JM
JB
JB-CR

Figure 4 Comparison of the join strategies for query 5 and query 7 written in Skitter with
those written in Storm.

Figure 4 shows that Skitter’s Join-Biclique ContRand strategy significantly outper-
forms its Storm counterpart while the inverse is true for the Join-Biclique strategy.
Unfortunately, further investigation does not reveal an immediate cause for this dis-
crepancy; we hypothesize it is related to implementation differences between both
DSPFs and by the drastically different virtual machines underpinning them.

Conclusion While there are discrepancies between Storm and Skitter, distribution
strategies implemented in Skitter showcase the same relative performance as those ex-
pressed in Storm. Moreover, applications expressed in Skitter exhibit average through-
put rates in the same order of magnitude as those written in Storm. Thus, Skitter
enables the modular implementation of distribution strategies without affecting their
performance characteristics.

4:23



Skitter: A DSPF with Pluggable Distribution Strategies

KG PKG D-C W-C SG
strategy

0

10000

20000

30000

40000

el
em
en
ts
/s

Skitter

KG PKG D-C W-C SG
strategy

Ad-hoc

KG PKG D-C W-C SG
strategy

−4

−2

0

2

4

th
ro

ug
hp

ut
 d

iff
er

en
ce

 (%
)

Relative difference

skew
z = 1.4
z = 1.7
z = 2.0

Figure 5 Average throughput of the word count strategies implemented in Skitter and in
Elixir. The right chart shows the difference between both benchmarks.

Query 5 Query 7
0

200000

400000

600000

el
em

en
ts

/s

Skitter

Query 5 Query 7

Ad-hoc

Query 5 Query 7
0

5

10

15

20

25

30

th
ro

ug
hp

ut
 d

iff
er

en
ce

 (%
)

strategy
JM
JB
JB-CR

Figure 6 Average throughput of the join benchmarks implemented in Skitter and in Elixir.
The right chart shows the difference between both benchmarks.

6.3.3 Overhead Introduced by Skitter
After having found distribution strategies implemented in Skitter exhibit the expected
performance characteristics, we measure the computational overhead of Skitter’s
abstractions. We do this by implementing an ad-hoc version of the experiments
described in Section 6.1 in “plain” Elixir, and comparing the performance of this
ad-hoc implementation with the Skitter implementation.

WordCount Figure 5 compares the average throughput of the Skitter implementation
of the word count application with an ad-hoc implementation and shows the differ-
ence between both. Both applications exhibit similar average throughput and Skitter
outperforms the ad-hoc implementation in some cases, hinting that the abstractions
introduced by Skitter do not affect the performance of this benchmark.

Join Figure 6 compares the average throughput of the Skitter join application with the
ad-hoc implementation. The chart shows that the ad-hoc implementation outperforms
Skitter in every case, up to a worst-case difference of 30%. These differences are
related to the meta-information the Skitter runtime system attaches to each data

4:24



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

KG PKG D-C W-C
0

25000

50000

75000

100000

125000

el
em
en
ts
/s

Query 5 Query 7
0

100000

200000

300000

400000

el
em

en
ts

/s strategy
JM
JB
JB-CR

Figure 7 Average throughput of the WordCount benchmark with key merging and no skew
(z = 0, left), and of the Join benchmark handling 80GB of data (right).

element⁷; this disproportionately affects the Join-Biclique and Join-Biclique ContRand
strategies, which move each data element into several data structures before storing
them in a join table.

Conclusion In the best case, Skitter applications can exhibit performance characteris-
tics which match or even exceed those of handwritten implementations. However, in
certain cases, the additional information tracked by the Skitter runtime system may
have an effect on the performance of the application.

6.3.4 Effect of Distribution Strategies on Performance
In both of the benchmark applications, a single distribution strategy outperformed all
others. In order to show that the performance of an operation can be improved by
modifying its distribution strategy, we present a modified version of each application
where a different distribution strategy attains the highest throughput.

WordCount The left part of Figure 7 shows the average throughput of the WordCount
benchmark if the words follow a uniform distribution and if the states of split keys are
merged (as described in Section 6.3.1). In this benchmark, the KG strategy outperforms
the PKG strategy while also outperforming the D-C and W-C strategies by a significant
margin.

