Skitter: A Distributed Stream Processing Framework with
Pluggable Distribution Strategies

Mathijs Saey, Joeri De Koster, Wolfgang De Meuter
mathijs.saey@vub.be

o® VRIJE
s g Software UNIVERSITEIT
@) LanguagesLab BRUSSEL

mailto:mathijs.saey@vub.be

Reactive Big Data Applications

e Respond to real-time data streams

e Volume of incoming data requires execution on a cluster

Running Example: Calculating Ad Conversion Rates

’ p/‘od
W)

|On)

(ad, conversiony,)

s245 9%

sess |
b that -

Kproduct’

Distributed Stream Processing Frameworks (DSPFs)

é}D APACHE

STORM

§€ katka.

A distributed streaming platform

DSPFs: Programming Model

0 sales join)—>(rate)—){publ'ish]———)

sus 9%
o il |II|I|

Build application by combining into a DAG.

Distribution Over a Cluster

join J—)(rate)—)[publ'ishj

sales join clicks rate publish
I—____~| ‘
_— 1 clicks
o | s RN
1 1
G: Z° I sales H=» sender :——).'jo*iner: 1 rate '——)> pub'L'lshl
| G e
T T T T —_¢_ ——‘—‘//><7$N TER| | eeeseEE
~ & I sales '—%h sender ,—). joiner 1 rate :——)» publ'lshl
gw N N e e e m e N — /;r____ ______
£ f L
C'Zo .\c'L'icks,

DSPFs: Distribution Over a Cluster

v

sales join clicks rate publish
N ¢ |\C1'ICL<S|
I Yo L R N\ G I
398 |7/ MR LT 4 Y -
G = | ! sales =2 sender —> joiner ; 1 rate ——)» publ'lshl
| o M
T T T T - ————~//><7£k/__"x ——————
~ & I sales '—ﬁh sender ,——).jomer 1 rate :——)» publ'lshl
\ 7 J e A N N S (N
R e L
l
=2 clicks |

Distribution Strategies

sales join clicks rate publish

P * (_(:'-L‘I-C-k;“

. . . Q R
The distribution strategy of an IR | i Tt DN U Pt
. L. = o ‘\SOles;— Lsender > joiner ; 1 rate “—-)ﬂ publ‘lsh)
determines how it is SR ED e T Soood [[lecocs
diStribUted over the CIUSter' PN \/;O-'L-e;\'— \'_s;nd-er“—)"j;'i-n-e:"/ 75‘(r::;e-\“——)ﬂ"p-l.n;f'i-sfq\w
% B A \-_f ________ A oo [Teoccae ’

= -8 \'cl'icksy‘

(U = N I N B (NP

e Spawning workers.

e Communication between workers.

Role performed by each worker.

Partitioning of state between workers.

Distribution Strategies

sales join clicks rate publish

1

* \’cl‘icks‘
sooog ||| ootfos, socoo "'\’4;_-..\

The distribution strategy of an ‘ L Lt o
‘\soles/’— 1 sender —> joiner ; rate “—-)ﬂ publ‘lsh)

determines how it is ; ------- \>< A "\

Cluster
Node 1

diStribUted over the CIUSter- N \/soles\'— \'sender “—)"j;'i-n-e:"/ 75‘(r::;e-\“——)ﬂ"p-l.n;f'i-sfq\w
g i Y __f ________ S Looood [eeccan s
= -8 \' clicks "
(O = e 1 I
e Spawning workers. Importance

e Communication between workers. Distribution strategies are key to

Role performed by each worker. the performance of a distributed

Partitioning of state between workers. stream processing application.

Distribution Strategies

sales join clicks rate publish
5 = * v”c{‘liciksﬁ“
The distribution strategy of an IR R A i Tt neee= || eessess
. . = & ‘\S(llesr%>\\sender > joiner ; N 1 rate ‘p_,.\ publ‘lsh)
determines how it is O Z2|---- ?X ,,,,,, \>< % ,,,,,
distributed over the cluster. ol s e e g e e Kl
g G| ¢ AT eSSty (e ;
S -8 y'ch'cks "
o=z Soooac
e Spawning workers. Importance
e Communication between workers. Distribution strategies are key to
e Role performed by each worker. the performance of a distributed

e Partitioning of state between workers. stream processing application.

