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Reactive Big Data Applications

e Respond to real-time data streams

e Volume of incoming data requires execution on a cluster



Running Example: Calculating Ad Conversion Rates
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Distributed Stream Processing Frameworks (DSPFs)
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A distributed streaming platform




DSPFs: Programming Model

0 sales join )—>( rate )—){publ'ish]———)

sus 9%
o il |II|I|

Build application by combining into a DAG.



Distribution Over a Cluster
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DSPFs: Distribution Over a Cluster
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Distribution Strategies
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e Spawning workers.

e Communication between workers.

Role performed by each worker.

Partitioning of state between workers.



Distribution Strategies
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e Communication between workers. Distribution strategies are key to

Role performed by each worker. the performance of a distributed

Partitioning of state between workers. stream processing application.



Distribution Strategies
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e Communication between workers. Distribution strategies are key to
e Role performed by each worker. the performance of a distributed

e Partitioning of state between workers. stream processing application.

Goal
We need a DSPF which makes it easy to select the appropriate distribution strategy.



1 — High-level DSPFs: Programming with Operators
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2 — Low-level DSPFs: Wiring DAGs in Storm
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= TopologyBuilder();

.setSpout("sales", SalesSpout(), 2)
.setSpout("clicks", ClicksSpout(), 2)

Lt publish |

.setBolt("join-sender", JoinSendBolt(), 2)

-localGrouping("clicks") e Flexible, low-level model.
.localGrouping("sales")

b.setBolt("join-joiner", JoinBolt(), 8) e Difficult to express strategies.
.customGrouping("join-sender", JoinBGrouping())

b.setBolt("rate", RateBolt(), 2) o Scattered distribution logic.

.fieldsGrouping("clicks", "ad-id") o Tangled distribution and
.fieldsGrouping("join-joiner", "ad-id") T .
b.setBolt("publish", PublishBolt(), 2) application logic.
.localGrouping("rate") o No support for different

worker types.



2 — Low-level DSPFs: Wiring DAGs in Storm
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e Flexible, low-level model.

Difficult to express strategies.

o Scattered distribution logic.

o Tangled distribution and
application logic.

o No support for different
worker types.
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o No support for different
worker types.



Problem Statement

DSPFs: Over a Cluster
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@D skitter.



Novel DSPF with Pluggable Distribution Strategies
e Programming model

Dual Separate abstractions for and distribution logic.
Open Strategies and can be implemented as needed.

e Implementation in Elixir
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Programming Model(s) e skitter.

workflow do defoperation , . do defstrategy KeyedState do
- defcb key(data) do defhook deploy(args) do
end e e
end end
defcb react(data) do defhook deliver(data) do
end end
end

defhook process(data, state, role) do

end

end
TN
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) S
>
N
—> rate !
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Building Application DAGs with Workflows @D skitter.

workflow do

node ( , as: clicks)
clicks.out ~> join.right
clicks.out ~> rate.clicks clicks ¢
nOde( , as: soles) [Sales join H rate }—)[publ'ish]
~> node ( , with: FastJoin, as: join)
~> node( , with: KeyedState, as: rate)
~> node ( )
end
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Example: Distributing Rate with the KeyedState Strategy @D skitter.
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Example: Distributing Rate with the KeyedState Strategy @D skitter.
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Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

15



Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

Application start deploy (args)
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Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.
Event KeyedState

Upstream emits deliver(datey

data

key (data)
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Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

Worker receives process(msg, state, role) ~ eooooees

msg
react(data)

key (data)
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Strategies and Operations @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.
o Hooks are fixed and defined by Skitter.

e Strategy calls (base level) to handle data processing logic.
o Callbacks to be implemented are defined by the strategy.

defstrategy KeyedState do
defhook deploy(args)

defhook deliver(data) do

. ration , « do
call(:key, args: [data]) defcbykey(data) do
end
defhook process(data, state, role) do defcb, react(data) do
call(:key, args: [data]) end
call(:react, state: state, args: [data]) end
end
end
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Evaluation



Research Questions

Qualitative

Quantitative

Modularity

Performance

Overhead

Impact

Does Skitter enable the expression of distribution
strategies in a modular fashion?

Does Skitter influence the performance characteristics
of distribution strategies?

Do the Skitter language abstractions introduce a sig-
nificant amount of overhead?

Can application performance be improved by selecting
an alternative strategy?

17



Experimental Setup
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Experimental Setup

e 3 implementations: Storm),

Benchmark  Strategy Label Siiia, 2 bee (E0)
WordCount D-Choi.ces D-C e Used to compare modularity
W-Choices W-C and performance (average
Partial Key Grouping PKG throughput)
Key Grouping KG
Shuffle Grouping SG
Join Join-Matrix JM
Join-Biclique JB

Join-Biclique ContRand JB-CR
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Q1: Modularity

Question

How modular are distribution strategies in Skitter compared to the state of the art

(Storm)?