Join We change the scale of the join benchmark to process 80GB of data and show the
results of this experiment on the right side of Figure 7. In this scenario, the join-matrix
strategy’s higher memory use causes it to run out of memory on some nodes and use
swap space, causing its throughput to drop. The Join-Biclique ContRand strategy is
less affected by the increase of received data and outperforms both other strategies in
this situation.

7 This information is used to track from which input a data record was received, which enables
the implementation of primitives like port_of shown on Listing 5, line 8.

4:25



Skitter: A DSPF with Pluggable Distribution Strategies

Conclusion These experiments show that the most performant distribution strategy
for an operation is dependent on the properties of the application, and that chang-
ing the distribution strategy can improve the performance of a stream processing
application.

7 Related Work

Meta-programming is a well-known technique to modularise the distribution of pro-
grams [16, 25]; moreover, several programming models exist which aim to disentangle
performance-critical code from domain-specific code [22]. However, to the best of our
knowledge, no work exists which applies these concepts to enable the implementation
of distribution strategies in DSPFs. In this section, we discuss how existing DSPFs
support distribution strategies and how they compare to Skitter in this regard.

Apache Storm [23] Storm is powerful enough for the expression of distribution strate-
gies, but does not provide any explicit abstractions for doing so, which leads to the
issues discussed in Section 3. Like Storm, Skitter is sufficiently powerful for the ex-
pression of distribution strategies. Unlike Storm, Skitter provides abstractions for the
modular expression of these strategies, disentangling them from application-level
concerns and making it easier to implement or select the appropriate distribution
strategy for a given operation, as we discuss in Section 6.

High-level DSPFs Modern DSPFs, such as Spark [3, 27] and Flink [7] disentangle
application-level concerns from distribution logic, but do this by creating a fixed
set of operations and by hiding the distribution logic of these operations inside
the implementation of the framework. The programming model offered by Skitter
enables the creation of arbitrary operations and distribution strategies and enables
the developer to select the most performant distribution strategy to use for each
operation in the application.

Skitter offers a programming model that is a hybrid of the one offered by high-level
DSPFs (i.e. it allows workflows to be defined using the operator style, as discussed in
Section 4.1), and the one by Storm: Skitter developers can define their own distribution
strategies and operations and use them when appropriate.
Previous versions of Skitter We discussed an earlier version of Skitter in previous
work [21]. This version of Skitter included an early notion of workflows and op-
erations (then called components), but did not include any notion of distribution
strategies. Instead, a component definition specified several properties which were
used by the framework to select one of several predefined distribution strategies,
similar to existing high-level DSPFs.

8 Limitations and Future Work

Skitter lacks several technical features common to DSPFs used in the industry such as
a backpressure mechanism, monitoring infrastructure or a large standard library of

4:26



Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

built-in operators. Moreover, there is no static enforcement that guarantees that an
operation in Skitter implements the callbacks required by a strategy it is coupled with
in a workflow. When this is not the case, the application will crash at run-time. We
conjecture that there are no scientific reasons why these features cannot be added to
Skitter with the required engineering effort, however.
A more interesting limitation of the current incantation of Skitter is its lack of a fault-

tolerance mechanism. This is not a fundamental limitation, however. For instance, we
have successfully extended Skitter with Storm’s data record acknowledgement mecha-
nism without requiring significant changes to Skitter’s programming model.⁸ However,
several different mechanisms for fault-tolerance exists, each with their own strengths
and drawbacks [6, 10, 27]. Rather than porting a single fault-tolerance mechanism to
Skitter, we believe it would be an interesting research avenue to investigate whether
our notion of distribution strategies can be extended to support the expression of
failure handling strategies.
Skitter leaves it up to the programmer to decide on which cluster node a worker is

created. If the programmer does not specify a node, a random node is selected by
the runtime system instead. However, using information such as the current resource
usage or hardware characteristics of nodes for scheduling workers can improve the
performance of a DSPF [19, 26]. In future work, we would like to investigate if such
scheduling techniques can be applied in the context of Skitter.