Goal
We need a DSPF which makes it easy to select the appropriate distribution strategy.

1 — High-level DSPFs: Programming with Operators

clicks = O
sales = O

sales. (clicks) -
.where(.. => ..) SRS join union H keyBy Hreduce]—){ map pubh’sh]

.equalTo(.. -> ..)
capply (.. => ..)

Edjfks)' o = <)) e Limited set of
eop @ =D) e Fixed strategy for each operator.
(e =>)
O

2 — Low-level DSPFs: Wiring DAGs in Storm

clicks publish

e publish

= TopologyBuilder();

.setSpout("sales", SalesSpout(), 2)
.setSpout("clicks", ClicksSpout(), 2)

Lt publish |

.setBolt("join-sender", JoinSendBolt(), 2)

-localGrouping("clicks") e Flexible, low-level model.
.localGrouping("sales")

b.setBolt("join-joiner", JoinBolt(), 8) e Difficult to express strategies.
.customGrouping("join-sender", JoinBGrouping())

b.setBolt("rate", RateBolt(), 2) o Scattered distribution logic.

.fieldsGrouping("clicks", "ad-id") o Tangled distribution and
.fieldsGrouping("join-joiner", "ad-id") T .
b.setBolt("publish", PublishBolt(), 2) application logic.
.localGrouping("rate") o No support for different

worker types.

2 — Low-level DSPFs: Wiring DAGs in Storm

= TopologyBuilder();

.setSpout("sales", SalesSpout(), 2)
.setSpout("clicks", ClicksSpout(), 2)

.setBolt("join-sender", JoinSendBolt(), 2)
.localGrouping("clicks")
.localGrouping("sales")

.setBolt("join-joiner", JoinBolt(), 8)
.customGrouping("join-sender", JoinBGrouping())

.setBolt("rate", RateBolt(), 2)
.fieldsGrouping("clicks", "ad-id")
.fieldsGrouping("join-joiner", "ad-id")
.setBolt("publish", PublishBolt(), 2)
.localGrouping("rate")

Cluster
Node 1

clicks publish

e publish

Cluster
Node 2

Lt publish |

e Flexible, low-level model.

Difficult to express strategies.

o Scattered distribution logic.

o Tangled distribution and
application logic.

o No support for different
worker types.

2 — Low-level DSPFs: Wiring DAGs in Storm

= TopologyBuilder();

.setSpout("sales", SalesSpout(), 2)
.setSpout("clicks", ClicksSpout(), 2)

.setBolt("join-sender", JoinSendBolt(), 2)
.localGrouping("clicks")
.localGrouping("sales")

.setBolt("join-joiner", JoinBolt(), 8)
.customGrouping("join-sender", JoinBGrouping())

.setBolt("rate", RateBolt(), 2)
.fieldsGrouping("clicks", "ad-id")
.fieldsGrouping("join-joiner", "ad-id")
.setBolt("publish", PublishBolt(), 2)
.localGrouping("rate")

Cluster
Node 1

clicks publish

e publish

Cluster

Lt publish |

Node 2

e Flexible, low-level model.
e Difficult to express strategies.

o Scattered distribution logic.

o Tangled distribution and
application logic.

o No support for different
worker types.

Problem Statement

DSPFs: Over a Cluster

(e} =T e High-level model to express
/ / Vo | applications.
L R ! IS
i ki e Flexible model to express
85|l |nca - distribution strategies.
- == e In a modular fashion.

10

@D skitter.

Novel DSPF with Pluggable Distribution Strategies
e Programming model

Dual Separate abstractions for and distribution logic.
Open Strategies and can be implemented as needed.

e Implementation in Elixir

11

Programming Model(s) e skitter.

workflow do defoperation , . do defstrategy KeyedState do
- defcb key(data) do defhook deploy(args) do
end e e
end end
defcb react(data) do defhook deliver(data) do
end end
end

defhook process(data, state, role) do

end

end
TN
—)|rc|te:
) S
>
N
—> rate !

