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Abstract

The modern world heavily relies on data: in 2020, more than 64 ZBs of
data were created, captured, copied, or consumed globally. As a result,
novel software platforms have emerged to analyze large data sets from
several domains in a parallel and scalable way. The two most promi-
nent programming models for Big Data processing are Map/Reduce and
Apache Spark. Both models envision the programming of complex prob-
lems through well-known functions and let the framework take care of the
distribution aspects such as parallelization and fault tolerance to node
failures.

Debugging Big Data applications is difficult due to their distributed
and parallel nature, which increases the distance between the root cause
of the bug and the observed failure. Furthermore, developers tend to
use a large technology stack, which also complicates the debugging. A
common debugging practice is to analyze log files, but they lack contextual
information about which record(s) caused an error. Recently, Record &
Replay debuggers have been explored, but replaying Big Data applications
can be very costly since they are normally long-lasting. Checkpoint-based
debugging has been explored to lower the replay time, but still requires
the creation of a checkpoint and a replay step.

In this dissertation, we explore a live debugging approach tailored to
Map/Reduce and Spark-like programs. We first propose out-of-place de-
bugging, a novel debugging architecture to debug remote and distributed
applications. In this model, when there is an error in an application run-
ning remotely (e.g., in a cluster), the state of the computation is trans-
ferred to the developer’s machine, in which the application can be de-
bugged. This avoids replaying the execution while offering a full interac-
tive debugging environment.



We then explore the applicability of out-of-place debugging to parallel
distributed Map/Reduce and Spark-like applications, through two novel
techniques for optimizing their debugging: composite debugging events,
i.e., the grouping and centralized debugging of multiple similar debug-
ging events, and dynamic local checkpoints, i.e., dynamic capturing of
the execution state. Thus, we enable centralized debugging of remote
Big Data applications and extend it with domain-specific debugging op-
erations. Finally, we complement our debugging approach with a relaxed
computational model that allows developers to instruct the runtime to au-
tomatically ignore a defined number of exceptions that happen at runtime.
This feature is especially relevant for those data analytics applications that
can accept a loss in accuracy (e.g., because of dirty data).

We implement our debugging techniques in Pharo Smalltalk on top
of Port and Spa, our frameworks implementing the Map/Reduce and the
Spark-like model, respectively. Furthermore, we generalized all the call-
stack operations needed to enable our debugging approach in Sarto, a
call-stack instrumentation layer for stack tailoring. The proposed out-of-
place debugging approach applied to debug Map/Reduce and Spark-like
programs, together with Sarto, represent the main contributions of this
dissertation.

Our validation is two-fold: we validate our debugging approach quan-
titatively and qualitatively. For the quantitative study, we conducted
performance benchmarks that show that our model scales to an increas-
ing amount of both data and parallel exceptions. For the qualitative
study, we conducted a user study to assess the usability of our solution
for solving different debugging tasks and compare it to a reproduction of
a state-of-the-art debugger for Spark applications. The results show that
participants reported a better debugging experience using our debugger
and validated positively the advanced features offered by our debugger.



Samenvatting

De moderne wereld is sterk afhankelijk van data: in 2020 zal wereldwijd
meer dan 64 ZBs aan data worden gecreéerd, vastgelegd, gekopieerd of
verbruikt. Als gevolg daarvan zijn nieuwe softwareplatforms ontstaan om
grote datasets uit verschillende domeinen op een parallelle en schaalbare
manier te analyseren. De twee meest prominente programmeringsmod-
ellen voor Big Data-verwerking zijn Map/Reduce en Apache Spark. Beide
modellen richten zich op het programmeren van complexe problemen via
vertrouwde functies, en laten het framework de distributieaspecten afhan-
delen, bijvoorbeeld de parallellisatie en de fouttolerantie voor node-fouten.
Het debuggen van Big Data-toepassingen is moeilijk door hun gedistribueer-
de en parallelle aard, waardoor de afstand tussen de hoofdoorzaak van
een bug en een waargenomen fout groter is. Bovendien hebben ontwikke-
laars de neiging om een grote technologiestack te gebruiken, wat het de-
buggen ook bemoeilijkt. Een gebruikelijke debugging methode is het anal-
yseren van logfiles, maar deze missen contextuele informatie over welke
record(s) een fout veroorzaakte(n). Recentelijk zijn Record & Replay
debuggers bestudeerd, maar het opnieuw afspelen van Big Data appli-
caties kan erg kostbaar zijn omdat ze normaal gesproken lang duren.
Checkpoint-gebaseerde debugging technieken kunnen in principe de re-
play tijd verminderen, maar vereisen steeds de creatie van een checkpoint
en een replay stap. In deze dissertatie onderzoeken we geavanceerde on-
line debugging oplossingen afgestemd op Map/Reduce en Spark-achtige
programma’s. Eerst stellen we out-of-place debugging voor, een nieuwe
debugging architectuur om remote en gedistribueerde applicaties te de-
buggen. In dit model, wanneer er een fout optreedt in een applicatie die
op afstand draait (bv. in een cluster), wordt de staat van de bereken-
ing overgebracht naar de machine van de ontwikkelaar, m.a.w. naar de
locatie waar de applicatie gedebugged kan worden. Dit vermijdt het op-
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nieuw herhalen van de uitvoering, terwijl het een volledig interactieve
debug-omgeving biedt. We verkennen vervolgens de toepasbaarheid van
out-of-place debugging op parallelle en gedistribueerde Map/Reduce en
Spark-achtige applicaties, door middel van twee nieuwe technieken voor
het optimaliseren van het debug process: composite debugging events,
dat wil zeggen het groeperen en gecentraliseerd debuggen van meerdere
soortgelijke debugging events, en dynamische lokale checkpoints, dat wil
zeggen het dynamisch vastleggen van de uitvoeringsstatus. Zo kunnen we
Big Data-applicaties gecentraliseerd vanop afstand debuggen, en breiden
we het uit met domeinspecificke debugging-operaties. Ten slotte com-
plementeren we onze debugging-aanpak met een versoepeld computation-
eel model waarmee ontwikkelaars de runtime kunnen opdragen om au-
tomatisch een gedefinieerde hoeveelheid uitzonderingen te negeren die ti-
jdens runtime optreden. Deze functie is vooral relevant voor data-analyse
toepassingen die een verlies in nauwkeurigheid kunnen accepteren (bijv.
als gevolg van vervuilde gegevens). We implementeren onze debugging
technieken in Pharo Smalltalk, bovenop Port en Spa, onze frameworks
die respectievelijk het Map/Reduce en het Spark-achtige model imple-
menteren. Verder hebben we alle call-stack operaties die nodig zijn om
onze debugging aanpak mogelijk te maken veralgemeend in Sarto, een
call-stack instrumentatie laag voor stack tailoring. De voorgestelde out-
of-place debugging aanpak toegepast op het debuggen van Map/Reduce
en Spark-achtige programma’s, samen met Sarto, vertegenwoordigen de
belangrijkste bijdragen van dit proefschrift. Onze validatie is tweevoudig;:
we valideren onze debugging aanpak kwantitatief en kwalitatief. Voor
de kwantitatieve studie hebben we performantie benchmarks uitgevoerd
die aantonen dat ons model schaalt naar een toenemende hoeveelheid
van zowel data als parallelle uitzonderingen. Voor de kwalitatieve studie
hebben we een gebruikersonderzoek uitgevoerd om de bruikbaarheid van
onze aanpak voor het oplossen van verschillende debugging taken te beo-
ordelen en deze te vergelijken met een reproductie van een state-of-the-art
debugger voor Spark applicaties. De resultaten tonen aan dat de deelne-
mers een betere debugging-ervaring rapporteerden door gebruik te maken
van onze debugger, en dat ze de geavanceerde functies die onze debugger
biedt positief waardeerden.
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Chapter 1