9 Conclusion

In this work, we discuss how the performance of DSPFs is impacted by distribution
strategies. Popular DSPFs offer a high-level programming model which does not offer
developers the ability to modify the strategies used to distribute the operations in
their applications. Alternatively, a model such as Storm allows for the implementation
of distribution strategies, but at the cost of tremendous accidental complexity.
To tackle this issue, we present Skitter, a novel programming model which decouples

distribution and data processing logic in stream processing applications, allowing
developers to choose the most appropriate distribution strategies for their applications.
Skitter introduces three main abstractions: operations, workflows and strategies. Oper-
ations represent reusable data processing steps; they are composed into a workflow to
build a stream processing application. At run-time, operations are distributed over the
cluster by distribution strategies, which can be implemented by meta programmers.
We implemented Skitter as a domain-specific language in Elixir and used this

implementation to show that our programming model enables the modular implemen-
tation of distribution strategies from the state of the art. The results of our evaluation
demonstrate that strategies implemented in Skitter exhibit the expected performance

8 The most significant change is that strategies need to anchor data elements before emitting
them, and that sources need to specify how a failed tuple can be handled, similar to how
this is done in Storm.

4:27



Skitter: A DSPF with Pluggable Distribution Strategies

characteristics and that the performance of an operation can be improved by modifying
its distribution strategy.

References

[1] Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
Series in Artificial Intelligence. MIT Press, 1990. isbn: 978-0-262-01092-4.

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. “The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing”. In: Proceedings of the VLDB Endowment 8.12
(2015), pages 1792–1803. doi: 10.14778/2824032.2824076.

[3] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. “Structured Streaming:
A Declarative API for Real-Time Applications in Apache Spark”. In: Proceedings
of the 2018 International Conference on Management of Data, SIGMOD ’18,
Houston, TX, USA, June 10-15. Edited by Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein. New York, NY, USA: ACM, 2018, pages 601–613. doi:
10.1145/3183713.3190664.

[4] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. “Space-
Optimal Heavy Hitters with Strong Error Bounds”. In: ACM Transactions on
Database Systems 35.4 (2010), 26:1–26:28. doi: 10.1145/1862919.1862923.

[5] Gilad Bracha and David M. Ungar. “Mirrors: Design Principles for Meta-level Fa-
cilities of Object-Oriented Programming Languages”. In: ACM SIGPLAN Notices
39.10 (2004), pages 331–344. doi: 10.1145/1035292.1029004.

[6] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. “State Management in Apache Flink®: Consistent Stateful
Distributed Stream Processing”. In: Proceedings of the VLDB Endowment 10.12
(2017), pages 1718–1729. doi: 10.14778/3137765.3137777.

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. “Apache Flink™: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Engineering Bulletin 38.4 (2015), pages 28–38.

[8] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph
Koch. “Scalable and Adaptive Online Joins”. In: Proceedings of the VLDB Endow-
ment 7.6 (2014), pages 441–452. doi: 10.14778/2732279.2732281.

[9] Zhongming Fu, Zhuo Tang, Li Yang, Kenli Li, and Keqin Li. “ImRP: A Predictive
Partition Method for Data Skew Alleviation in Spark Streaming Environment”.
In: Parallel Computing 100 (2020), page 102699. doi: 10.1016/j.parco.2020.
102699.

4:28

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1145/1035292.1029004
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/2732279.2732281
https://doi.org/10.1016/j.parco.2020.102699
https://doi.org/10.1016/j.parco.2020.102699


Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

[10] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel,
Michael Stonebraker, and Stanley B. Zdonik. “High-Availability Algorithms
for Distributed Stream Processing”. In: Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, Tokyo, Japan, 5-8 April. Edited by
Karl Aberer, Michael J. Franklin, and Shojiro Nishio. Los Alamitos, CA, USA:
IEEE Computer Society, 2005, pages 779–790. doi: 10.1109/ICDE.2005.72.

[11] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. “Benchmarking Distributed Stream Data Pro-
cessing Systems”. In: 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19. Los Alamitos, CA, USA: IEEE Computer
Society, 2018, pages 1507–1518. doi: 10.1109/ICDE.2018.00169.

[12] Wenxin Li, Duowen Liu, Kai Chen, Keqiu Li, and Heng Qi. “Hone: Mitigating
Stragglers in Distributed Stream Processing With Tuple Scheduling”. In: IEEE
Transactions on Parallel Distributed Systems 32.8 (2021), pages 2021–2034. doi:
10.1109/TPDS.2021.3051059.

[13] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. “Scalable Distributed
Stream Join Processing”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4. Edited by Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. New
York, NY, USA: ACM, 2015, pages 811–825. doi: 10.1145/2723372.2746485.

[14] Xunyun Liu and Rajkumar Buyya. “Resource Management and Scheduling
in Distributed Stream Processing Systems: A Taxonomy, Review, and Future
Directions”. In: ACM Computing Surveys 53.3 (2021), 50:1–50:41. doi: 10.1145/
3355399.