12

Building Application DAGs with Workflows @D skitter.

workflow do

node (, as: clicks)
clicks.out ~> join.right
clicks.out ~> rate.clicks clicks ¢
nOde(, as: soles) [Sales join H rate }—)[publ'ish]
~> node (, with: FastJoin, as: join)
~> node(, with: KeyedState, as: rate)
~> node ()
end

13

Example: Distributing Rate with the KeyedState Strategy @D skitter.

(ady, click) (ads, click) (ady, click)

Ny
>

[N] ((1(11,05) ((1,(12,0) ((1(]1,1) ((ldl,O)
(ady, sale) rate |

3>
>

14

Example: Distributing Rate with the KeyedState Strategy @D skitter.

(ady, click) (ads, click) (ady, click)

Y

[. \ (ady,0.5) (ads,0) (adi,1) (adq,0)
(ady, sale) rate |

3>
>

(ady, click)

7 (g 05) (ady 1) (adh,0)

=

o
=
=~
)
=
\

! (adg,O)

=
(]
=
3
(]
L
Y

14

Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

15

Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

Application start deploy (args)

15

Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.
Event KeyedState

Upstream emits deliver(datey

data

key (data)

15

Example: Distributing Rate with the KeyedState Strategy @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.

e Strategy calls (base level) to handle data processing logic.

Event KeyedState

Worker receives process(msg, state, role) ~ eooooees

msg
react(data)

key (data)

15

Strategies and Operations @D skitter.

e @ skitter. calls strategy hooks (meta level) in response to events.
o Hooks are fixed and defined by Skitter.

e Strategy calls (base level) to handle data processing logic.
o Callbacks to be implemented are defined by the strategy.

defstrategy KeyedState do
defhook deploy(args)

defhook deliver(data) do

. ration , « do
call(:key, args: [data]) defcbykey(data) do
end
defhook process(data, state, role) do defcb, react(data) do
call(:key, args: [data]) end
call(:react, state: state, args: [data]) end
end
end

16

Evaluation

Research Questions

Qualitative

Quantitative

Modularity

Performance

Overhead

Impact

Does Skitter enable the expression of distribution
strategies in a modular fashion?

Does Skitter influence the performance characteristics
of distribution strategies?

Do the Skitter language abstractions introduce a sig-
nificant amount of overhead?

Can application performance be improved by selecting
an alternative strategy?

17

Experimental Setup

When Two Choices Are not Enough:
Balancing at Scale in Distributed Stream Processing

- Qutar Computing Rescarch Insiue. Do, Quar

anisu@kthse, gdf

cosing systems has 2 fandamental impact on execution latency L
oo 0 {
workloads are skewe: some tupes i the sream are swociaed € 103
8 0 o
s oC
s L e b o vk S0 s e & oot =
“average out” the cost of hot keys with cold £
‘We propose a novel load cing technique that uses a 1o
heavy hitter algorithm to efficiently identify the 107
e srcam. Thes hot eysare aigned 0 d > 2 choice (o camre s 10 2 s 10
. her s taned. automatically o minimise Wokars
e me computation cost of operaio replicaton. The
e works oo and doc Bt e b e of roling 1.1 b i b s Gl e 4 s e
ol Our tnin coaution Shows hat our. echique 0o 5 e o Wi RO b) S on e o

throughput and latency by 150% and 60 respectively over the
previous state-of-the-art when deployed o Apache Storm.

W s (W0, e b e sl

(operators), and its edges are channels that route data between

Scalable Distributed Stream Join Processing

QianLin' Beng Chin Ooi'

Zhengkui Wang' Cui Yu'

Schaol of Gomputing, Natonl Uniersty o Singepare

‘Department 01 Computer Suance and Sof
'{lingian, ooib,

ing, Monmouth University
nus.edu.sg, edu

ABSTRACT

Bt s ke s ko sy ot e
d appli

ports adaptive resouroe management 1o dynaicaly scle
out and down the system according to its application work-
Ve provide both theoretical cost analysi and ex-

tensive experimental evaluations to evaluate the eficiency,
elasticity and scalabilty of BiStream.