Introduction

Big Data processing is surely one of the biggest trends of the last couple
of decades. In 2001, D. Laney introduced three concepts that lay the
basis for today’s understanding of Big Data: data Volume, Velocity, and
Variety, commonly referred to as the 3 Vs [Gar|. Particularly, the three Vs
were first described in the context of e-commerce as the increase of depth
and breadth of data generated by a transaction (i.e., Volume), the pace
of data generated to support interactions (i.e., Velocity), and the variety
of incompatible data formats and data structures (i.e., Variety).

Not only do the 3 Vs apply to e-commerce data, but they also do
apply to any sort of data that needs to be stored, interacted with, and an-
alyzed. In 2004, J. Dean and S. Ghemawat described the solution Google
had started using to process large amounts of data: Map/Reduce [DGO04].
Map/Reduce introduced a model based on two popular functional pro-
gramming constructs: map and reduce. It lets developers focus on the
application logic by handling all aspects of distribution, tolerance to node
failures (i.e., nodes becoming unavailable), task granularity, and more.
Through the open-source version of Map/Reduce (i.e., Hadoop Map/Re-
duce [Apaf]) Big Data processing then became available for analysts in any
field. This, in turn, led to the development of different frameworks tar-
geting different domains, e.g., Apache Giraph [Apaal, Dryad LINQ [Mich],
Apache Pig [Apac].

In 2010, another now popular Big Data framework came to light:
Apache Spark [Apad]. Spark builds on the concept of a distributed data
structure (i.e., an RDD [ZCD%12]), on which a large functional API is
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available to transform and analyze data. Through its focus on fault tol-
erance to node failures, optimizations, and more fine-grained control over
handling intermediate data, Spark quickly became popular in both re-
search and industry.

Despite the popularity of these frameworks, developing Big Data ap-
plications remains challenging due to their distinguishing properties. Big
Data applications are notoriously (i) long-running, due to the high vol-
ume of data they have to analyze; (ii) subject to a complex configuration,
due to the stack of heterogeneous technologies they are based on; and
(iii) generally executed remotely on clusters, which increases the time of
deploying and initializing of an application, as well as the retrieval of
information about an execution. Those properties also lead to different
kinds of failures. First, errors due to the misconfiguration of at least
one of the different libraries and frameworks used in the technological
stack [RK13]. Second, developers also often have to deal with dirty data
sets [FDCD12, MLW*19] which increase the number of errors in their
programs: a single record could in fact invalidate a long computation.
Finally, a 2019 study [BK19] shows that 40% of reported failures are due
to errors introduced by the developers.

This dissertation focuses on the debugging of Big Data applications,
an integral part of software development and still a major concern for Big
Data developers. A 2015 field study [ZLZ"15] shows that debugging is
the third most recurring topic after questions about the models themselves
in StackOverflow, i.e., a popular platform for developers to request help
on any programming language and framework. More in general, a 2013
study [BJCT13] shows that developers spend at least 50% of their time
debugging, costing the global software industry an estimated amount of
312 billion USD, including developers’ salaries and overheads.

Debugging Big Data applications remains difficult due to their dis-
tinguishing characteristics. In the literature, some work has focused on
automated debugging in the form of static and dynamic analysis to find
inputs that cause errors in a program [LRST13, GMMK19, ZWG*20].
Other work has focused on debuggers, i.e., tools to dynamically observe
and control the execution of a program. Several prior works have fo-
cused on offline debugging for Big Data, i.e., debugging an execution after
it failed by reconstructing it. They are mainly based on replaying the
execution [DZSS13, SSK'15], which can be impractical since Big Data
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applications are long-running. More recently, BigDebug [GIYT16] and
Daphne [JYB11] have explored the use of online debugging concepts such
as breakpoints. They do this by adding breakpoints to an offline debug-
ging backend [GIY 16, JYB11]. In this dissertation, we explore an online
debugging approach especially designed for the properties of Big Data
applications.

1.1 Problem Statement

As mentioned above, due to their unique properties debugging Big Data
applications is a challenging task that developers have to deal with. Al-
though Big Data frameworks are fault-tolerant to node failure, they will
abort the execution upon application failure after retrying to execute it
on another node. This can lead to hours of computation being invalidated
and replayed for debugging because of a few records that cause an ap-
plication to fail. For example, in a Map/Reduce application a bug while
reducing will invalidate the results of the map. Current debugging solu-
tions for Big Data applications rely on the replaying of at least part of the
execution of an application, which may take long due to the long-running
property of Big Data applications. Furthermore, if errors do not affect
the accuracy of an application, they could even be systematically ignored,
but current solutions for debugging Big Data applications do not allow it.
For the purpose of this dissertation, we identify below different short-
comings of current debugging approaches for Big Data applications:

High Replay Times. Replaying even parts of Big Data applications is
a time-consuming process due to the size of the data that the appli-
cations process.

Limited Online Debugging Capabilities. Current solutions offer lim-
ited online debugging capabilities, providing developers with few
contextual information on an execution necessary for understanding
the behaviour of the application to identify errors.

Limited Live Code Updating Support. Updating Big Data applica-
tions, especially when deployed remotely, is a cumbersome process
that requires several steps such as packaging, uploading, restarting,
etc. While some solutions offer limited code updating capabilities,
live code updating has not been explored for general code changes.

3



CHAPTER 1. INTRODUCTION

No Acceptability of Failures. The debugging models for Big Data ap-
plications do not react automatically to application failures to ignore
them. This could be used to avoid tedious debugging of minor prob-
lems that could be ignored on applications which can deal with a
level of inaccuracy.