[15] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Efficient Computa-
tion of Frequent and Top-k Elements in Data Streams”. In: Proceedings of the
10th International Conference on Database Theory, ICDT 2005, Edinburgh, UK,
January 5-7. Edited by Thomas Eiter and Leonid Libkin. Volume 3363. Lecture
Notes in Computer Science. Springer, 2005, pages 398–412. doi: 10.1007/978-
3-540-30570-5_27.

[16] Heather Miller, Philipp Haller, and Martin Odersky. “Spores: A Type-Based
Foundation for Closures in the Age of Concurrency and Distribution”. In: Proceed-
ings of the 28th European Conference on Object-Oriented Programming, ECOOP
2014, July 28 - August 1, Uppsala, Sweden. Edited by Richard E. Jones. Vol-
ume 8586. Lecture Notes in Computer Science. Springer, 2014, pages 308–333.
doi: 10.1007/978-3-662-44202-9_13.

[17] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David García-
Soriano, Nicolas Kourtellis, and Marco Serafini. “The Power of Both Choices:
Practical Load Balancing for Distributed Stream Processing Engines”. In: 31st
IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17. Edited by Johannes Gehrke, Wolfgang Lehner, Kyuseok
Shim, Sang Kyun Cha, and Guy M. Lohman. Los Alamitos, CA, USA: IEEE
Computer Society, 2015, pages 137–148. doi: 10.1109/ICDE.2015.7113279.

4:29

https://doi.org/10.1109/ICDE.2005.72
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1109/TPDS.2021.3051059
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1145/3355399
https://doi.org/10.1145/3355399
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1109/ICDE.2015.7113279


Skitter: A DSPF with Pluggable Distribution Strategies

[18] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtel-
lis, and Marco Serafini. “When two choices are not enough: Balancing at scale in
Distributed Stream Processing”. In: 32nd IEEE International Conference on Data
Engineering, ICDE 2016, Helsinki, Finland, May 16-20. Los Alamitos, CA, USA:
IEEE Computer Society, 2016, pages 589–600. doi: 10.1109/ICDE.2016.7498273.

[19] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy H.
Campbell. “R-Storm: Resource-Aware Scheduling in Storm”. In: Proceedings of
the 16th Annual Middleware Conference, Vancouver, BC, Canada, December 07 -
11. Edited by Rodger Lea, Sathish Gopalakrishnan, Eli Tilevich, Amy L. Murphy,
and Michael Blackstock. New York, NY, USA: ACM, 2015, pages 149–161. doi:
10.1145/2814576.2814808.

[20] Mathijs Saey. Accepted Artifact for “Skitter: A Distributed Stream Processing
Framework with Pluggable Distribution Strategies”. Version 1.0. Jan. 2025. doi:
10.5281/zenodo.14714125.

[21] Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter. “Skitter: A DSL for
Distributed Reactive Workflows”. In: Proceedings of the 5th ACM SIGPLAN In-
ternational Workshop on Reactive and Event-Based Languages and Systems, RE-
BLS@SPLASH 2018, Boston, MA, USA, November 4. Edited by Guido Salvaneschi,
Wolfgang De Meuter, Patrick Eugster, Lukasz Ziarek, and Francisco Sant’Anna.
ACM, 2018, pages 41–50. doi: 10.1145/3281278.3281281.

[22] Won Wook Song, Youngseok Yang, Jeongyoon Eo, Jangho Seo, Joo Yeon Kim,
Sanha Lee, Gyewon Lee, Taegeon Um, Haeyoon Cho, and Byung-Gon Chun.
“Apache Nemo: A Framework for Optimizing Distributed Data Processing”. In:
ACM Transactions on Computer Systems 38.3-4 (2020), 5:1–5:31. doi: 10.1145/
3468144.

[23] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, Jignesh
M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy V. Ryaboy. “Storm@twitter”.
In: International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27. Edited by Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu.
New York, NY, USA: ACM, 2014, pages 147–156. doi: 10.1145/2588555.2595641.

[24] Geoffrey Phi C. Tran, John Paul Walters, and Stephen P. Crago. “Reducing Tail
Latencies While Improving Resiliency to Timing Errors for Stream Processing
Workloads”. In: 2018 IEEE International Conference on Services Computing, SCC
2018, San Francisco, CA, USA, July 2-7. Los Alamitos, CA, USA: IEEE, 2018,
pages 278–281. doi: 10.1109/SCC.2018.00048.