wero originally designed for a single serve are not capable

handling the massive data stream workload. On the
hand, existing distributed and parallel stream Join process-
ing algorithms are maisly tailored for equi-oin, which would
ot be efficent for high slectivity joins such s the theta-
join. Further, these methods mstly adopt various hash el
niques for workload partitioning, which is sensitive (o load
distrbution and inflexible to scaling out the system due to
mainienncs complsiy

In e o dsgn 0 eficion ditchted vy et
join processing system, the ollowing two requirements must
be con: . essential to

i ich corre
a slatio T Eat roceing o e

ICDE'16
115 citations

SIGMOD/PODS'15
113 citations

Comparison of multiple distribution strategies
Performance evaluation in Storm

Experimental Setup

e 3 implementations: Storm),

Benchmark Strategy Label Siiia, 2 bee (E0)
WordCount D-Choi.ces D-C e Used to compare modularity
W-Choices W-C and performance (average
Partial Key Grouping PKG throughput)
Key Grouping KG
Shuffle Grouping SG
Join Join-Matrix JM
Join-Biclique JB

Join-Biclique ContRand JB-CR

19

https://doi.org/10.5281/zenodo.14714125

Q1: Modularity

Question

How modular are distribution strategies in Skitter compared to the state of the art

(Storm)?

Benchmark Strategy Label

WordCount D-Choices D-C
W-Choices W-C
Partial Key Grouping PKG
Key Grouping KG
Shuffle Grouping SG

Join
Join-Biclique JB
Join-Biclique ContRand JB-CR

e Measure LOC added or
modified to change
distribution strategy.

e Categorize LOC based on
abstractions offered by
framework.

20

Q1: Modularity (Join)

Question
How modular are distribution strategies in Skitter compared to the state of the art
(Storm)?
Strategy Storm Skitter
~
Q
S Z % S S
S g S &
& £ S S ¢ &
N S < < > >3
o JB 29 162 46 3 0 119
C JB-CR 29 162 61 3 0 134
~ JB 22 162 46 2 0 119
C JB-CR 22 162 61 2 0 134

21

Q1: Modularity (Join)

Question
How modular are distribution strategies in Skitter compared to the state of the art
(Storm)?
Strategy Skitter
2 <
g & &
N &
SEEE o
o JB 29 162 46 3 0 119
C JB-CR 29 162 61 3 0 134
~ JB 22 162 46 2 0 119
C JB-CR 22 162 61 2 0 134

21

Q1: Modularity (Join)

Question
How modular are distribution strategies in Skitter compared to the state of the art
(Storm)?
Strategy Storm
~
5 IS
& § = S i
S Q 3 N &
5y § S S 3
N S G 5 >
o JB 29 162 46 3 0 119
C JB-CR 29 162 61 3 0 134
~ JB 22 162 46 2 0 119
C JB-CR 22 162 61 2 0 134

21

Q2: Performance

Question

Do strategies implemented in Skitter maintain their performance characteristics?

e Compare the relative performance of Storm and Skitter implementations of the
same experiments.

22

Q2: Performance (Join)

Question

Do strategies implemented in Skitter maintain their performance characteristics?

Query 5 Query 7

600000

strategy
400000 . M
mm JB
I mmm JB-CR
200000
. Huml HN ul EN

Skitter Storm Skitter Storm

elements/s

23

Conclusion

Problem Statement Programming Model(s)

workflow do defoperation foic, _do defstratesy @
i detb key(dota) do defhaok deploy (args) do
ond
end end
o High-level model to express defb react(dato) do defhook deliver (dota) do
applications. i o
o Flexible model to express = defhook process(doto, state, role) do
istribution strategies.
end
o In a modular fashion ena

Q1: Modularity (Join) Q2: Performance (Join)
Question

How modular are distribution strategies in Skitter compared to the state of the art Question;
(Storm)?

Do strategies implemented in Skitter maintain their performance characteristics?