The research explored in this dissertation is guided by the following
research statement:

We conjecture that an online and live debugging approach that provides
replay-free debugging of a remote Big Data application and live code up-
dates is a suitable solution to deal with the properties of Big Data appli-
cations.

1.2 A Live Debugging Approach

In this dissertation, we propose a novel debugging approach for Big Data
application inspired by two ideas:

Live Coding and Debugging. Smalltalk [Gol84] pioneered the idea of
an interactive environment to write, run, debug, and update a pro-
gram while running it, all in the same environment. This entails
a high level of interaction between the developer, the tools of the
environment, and the program. For example, the debugging of a
breakpointed execution or an unexpected error happens in the same
way, since the debugging support is always-on. The developer can
evaluate and open a debugger on any expression in their program.
The concepts of live programming are not only embraced by classi-
cal Smalltalk systems: as an example, the concepts of live editing
and execution of arbitrary code (and expressions) are nowadays very
popular in the field interactive programming in the form of program-
ming notebooks (e.g., Jupyter).

Acceptability-oriented Computing. Acceptability-oriented computing
was first defined by Rinard [Rin03] as a failure-oblivious system that
describes the properties that state and behaviour must preserve for
the program’s execution to be acceptable, and that then monitors
and enforces these acceptability properties and eventual violation.

4
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The concept of acceptability-oriented computing was later used by
Carbin et al. [CKMRI12] to further define relazed programs, i.e.,
programs that “have been extended with additional nondetermin-
ism to relax their semantics and enable greater flexibility to the
execution”. While this approach has been explored in different fields
[ZM19, RPM18], to the best of our knowledge it has not been applied
to parallel Big Data applications.

In this thesis, we argue that:

e Live debugging reduces the duration of the debugging cycle of Big
Data developers by providing replay-free debugging of an execu-
tion with all the error’s contextual information, live code updates,
breakpoints, and an overall interactive environment to develop appli-
cations. However, a live debugger normally controls the execution of
applications deployed in the same process and not distributed. Thus,
we explore its applicability in the context of Big Data applications.

o Acceptability-oriented computing can avoid invalidating long com-
putations due to a minor error. Since many data science applications
can afford to lose a degree of accuracy [CCRR13], we explore its in-
tegration in an execution and debugging model for Big Data.

We explore our live debugging approach for Big Data applications to
two programming models, i.e., Map/Reduce and Spark. We also devise
domain-specific debugging modes and operations which enhance the de-
bugging experience for the two models. Finally, we explore acceptability-
oriented computing through different execution modes and extensions to
the programming models’ API to enable the systematical ignoring of er-
TOors.

1.3 Contributions

This dissertation presents four main contributions.

Out-of-Place debugging. A debugging model for the online debugging
of remote executions inspired by Smalltalk’s live programming model.
It enables the debugging of remote applications by transferring the
remote execution state to a process running at the developer’s ma-
chine where debugging operations are performed. Thus, debugging

5
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happens locally with an online debugger, and the developer can then
apply code updates back to the remote application once the bug is
fixed through committing their changes.

Live debugging of Map/Reduce applications. An approach for de-
bugging Map/Reduce applications based on out-of-place debugging
combined with the introduction of composite debugging events, domain-
specific debugging modes. We prototype our approach in IDRAyrg,

a debugger for Map/Reduce applications in Pharo Smalltalk. We
validate this approach by using IDRAygr in a real-world scenario of
a blockchain analysis application.

Live debugging of Spark-like applications. A two-fold approach for
debugging Spark-like applications that enables both debugging and
ignoring of errors. Our debugging approach extends out-of-place de-
bugging to centralize debugging sessions with dynamic local check-
points. It improves the debugging experience with domain-specific
debugging operations for Spark-like applications (i.e., coarse-grained
stepping operations). We complement our debugging approach with
a relaxed computational model for the systematic ignoring of errors.
We validate our overall approach through performance benchmarks
and through a user study for assessing the usability of our debugger
in comparison to the state of the art.

A stack tailoring instrumentation layer. An instrumentation layer
to tailor call-stacks for debugging framework executions through a
set of six operations. These operations are used in our prototype
debuggers for Big Data applications but fall beyond the scope of
Big Data. We validate the different operations by showing their ap-
plicability to debugging three different frameworks and their impact
on the execution.

1.3.1 Technical Contributions

To support our contributions, we developed different artifacts that repre-
sent a technical contribution.

Port and Spa. Two Big Data frameworks for Pharo Smalltalk support-
ing the Map/Reduce and the Spark-like model, respectively. These

6
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two frameworks enable the programming and execution of parallel
Big Data applications in Pharo Smalltalk.

IDRAMR and SpaDebug. The implementation in Pharo Smalltalk of
our live debugging approach for the Map/Reduce and the Spark-like
model, respectively.

Sarto. A library for tailoring the call-stack of framework applications to
enable debugging in Pharo Smalltalk.

1.3.2 Supporting Publications

In what follows, we list the publications that support this dissertation.

e Out-of-place debugging: A debugging architecture to re-
duce debugging interference.
The Art, Science, and Engineering of Programming, Volume 3, Is-
sue 2, Article 3, 2018. [MPGB18]
Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix.

This publication introduces out-of-place debugging as an online de-
bugging architecture for the debugging of remote applications, that
lies at the basis of our debugging solution. It presents IDRA, the first
implementation of out-of-place debugging for Pharo Smalltalk, and
validates the performance of the debugger in comparison to remote
debugging. The concepts of out-of-place debugging are described in
Chapter 5.

e Framework-Aware Debugging with Stack Tailoring.
Proceedings of the 16th ACM SIGPLAN International Symposium
on Dynamic Languages, pp. 71-84, 2020. [MPGB20b]

Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix.

This publication introduces Sarto, our call-stack instrumentation
layer for tailoring the stack of framework execution errors for im-
proving debugging described in Chapter 4. It presents different op-
erations to tailor and manipulate call-stacks and uses them in the
context of four different execution frameworks also validating their
performance.
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¢ A debugging approach for live Big Data applications.
Science of Computer Programming, Volume 194, Article 102460,
2020. [IMPGB20a]
Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix.

This publication introduces our live debugging approach for Map/Re-
duce applications by using out-of-place debugging to debug Port ap-
plications in a centralized way. It validates the solution by showing
how this debugger can be used to debug both application and config-
uration errors. The mains concepts of this publication related to the
debugging of parallel exceptions, domain-specific debugging modes,
and live code updating are described and expanded in Chapter 6.

e Practical Online Debugging of Spark-Like Applications.
To appear in Proceedings of the 21st IEEE International Conference
on Software Quality, Reliability, and Security, 2021. [MPGB21]
Matteo Marra, Guillermo Polito, Elisa Gonzalez Boix.