Benchmark  Strategy Label

WordCount D-Choices D-C
W-Choices W-C
Partial Key Grouping PKG
Key Grouping KG
Shuffle Grouping SG

Join
Join-Biclique JB
Join-Biclique ContRand JB-CR

e Measure LOC added or
modified to change
distribution strategy.

e Categorize LOC based on
abstractions offered by
framework.
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Q1: Modularity (Join)

Question
How modular are distribution strategies in Skitter compared to the state of the art
(Storm)?
Strategy Storm Skitter
~
Q
S Z % S S
S g S &
& £ S S ¢ &
N S < < > >3
o JB 29 162 46 3 0 119
C JB-CR 29 162 61 3 0 134
~ JB 22 162 46 2 0 119
C  JB-CR 22 162 61 2 0 134
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Q1: Modularity (Join)

Question
How modular are distribution strategies in Skitter compared to the state of the art
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Q2: Performance

Question

Do strategies implemented in Skitter maintain their performance characteristics?

e Compare the relative performance of Storm and Skitter implementations of the
same experiments.

22



Q2: Performance (Join)

Question

Do strategies implemented in Skitter maintain their performance characteristics?

Query 5 Query 7
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Conclusion

Problem Statement Programming Model(s)

workflow do defoperation foic, _do defstratesy @
i detb key(dota) do defhaok deploy (args) do
ond
end end
o High-level model to express defb react(dato) do defhook deliver (dota) do
applications. i o
o Flexible model to express = defhook process(doto, state, role) do
istribution strategies.
end
o In a modular fashion ena

Q1: Modularity (Join) Q2: Performance (Join)
Question

How modular are distribution strategies in Skitter compared to the state of the art Question;
(Storm)?

Do strategies implemented in Skitter maintain their performance characteristics?

Strategy Skitter Query &
s S N o000
s 2 »
w 3 01 X .
@ JBCR 3 0 134
. 2 01 ° siter Som
S JBCR 2 0 13

https://soft.vub.ac.be/~mathsaey/skitter/

24


https://soft.vub.ac.be/~mathsaey/skitter/

Skitter: A Distributed Stream Processing Framework with
Pluggable Distribution Strategies

Mathijs Saey, Joeri De Koster, Wolfgang De Meuter
mathijs.saey@vub.be

ss VRIJE
shg Software- UNIVERSITEIT
@ LanguagesLab BRUSSEL


mailto:mathijs.saey@vub.be

High-level Style Workflow Definitions @D skitter.

workflow do

O
~> (&String.split/1, with: RepartitionedOutput)
~> (fn word -> word end, fn count -> count + 1 end, 0)
~> 0O

end

workflow do

node ( )
~> node( , args: [&String.split/1], with: RepartitionedOutput)
~> node( , args: [fn word -> word end, fn count -> count + 1 end, 0])
~> node( )
end
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Full Rate Definition

@0 skitter.

defoperation Rate, 1in:

[sales, clicks], out: conversion_rate, strategy: KeyedState do
initial_state {0, 0}

defcb key(data), do: data.ad_id

defcb react(data) do
{clicks, sales} = state()
{new_clicks, new_sales} = case port_of(data) do
:sales -> {clicks, sales + 1}
:clicks -> {clicks + 1, sales}
end
state <~ {new_clicks, new_sales}

{data.ad_id, new_sales / new_clicks} ~> conversion_rate
end

end
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Full KeyedState Definition @ skitter.

defstrategy KeyedState do
defhook deploy(args) do
Remote.on_all_workers(fn -> local_worker (Map.new(), :aggregator) end)
|> Enum.map(fn {remote, worker} -> worker end)
end

defhook deliver(data) do
key = call(:key, args: [data]).result
aggregators = deployment()
idx = rem(Murmur.hash_x86_32(key), length(aggregators))
worker = Enum.at(aggregators, idx)
send (worker, data)
end

defhook process(data, state_map, :aggregator) do
key = call(:key, args: [data]).result
state = Map.get(state_map, key, dinitial_state())
res = call(:react, state: state, args: [data])
emit(res.emit)
Map.put(state_map, key, res.state)
end
end
27
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Q2: Performance (WordCount)

Question

Do strategies implemented in Skitter maintain their performance characteristics?

5 Skitter Storm

10 2 a a
R @ ] ]
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210
e} ® skew
Y ] i ® z=14
g2, e & : 2=17
g1 Kk A z=20
o
[0}

10°
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strategy strategy
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Q3: Overhead (WordCount)

Question

Do the abstractions introduced by Skitter introduce additional overhead?

Relative difference

Skitter Ad-hoc
40000 ~ 4
X
Q
30000 e 2
2 o
8 ] I skew
c £, _u - -
£ 20000 S | I - =14
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]
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Q3: Overhead (Join)

Question

Do the abstractions introduced by Skitter introduce additional overhead?

strategy
- UM
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Q4:

Impact

Question

Can we improve performance by changing distribution strategy?

140000

120000
100000 400000
80000 300000 strategy
60000 .
200000 = JB
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20000 100000

0
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WordCount benchmark with key Merging  354n benchmark handling 80GB of data.
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