[25] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. “Distributed System
Development with ScalaLoci”. In: Proceedings of the ACM on Programming
Languages 2.OOPSLA (2018), 129:1–129:30. doi: 10.1145/3276499.

[26] Luna Xu, Ali Raza Butt, Seung-Hwan Lim, and Ramakrishnan Kannan. “A
Heterogeneity-Aware Task Scheduler for Spark”. In: IEEE International Con-
ference on Cluster Computing, CLUSTER 2018, Belfast, UK, September 10-13.

4:30

https://doi.org/10.1109/ICDE.2016.7498273
https://doi.org/10.1145/2814576.2814808
https://doi.org/10.5281/zenodo.14714125
https://doi.org/10.1145/3281278.3281281
https://doi.org/10.1145/3468144
https://doi.org/10.1145/3468144
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/SCC.2018.00048
https://doi.org/10.1145/3276499


Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Los Alamitos, CA, USA: IEEE Computer Society, 2018, pages 245–256. doi:
10.1109/CLUSTER.2018.00042.

[27] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. “Discretized Streams: Fault-Tolerant Streaming Computation
at Scale”. In: ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6. Edited by Michael Kaminsky and
Mike Dahlin. New York, NY, USA: ACM, 2013, pages 423–438. doi: 10.1145/
2517349.2522737.

[28] Fan Zhang, Hanhua Chen, and Hai Jin. “Simois: A Scalable Distributed Stream
Join Systemsm with Skewed Workloads”. In: 39th IEEE International Conference
on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7-10. Los
Alamitos, CA, USA: IEEE, 2019, pages 176–185. doi: 10.1109/ICDCS.2019.00026.

[29] Shunjie Zhou, Fan Zhang, Hanhua Chen, Hai Jin, and Bing Bing Zhou. “FastJoin:
A Skewness-Aware Distributed Stream Join System”. In: 2019 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2019, Rio de Janeiro,
Brazil, May 20-24. Los Alamitos, CA, USA: IEEE, 2019, pages 1042–1052. doi:
10.1109/IPDPS.2019.00111.

4:31

https://doi.org/10.1109/CLUSTER.2018.00042
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1109/ICDCS.2019.00026
https://doi.org/10.1109/IPDPS.2019.00111


Skitter: A DSPF with Pluggable Distribution Strategies

About the authors

Mathijs Saey is a Ph.D candidate at the Software Languages Lab
of the Vrije Universiteit Brussel. His research is centered around
distributed programming and stream processing applications. Con-
tact him at Mathijs.Saey@vub.be.

https://orcid.org/0000-0002-9481-4181

Joeri De Koster is an assistant professor in programming lan-
guages and runtimes. His current research is mainly focused on
the design, formalisation and implementation of parallel and dis-
tributed programming languages. Contact him at Joeri.De.Koster@
vub.be

https://orcid.org/0000-0002-2932-8208

Wolfgang De Meuter is a professor in programming languages
and programming tools. His current research is mainly situated in
the field of distributed programming, concurrent programming, re-
active programming and Big Data processing. His research method-
ology varies from more theoretical approaches (e.g. type systems)
to building practical frameworks and tools (e.g. crowd-sourcing
systems). Contact him at Wolfgang.De.Meuter@vub.be.

https://orcid.org/0000-0002-5229-5627

4:32

mailto:Mathijs.Saey@vub.be
https://orcid.org/0000-0002-9481-4181
mailto:Joeri.De.Koster@vub.be
mailto:Joeri.De.Koster@vub.be
https://orcid.org/0000-0002-2932-8208
mailto:Wolfgang.De.Meuter@vub.be
https://orcid.org/0000-0002-5229-5627

	1 Introduction
	2 Background
	3 Distributed Stream Processing Frameworks
	4 The Skitter Programming Model
	4.1 Workflows
	4.2 Operations
	4.3 Distribution Strategies

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Implementation in Skitter
	6.3 Results
	6.3.1 Modularity of Distribution Strategies in Skitter
	6.3.2 Performance of Distribution Strategies in Skitter
	6.3.3 Overhead Introduced by Skitter
	6.3.4 Effect of Distribution Strategies on Performance


	7 Related Work
	8 Limitations and Future Work
	9 Conclusion
	References
	About the authors