This publication presents a live debugging approach for Spark-like
applications, complemented with a relaxed computational model to
ignore errors. This paper presents the bulk of our concepts for de-
bugging Spark-like applications and introduces the idea of ignoring
exceptions. Both of these aspects are further explored in Chapter 7.
The paper validates the solution through several performance bench-
marks to show the scalability of both the debugger and the relaxed
computational model. It also presents the results of a user study to
assess the usability of our solution in comparison to state-of-the-art.
The results of this validation are presented in this dissertation in
Chapter 8, together with more benchmarks for assessing the impact
of different optimizations.

1.4 Dissertation Outline

This dissertation has the following outline:

Chapter 2: Context and Motivation. This chapter provides the con-
text to our work, starting by describing Map/Reduce and Spark, two
popular Big Data frameworks that we aim to debug. Then, it de-
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tails debugging and several general-purpose debugging approaches,
before delving into current debugging solutions for Big Data frame-
works. We conclude this chapter by extracting from the state of the
art different criteria that debuggers for Big Data applications should
uphold.

Chapter 3: Scalable Big Data Frameworks for Pharo Smalltalk.
This chapter describes Port and Spa, the frameworks that we built to
support the development and execution of Map/Reduce and Spark-
like applications in Pharo Smalltalk. We start the chapter by detail-
ing our experimental platform: Pharo Smalltalk. Then, we describe
the infrastructural layer used by both Port and Spa to enable the
execution of Big Data programs. We then introduce a running ex-
ample that we use to describe the internals of Port and Spa. We
conclude the chapter with a description of how Port and Spa are
deployed on clusters, to clarify the setup that we use for validating
our approach later in the dissertation.

Chapter 4: A Call-Stack Instrumentation Layer for the Debug-
ging of Framework Code. This chapter describes our stack tai-
loring instrumentation layer which includes six stack tailoring oper-
ations and shows how they are used in practice on four debugging
cases through Sarto, the Pharo Smalltalk library that implements
the six operations. Finally, we validate Sarto by assessing the over-
head of the different operations on the execution.

Chapter 5: Out-of-Place Debugging. This chapter introduces out-of-
place debugging, a live and online debugging model, by first describ-
ing its debugging architecture, and then how it is enabled in different
runtime environments for debugging distributed programs.

Chapter 6: Debugging Support for Map/Reduce. This chapter in-
troduces out-of-place debugging for Map/Reduce applications start-
ing by describing the adapted out-of-place architecture for Big Data
execution models. Then, we describe how we extract contextual
information from debugging events, centralize the debugging ses-
sion, and enable live code updating. We present IDRAyR, a live
out-of-place debugger for Map/Reduce applications in Port, and we
conclude the chapter by showing how our solution can be used to
debug a realistic blockchain indexing application.

9
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Chapter 7: Debugging Support for Spark-like Applications. This
chapter introduces our out-of-place debugging approach for Spark-
like application by describing how to extract contextual information,
introducing domain-specific stepping operations, and describing a
relaxed computational model for Spark-like application that enables
the systematical ignoring of failures. We then present SpaDebug, a
live out-of-place debugger for Spark-like applications in Spa.

Chapter 8: Validation. This chapter validates our solution presented
in Chapter 7 by showing the results of several performance bench-
marks to assess the overhead and scalability of our debugger and of
the relaxed computational model. We then detail the design, method-
ology, and results of a user study with 17 participants that shows the
usability of our solution in comparison to a state of the art debugger.

Chapter 9: Conclusion. This chapter concludes the dissertation by giv-
ing an overview of our approach, revisiting the contributions, dis-
cussing the limitations of our work, and describing possible avenues
for future work.

10



Chapter 2

Context and Motivation

This chapter provides the research context of our work and motivates
the need for debugging support for Big Data applications. Particularly,
we start by detailing the Master/Worker model that lies at the basis of
Map/Reduce and Apache Spark, which we also describe in this chapter.
This should give to the reader the necessary background on the two pro-
gramming models proposed by the frameworks.

Since this dissertation focuses on debugging support, we then delve
into the description of basic concepts of debugging and several offline and
online debugging techniques. This is followed by a description of common
bugs in Big Data, and a review of the state of the art of debugging ap-
proaches for Big Data applications and their characteristics. We conclude
this chapter by defining the criteria of debuggers for Big Data applications.

2.1 The Master/Worker Model

The Master/Worker model is an execution model enabling the execution
of parallel tasks in a coordinated way. In a distributed context (e.g., a
cluster of machines), one node of the distributed system takes the role
of master and coordinates the other nodes (i.e., the workers), assigning
jobs (or tasks) to them and retrieving their results. The Master/Worker
architecture is often an easy approach to divide the work between multi-
ple workers, and, because of its simplicity and scalability, it is used as an
underlying execution model in many concurrent and distributed architec-

11
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tures, including Map/Reduce, Spark, and several streaming frameworks
such as Apache Flink.

In this thesis we focus on Big Data processing, hence in the rest of this
section, we look at the Master/Worker model in the context of a parallel
execution model on a cluster of machines.

In the Master/Worker model, the goal of the master is to optimally
divide the work between all its workers, thus efficiently employing the com-
putational power of the system. To accomplish this, the master includes a
scheduler, which extracts a task from the task list and selects a worker on
which the task will be executed. A scheduler can be implemented both as
a component or as a scheduling function, and it assigns tasks to workers in
different ways, depending on the implementation. Tasks can be assigned
by time slots, by their complexity, or, in more advanced distributed sys-
tems, they can also be assigned by distance and network latency. For
example, in the case of Big Data frameworks such as Apache Spark, how
tasks are assigned mainly depends on the locality of the data. After a
worker processes a task, it returns a value (or a set of values) that has to
be handled by the master. The master can then return the results to the
user or feed the result to other workers for other tasks.

Despite being simple, the Master/Worker model also presents a degree
of tolerance to node failures: due to its underlying centralization, a failure
in a worker is easily handled by the master node, which can then decide
to reschedule the execution in another worker or to graciously stop the
execution in all other workers. In this architecture, however, the master is
the single point of failure of the system. For instance, if the master fails or
is disconnected from the network, the workers will not receive more tasks
from a master node and will not be able to return the processed results.
As consequence, the whole system could stop working. In practice, the
benefits of the model often outweigh this limitation, since terminal failures

in the master node are reportedly less frequent than the ones in worker
nodes [DG04].