Strategy Skitter Query &
s S N o000
s 2 »
w 3 01 X .
@ JBCR 3 0 134
. 2 01 ° siter Som
S JBCR 2 0 13

https://soft.vub.ac.be/~mathsaey/skitter/

24

https://soft.vub.ac.be/~mathsaey/skitter/

Skitter: A Distributed Stream Processing Framework with
Pluggable Distribution Strategies

Mathijs Saey, Joeri De Koster, Wolfgang De Meuter
mathijs.saey@vub.be

ss VRIJE
shg Software- UNIVERSITEIT
@ LanguagesLab BRUSSEL

mailto:mathijs.saey@vub.be

High-level Style Workflow Definitions @D skitter.

workflow do

O
~> (&String.split/1, with: RepartitionedOutput)
~> (fn word -> word end, fn count -> count + 1 end, 0)
~> 0O

end

workflow do

node ()
~> node(, args: [&String.split/1], with: RepartitionedOutput)
~> node(, args: [fn word -> word end, fn count -> count + 1 end, 0])
~> node()
end

25

Full Rate Definition

@0 skitter.

defoperation Rate, 1in:

[sales, clicks], out: conversion_rate, strategy: KeyedState do
initial_state {0, 0}

defcb key(data), do: data.ad_id

defcb react(data) do
{clicks, sales} = state()
{new_clicks, new_sales} = case port_of(data) do
:sales -> {clicks, sales + 1}
:clicks -> {clicks + 1, sales}
end
state <~ {new_clicks, new_sales}

{data.ad_id, new_sales / new_clicks} ~> conversion_rate
end

end

26

Full KeyedState Definition @ skitter.

defstrategy KeyedState do
defhook deploy(args) do
Remote.on_all_workers(fn -> local_worker (Map.new(), :aggregator) end)
|> Enum.map(fn {remote, worker} -> worker end)
end

defhook deliver(data) do
key = call(:key, args: [data]).result
aggregators = deployment()
idx = rem(Murmur.hash_x86_32(key), length(aggregators))
worker = Enum.at(aggregators, idx)
send (worker, data)
end

defhook process(data, state_map, :aggregator) do
key = call(:key, args: [data]).result
state = Map.get(state_map, key, dinitial_state())
res = call(:react, state: state, args: [data])
emit(res.emit)
Map.put(state_map, key, res.state)
end
end
27

A3a1e41G

uonessdQ

Skitter

MO|JHIONA

Suidnoug

1usuodwo))

Storm

K3ojodo |

Strategy

—_
)
c
=]
(=}
®)
<
-
=
-
>
)
‘=
L=
=]
<
(=)
=
—
C

28

46
71
107
65
90
126

4

1
1

29
59

0

38
4 38 29
4 38 59

1
1
1
4

SG
PKG
W-C
D-C
PKGY
W-Ct
D-Ct

Q2: Performance (WordCount)

Question

Do strategies implemented in Skitter maintain their performance characteristics?

5 Skitter Storm

10 2 a a
R @]]
Qo
8
210
e} ® skew
Y] i ® z=14
g2, e & : 2=17
g1 Kk A z=20
o
[0}

10°

KG PKG D-C W-C SG KG PKG D-C W-C SG

strategy strategy

29

Q3: Overhead (WordCount)

Question

Do the abstractions introduced by Skitter introduce additional overhead?

Relative difference

Skitter Ad-hoc
40000 ~ 4
X
Q
30000 e 2
2 o
8] I skew
c £, _u - -
£ 20000 S | I - =14
% 2 o z=17
< _ m z=20
10000 22
]
=
o o e o Y -4
PKG PKG - - S|
strategy strategy KG PKG D-C W-C SG

strategy

30

Q3: Overhead (Join)

Question

Do the abstractions introduced by Skitter introduce additional overhead?

strategy
- UM
mam JB
mmm JB-CR
5 I I
0

Query 5 Query 7

Query 5 Query 7

600000
400000
200000
A=l EB al BN

Skitter Ad-hoc Skitter Ad-hoc

elements/s
%)
- N N w
(9] o (9] o

o

throughput difference (

31

Q4:

Impact

Question

Can we improve performance by changing distribution strategy?

140000

120000
100000 400000
80000 300000 strategy
60000 .
200000 = JB

40000 == JB-CR
20000 100000

0

Query 5 Query 7

WordCount benchmark with key Merging 354n benchmark handling 80GB of data.
and no skew (z = 0).

elements/s
elements/s

32

	Context
	Background
	Skitter
	Evaluation
	Setup
	Results

	Appendix