2.2 Map/Reduce

The Map/Reduce model [DG04, DGO8] is a programming and execution
model, created for a necessity at Google to analyze large input data in
parallel. While they were doing that for years, they realized that the actual
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code of the analysis was pretty simple and obscured by complex code to
handle the distribution of the computation and its fault tolerance. This led
to a new programming model to easily write computations on large data,
supported by an execution model based on the Master/Worker model to
perform the execution in parallel (execution model). In this section, we
first discuss the Map/Reduce model by first looking at the programming
and execution model, and then look at how it handles distributed data,
and finally how it deals with fault tolerance.

2.2.1 Programming and Execution Model

As the name suggests, a Map/Reduce application is expressed in the im-
plementation of two functions: a map and a reduce. The runtime then
takes care of retrieving the data, parallelizing the computation, scheduling
it into the workers, and handling failures.

Let us first describe the two functions that developers need to imple-
ment:

Map The map function takes as input a key/value pair and returns an
intermediate key/value pair.

Reduce The reduce function takes as input an intermediate key and the
set of intermediate values associated with that key. Typically, those
values are merged (i.e., reduced) together into one or no values,
representing the result of the computation for that particular key.

To give an example, consider Listing 2.1 which shows the implemen-
tation of a classical distributed wordcount application, similar to the one
presented by Dean and Ghemawat [DG04]. As expected, the listing shows
the implementation of the two functions: map and reduce. In this case,
map takes the document name as the key and the contents of the document
as the value. In the map function, a for each looks through all the words
of a document and emits a pair containing the current word as key and one
as value, representing an intermediate result. The reduce function takes
as parameters one of the words and an iterator to the list of values (i.e., a
list of 1s) associated with that key, i.e., the results from the application of
the map. It then initializes a result integer and loops through the values
parameter to add the value to the result. Finally, it emits the final result
for that particular word.

13
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map(String documentName, String documentContents){
for each word in documentContents{
emit (word,1)
}
}

reduce(String word, lterator values){
int result = 0
for each number in values{
result += number

}

emit result
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Listing 2.1: An example wordcount in Map/Reduce.

The implementation of this application includes no boilerplate code
to parallelize the execution, manage intermediate data, and handle fault
tolerance: the framework handles all of these concerns. Recall that the
execution model of Map/Reduce is based on the Master/Worker model.
When executing the program, the master splits the data into several input
files, replicated in the cluster, so that the workers can start executing map
tasks on it. In the following section, we describe in more detail how data
is treated during the execution.

2.2.2 Partitioning and Data Locality

Map/Reduce assumes the availability of a distributed file system to load
the data from. For instance, Google’s Map/Reduce uses GFS (Google
File System), while Hadoop’s version uses HDFS (Hadoop Distributed
File System). Map tasks are scheduled so that a certain worker loads the
portion of the input that is already stored in it. When this is not possible,
e.g., because the worker holding the file is busy, tasks are scheduled so
that the data is loaded from a nearby worker, reducing network usage.
Upon a map, before the intermediate results are loaded by workers to
apply a reduce, the execution framework performs two operations: first,
the intermediate results are partitioned, and then they are sorted. In
practice, intermediate results are buffered from the worker’s memory to
disk and partitioned into different regions (or partitions) according to a

14
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partitioning function. The default partitioning function uses the hash of
the key to separate the data in a balanced number of partitions: if R is the
number of reduce tasks to apply, the data is partitioned using hash(key)
mod R. The developer can also provide, as part of their Map/Reduce
application, a customized partitioning function to their application, for
instance by hashing only part of the key to make sure data is partitioned
as it is required by their reduce function.

After intermediate data is partitioned and stored on disk, the location
of those partitions is returned to the master. This enables the master to
schedule reduce tasks on workers by indicating a certain location (pointing
to a region) as input data. Most schedulers, when possible, will schedule
reduce tasks in workers that are close to the location of the data, thus
reducing reduce network delays that would be introduced by reading the
data stored in another worker. The assigned worker then loads the input
data and sorts it before applying the reduce. In this way, multiple values
referring to the same key are grouped (and later analyzed) together.

Part of the success of the Map/Reduce model is surely attributed to
the way data is handled. Moreover, the partitioning approach is important
to enabling fault tolerance, which we discuss in the next section.

2.2.3 Fault Tolerance

Map/Reduce was originally designed to run on a cluster of not necessarily
reliable machines. Therefore, fault tolerance to node failure is embedded
in the execution model and made transparent to users.

How the system reacts to a failure depends on where the failure is
located. The master regularly pings the workers to verify that they are
still alive. If a worker does not respond for a certain amount of time,
the worker is marked as failed, and all the running and completed map
tasks are marked as idle, i.e., ready to be scheduled in other workers.
This is because, if a worker became inaccessible, the intermediate results
of running or completed tasks are no longer retrievable from its disk.
Results of completed reduce tasks, instead, are stored on the distributed
file system and hence those tasks do not need to be re-executed.

The fault tolerance mechanisms of Map/Reduce not only enable the
handling of node failures but also solve other problems that may lead
a program to never terminate. An example of this is the handling of
stragglers, i.e., workers that take a long time to terminate a task or that
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never terminate because of an internal problem. A commonly adopted
solution to this is to use backup tasks, i.e., tasks that are scheduled by the
master when a task is taking particularly long to complete when compared
to similar tasks. If the original task completes, then the backup task is
removed from the list of tasks that have to be scheduled. Otherwise, it is
left to be executed. If the backup task terminates before the original task,
its result is used and the original task discarded. Otherwise, the opposite
happens.

Finally, in case of failure of the master, the computation is terminated
and needs to be restarted. However, according to the original authors
[DGO04] it is possible to checkpoint the state of the master (that includes
information on the workers, tasks, and locations of intermediate files) to
restart the master from there in case of a failure.

2.2.4 Conclusion

In this section, we have described the main concepts of the Map/Reduce
model.

Despite its success, the Map/Reduce model presents limitations in
how programs can be expressed: the simplicity of using just two functions
forces to implement the behaviour of other operations within the two
main operators. Grouping and joining, for example, needs to then be
implemented manually. Furthermore, storing intermediate data only onto
disk represents another limitation, since doing so can create high delays in
the execution when compared to persisting intermediate data in memory.
While it is needed in many cases, developers have little control to avoid
this from happening.

2.3 Spark

Apache Spark [Apad] is a more recent Big Data framework that tries to
solve some of the weaknesses of Map/Reduce. It is currently supported
as a library in Scala, Java, Python, and R. In Spark, programs consist of
the manipulation of data through functional calls over a distributed data
structure called RDD (Resilient Distributed Data Structure) [ZCD112].
The framework minimizes the materialization of RDDs in memory and
offers control to the developers to trigger the persistence of data and to
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modify its partitioning. As Map/Reduce, it is deployed on a Master/-
Worker model to be executed in a distributed system.

Through RDDs, Spark often achieves better performance than Map/Re-
duce by avoiding persisting data on disk unless necessary. As explained
in section 2.2, this happens by default in Map/Reduce before the reduce.

In what follows, we describe Spark’s programming and execution model,
data handling, and fault tolerance properties.

2.3.1 Programming and Execution Model

The main concept in Spark’s programming and execution model is the
concept of RDDs. An RDD is a fault-tolerant distributed data structure,
that offers control over the partitioning of the data it contains and per-
sistence in memory (or disk). RDDs are immutable data structures that
store data into different partitions across several workers.

Developers manipulate RDDs through a large functional API of oper-
ations that either return a new RDD or a final result (i.e., a conventional
data structure). Operations that transform an RDD into another RDD
are called transformation. Those that return a conventional data struc-
ture or export the data contained by an RDD to disk are called actions.
Thus, RDDs are created either by loading data from storage/memory or
from other RDD(s).

Examples of common transformations are map, filter, and reduce.
Examples of actions are count, aggregate, and other operations that
collect data from the RDD such as take and collect.

1 [ main(..){

2 | contents = Spark.textFile(filesFolder)

3| words = contents.flatMap(line => line.split(’ ')).map(word => (word,1)
)

4 resultRDD = words.reduceByKey(valuel,value2 => valuel + value2)

5 result = resultRDD.collect()

6|}

Listing 2.2: An example wordcount in Spark.

To showcase the use of RDDs, Listing 2.2 shows an implementation
of a distributed wordcount, similar to the one presented in Section 2.2.
First, the file is loaded. Then, words are extracted by splitting every line
of the file to identify the words, and then mapping every word to a pair
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Figure 2.1: Overview of the partitions of an RDD across narrow and wide
transformations in the wordcount example.

with the word itself as key and 1 as value. In the third line, reduceByKey
is called on the words RDD to sum all the values associated with each
key. Finally, collect is called on the resulting RDD to fetch the result.

Transformations are lazy, so they are not executed until one action is
applied. This makes it possible to pipeline transformations to optimize
their execution and reduce the materialization in memory of intermediate
data.

As RDDs are generated from other RDDs through transformations,
they present a dependency to the RDD(s) they are generated from, thus
creating a lineage. Recall that an RDD stores data in partitions, dis-
tributed across different workers. Figure 2.1 displays an overview of the
partitions of the RDD as it is transformed through the code of the word-
count presented in Listing 2.2. Each rectangle represents a partition, each
column represents an RDD after the operation listed on top. The arrows
indicate a dependency between parent and child partitions. There can be
two kinds of dependencies between two RDDs:

e A dependency is narrow when each partition of the parent RDD is
used by at most one partition of the child RDD (e.g., when flatMap
and the map are applied in the figure).

e A dependency is wide when more than one partition of the child
RDD depends on one parent RDD partition (e.g., after the reduce-
ByKey is applied).
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When an action needs to be executed in the user program on a partic-
ular RDD, the master analyzes its lineage (i.e., the set of transformations
to be applied) to generate several stages (i.e., a logical execution unit),
each presenting a DAG of narrow transformations. A stage contains as
many narrow transformations as possible and ends with a wide transfor-
mation or an action. The set of stages represents the execution. Thus, a
stage represents the execution of an action or wide transformation, and of
all of the narrow transformations that happen before it. If the stage is ex-
ecuting an action, data is returned to the driver. If instead it is executing
a wide transformation, a new RDD is returned to the driver.

2.3.2 Handling Intermediate Data

In this section, we discuss how Spark enables the persisting of intermediate
results and how it handles data partitions with shuffling and partitioners.

2.3.2.1 Persisting

To avoid re-executing several times the same computations, RDDs can
be persisted (i.e., materialized) in memory or disk through the persist
transformation. When persisted in memory, the data belonging to an
RDD is materialized in the partitions. Each worker may hold one or more
partitions of a particular RDD. When persisted to disk, each partition is
stored in a file on the local worker’s storage. Persisting is in fact a sort of
a checkpointing operation that stores the data of an RDD in memory or
disk at a specific point. Persisting is normally used by developers to avoid
replaying the same long-lasting computation multiple times, but it can also
be used by tools. In a debugger, for example, the persisted data can be
used to replay an execution partially, without reconstructing the persisted
RDD. Persisted data also simplifies the process of data provenance, i.e.,
the tracking of record dependencies, since the data is available in memory
to be analyzed!.

! Data provenance is a technique used in databases and Big Data frameworks to track
the provenance of records across different modifications.
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2.3.2.2 Shuffling and Partitioning

Recall that wide transformations are executed at the end of a stage to pro-
duce a new RDD and that they involve an operation in which at least one
partition of the resulting RDD is dependent on data of different partitions
of the parent RDD. We call shuffling when data is moved for applying a
wide transformation (e.g., reduceByKey)

As it potentially involves a lot of data being transferred over the net-
work shuffling is considered a costly operation. Shuffling, however, is
necessary to perform certain operations that are very common in data
analysis such as grouping and reducing.

To improve how data is partitioned and thus to reduce the amount
of shuffling, Spark offers a repartition functionality, available for RDDs
that contain key-value pairs. Data is partitioned according to one of three
different partitioners: (i) the hash partitioner, used by default, that repar-
titions the data by the hash of the record, (ii) the range partitioner, that
divides data into equal amounts among the different partitions, or (iii)
a custom partitioner, definable in a partitioning function, similarly to
Map/Reduce.

Repartitioning is useful especially when the data of an RDD needs to
be shuffled multiple times in different stages. By repartitioning, shuffling
happens only at the moment of triggering the repartition. When repar-
titioning, the number of new partitions can be specified. This helps to
adapt the partitions to the number of workers. Repartitioning is also use-
ful to avoid hampering the parallelization of tasks to balance the number
of records in each partition. This avoids clustering and thus improves the
performance of later operations.

2.3.3 Fault Tolerance

Fault tolerance in Spark is built into RDDs. RDDs handle node fail-
ures by recovering the values of a specific partition in case a worker goes
missing. This happens by storing in an RDD, partition by partition, all
dependencies to the parent RDD’s partitions in a lineage.

In practice, if a worker falls and becomes unavailable, i.e., if the data
in its memory cannot be accessed anymore, the system tries to continue
the execution by recovering the data of the unavailable worker. Taken a
now unavailable partition, the master analyzes its lineage and instructs
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Figure 2.2: Overview of the partitions of an RDD across the wordcount
example, highlighting the partitions after reduceByKey.

another worker to apply the actions and transformations contained in
it, thus restoring the contents of the lost partition. The amount of re-
executed operations depends on the type of transformations. To illustrate
this, we show in Figure 2.2 a variation of Figure 2.1 in which we show
which worker holds which partition (i.e., W1, W2, and W3) and we mark
with a letter the partition after the reduceByKey operation. Arrows show
dependency among the partitions. Particularly, partition A depends on
partition 1, partition B depends on all other partitions, and partition C de-
pends on partitions 1 and 3. If a worker becomes unavailable, all the data
it holds also becomes unavailable and needs to be reconstructed. In case
the linage includes only narrow transformations, once the parent partition
is detected the set of transformations is applied to it to reconstruct the
missing partition. In our example, if partition A needs to be recalculated,
it suffices to re-execute the three transformations, starting with the file
read, on the data of partition 1 to then execute the reduceByKey. When
a wide transformation is in the lineage of the partition to reconstruct, it
means that one partition of the parent RDD can be the parent of multiple
partitions of the child RDD. In our example, partition B depends on all
the three partitions of the RDD after the map. If worker 2 goes missing,
partition B needs to be recalculated. Since partition B is dependent on
all the partitions after the map, the framework needs to re-execute all the
transformations on all partitions before applying the reduceByKey to re-
construct partition B. This is mitigated in case a partition is materialized
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before applying a wide transformation: if this RDD is persisted after ap-
plying the map and worker 2 goes missing, only partition 2 needs to be
reconstructed before applying the reduceByKey to reconstruct partition
B.

2.4 State of the Art on Debugging

In this thesis, we study debugging support for Big Data applications. This
section provides a state of the art on debugging, particularly focusing on
debugging distributed programs and Big Data applications.

As identified by Zeller in the book “Why Programs Fail” [Zel09], every
failure in a program is caused by an infection, which in turn is caused by
an earlier infection, till reaching the erroneous code that generated this
infection chain. Debugging is the process of identifying the defect that
causes this infection chain (i.e., the root cause), and removing the defect so
that it will no longer affect the program. According to Zeller’s definition,
the word bug has different connotations: bug can refer to a defect, i.e.,
an incorrect program code; an infection, i.e., an incorrect program state;
a failure, i.e., an observable incorrect behaviour. Overall, the process of
debugging refers to investigating any of the three aspects of a bug.

2.4.1 Debugging and Debugging Techniques

There are different techniques for debugging programs, depending on
which point in software development they are applied. Static techniques
apply before executing the program, dynamic techniques during the pro-
gram execution, and hybrid techniques combine a static execution with
data from a dynamic one.

Static analysis techniques focus on finding incorrect execution paths,
so paths that lead to incorrect behaviour, without actually executing it.
For example, symbolic execution [Kin76] is a kind of static analysis that
tries to detect which input values cause the execution of which branch
of the code. It does so by substituting program values with abstract
values and executing the abstract program with an abstract interpreter
[Cou96]. This abstract execution then generates a series of constraints
over symbolic values to determine how a particular path can be reached,
thus possibly isolating the constraints over an input that leads to incorrect
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behaviour. The constraint solver then solves the set of constraints related
to a path, extracting one or more possible values for the symbolic variables
that lead the execution to that path. While these techniques are useful
for generating faulty inputs or for contract verification, it does not scale
to programs of big size, which might include many execution paths. This
problem is also referred to as path explosion [XZ710, KHL10] .

Hybrid static analysis techniques, such as concolic testing [Sen07], aim
to reduce path explosion by performing both a symbolic execution and
dynamic execution of the program. After identifying symbolic variables,
the program is executed dynamically, feeding arbitrary input values to it.
Operations that affect symbolic variables are logged and used to re-execute
the program symbolically to generate a set of symbolic constraints, as a
normal symbolic execution would do, and path condition. The symbolic
execution is thus limited only to the path that the execution took with
those specific input variables. At this point, path conditions are negated
and fed to a constraint solver to calculate input values that lead to a
different execution path than the ones that were already tested. Similar
to symbolic execution, concolic testing can find input values that lead to
an incorrect behaviour while limiting the number of explored paths thanks
to the use of concrete (dynamic) values in combination with the symbolic
ones.

Finally, dynamic analysis techniques analyze a program based on the
values of a concrete execution. They do this by monitoring the execution
and gathering information about it. This information is then analyzed to
help the developer investigate the root cause of a bug. Dynamic techniques
can be automatic or controlled by developers. Examples of automatic dy-
namic techniques are delta debugging [ZHO02] and fuzz testing [MFS90].
Delta debugging is based on the execution of unit tests. Given an execu-
tion that fails with a specific input, delta debugging tries to reduce the
size of the input to extract which part of the input is the one causing
an error, in an automated way. Different parts of the input are isolated
and fed into the execution until the minimal set of input is detected to
be the one causing the error. Fuzz testing, also called fuzzing, similarly
tries to identify input values that make particular tests fail, by variating
this input. Fuzzing was originally designed to test UNIX utilities but now
evolved into a common debugging technique [KRC'18]. Practically, ran-
dom inputs values are fed to unit tests, until a particular input can be
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found to make the test fail. In this way, the input causing errors can be
isolated, so to help developers fix the behaviour of the program.

The main example of dynamic tools that can control the execution is
debuggers. Debuggers, on the other hand, are dynamic tools that allow
developers to observe and control the execution of a program to inspect
and analyze its state throughout its execution. They do so by offering
primitives to finely step through the execution, inspect values of variables,
and/or execute expressions in the context of the debugged execution.

There exist two families of debugging techniques: offline and online
debugging. Offline debugging, also known as post-mortem debugging, typ-
ically allows developers to analyze the execution of a program after it
finished running. Online debugging, instead, allows developers to analyze
the execution of a program while it is running by letting them pause the
execution and control it step-by-step. In literature they are also referred
to as event-based debuggers [MHS89).

In the remainder of this section, we discuss more in detail the different
offline and online debugging techniques and their architectures through
examples of concrete debuggers. We then focus on debugging techniques
for Big Data applications, some of which include the use of a debugger in
combination with dynamic analysis techniques.

2.4.2 Offline Debugging

One of the first definitions of post-mortem debugging was given by Gill as
far as 1951 [Gil51] in the context of debugging EDSAC programs. Namely,
he defines post-mortem debugging as the process of teleprinting the state of
the program through a second program. Moreover, he describes how this
process “gives to the programmer a static picture of the machine”, that is
used to investigate both order and numerical failure. The concept of post-
mortem debugging has evolved since then, and post-mortem debuggers
are now largely used in industry to debug applications in many domains,
from cloud computing to operating systems [Pacl1].

In this section, we describe the main offline debugging techniques. We
first talk about log-based debugging solutions, then move our focus to
Record & Replay debugging approaches and finally describe checkpoint-
based debugging.
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2.4.2.1 Logs and Dumps

Offline debugging often involves capturing information of the program ex-
ecution in a log for later analysis. The easiest form of populating a log
is to add print statements in the code to extract and print state from
variables, or to verify which path of the execution was taken by the pro-
gram. This technique is called printf debugging. While it has been often
perceived as the best method to debug [BSSZ18], especially for inexpe-
rienced developers, this technique is limited by the extent of the print
statements, and the amount of information available at the moment of
printing. Furthermore, this debugging technique requires modifying the
code to be applied, and possibly having to track back and remove print
statements after debugging.

It is the responsibility of the developer to wisely choose what to log:
capturing too little information may require many debugging cycles to
find the root cause of the bug, while too much information may add too
much noise to the analysis [Pacll]. Logging can also be automated by
automatically reporting in the log when particular events occur. For ex-
ample, runtime errors are normally systematically logged in the form of a
stack trace.

Another log-based debugging technique is core dumps. Instead of
printing information explicitly, core dumps represent a dump of the state
of the program, captured, for example, at the moment of a crash. Thus,
the log does not only contain information about an event (e.g., a crash)
but also about the state when an event happened. Hence, core dumps nor-
mally include more information than what print statements can capture.
A core dump is often generated by the operating system and includes the
values of the registers, as well as information on the call-stack and the
actual memory dump of the crashed program. Core dumps often need to
be loaded into other debugging tools such as GDB [GNU] to be analyzed.

Despite being popular, log-based approaches are limited by the amount
of information available at a specific moment, thus they do not provide
enough contextual information to find the root cause of a bug [Pacl1].

2.4.2.2 Trace-based Debuggers

Another popular offline debugging solution is trace-based debugging, which
is based on a trace of program events such as method activations and pa-
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rameter values, recorded during the execution. A trace is automatically
recorded during the execution and can be later browsed [BL07] or replayed
through a Replay Debugger.

Record & Replay debugging is based on the deterministic replaying of
a recorded execution, i.e., a replayed execution that follows the recorded
trace. This means that the incorrect behaviour needs to be captured in
the traced execution. If this is not the case, the execution may be recorded
and replayed multiple times. During replay, Record & Replay debuggers
often offer capabilities typical of online debuggers, such as state inspection
and step-by-step execution.

Replay debuggers are especially useful when programs present non-
determinism, as is the case for many concurrent and distributed programs.
Non-deterministic inputs are dealt with by storing a partial order of vari-
able accesses or events in the trace. In this way, the execution is replayed
correctly. Trace recording, however, typically introduces a high overhead
in the execution, and its scalability depends on the granularity of the
trace[MHS89].

Literature has also focused on reducing the size of the trace [WPP114],
for example by iteratively applying finer-grained traces on interesting parts
of the program.

When all variable changes are stored, the debugger becomes ommni-
scient, enabling back-in-time debugging. As an example, TOD [PT09]
records all variable changes of the program in a trace, storing it in a dis-
tributed database. While the database enables TOD to make fast queries
for inspecting a specific variable state in the past, it also introduces a
further memory overhead. This is why other approaches that do want to
achieve some level of omniscience, try to limit the number of variables that
will be tracked. Actoverse [SW17], on the other hand, lets the developers
annotate the fields of an actor that they want to trace, thus limiting the
size of the trace.

2.4.2.3 Checkpoint-based Debuggers

In contrast to Record & Replay debuggers, checkpoint-based debuggers
do not record an execution trace but focus on the program state but are
based on the recording of application state in a checkpoint, i.e., a snapshot
of the execution similar to a core dump. Those checkpoints are used by
the debugger to analyze or replay the execution.
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For example, Igor and DeLorean [FB88, MVB™16] periodically check-
point dirty memory pages, i.e., memory pages that were changed since the
last checkpoint. In this way, the execution can be restored to a specific
checkpoint. As is the case for core dumps, Checkpoints can become heavy
depending on how big the application state is. DeLorean tries to tackle
this by optimizing the checkpoint size by not storing multiple times those
variables that do not change.

Finally, some debugging techniques combine trace recording with snap-
shotting. An example is Jardis [BMM™'16], a debugger for Javascript,
which records a trace of I/O events and combines it with state snapshots
of the event-loop taken at regular intervals (i.e., every few seconds). De-
bugging is then provided starting from the oldest stored snapshot and
replayed using the recorded trace. To limit the size of the trace it re-
moves old snapshots after a few seconds, thus also limiting the amount of
replayable execution.

2.4.2.4 Discussion

Offline debugging techniques, especially the ones based on traces and
checkpoints, present some interesting concepts for finding the root cause of
bugs and have been applied to Big Data applications (cf. Section 2.4.5.2).
On the one hand, Record & Replay allows developers to deterministically
replay an execution until the root cause of the failure is found. On the
other hand, checkpointing the state of the application provides the de-
bugger with contextual information, that can be used by the developer
to better understand the execution and where it deviated from the ex-
pected state while minimizing the number of replays. Recording a trace
or performing a checkpoint, however, often has a performance and memory
impact on the execution of an application.

2.4.3 Online Debugging

Online debugging, often called breakpoint-based debugging, allows develop-
ers to control the execution of the target program by marking “interesting
points” of the execution at which the program can be paused, known as
breakpoints. Once the program is paused, the debugger typically offers
commands to (1) inspect the state of the program, often giving access
to some data (e.g., a stack trace) that helps to understand how the pro-
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gram reached the current breakpoint, and (2) to control the debugged
applications step-by-step using operations such as stepping into or over a
particular call.

Through an online debugger, developers also interact with the program
state. This happens via inspecting the value of variables, or by executing
expressions and analyzing their result. This is a very powerful instru-
ment in program comprehension, but it can also introduce side-effects
since developers can change values of variables, or execute through ex-
pression evaluation some execution path that was not originally going to
be executed by the program.

From an architectural point of view, we categorize online debuggers
into two families: in-place (or in-process) and remote debuggers. Figure
2.3 shows the two architectures.

In-Place Debugger Remote Debugger

Application Process Debugger Process Application Process
. 1 Debugger-Interface o
Application i Application
Debugger-Interface : Debusger
| Model | Debugger api
Debugger-Core - : : g8

Figure 2.3: In-place and remote debugging architectures.

2.4.3.1 In-place Debuggers

An in-place debugger is an online debugger that executes in the same
process as the application. It shares an address space with the application
and can directly access its data and control its execution. Developers
control the debugger through the Debugger-Interface, i.e., a graphical user
interface or a command-line interface. The Debugger-Core includes the
components of the debugger that instrument the running application.
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With this architecture, developers can typically modify through the
debugger all objects of the application, including classes, instances, en-
vironments, and in some cases runtime contexts. Examples of in-place
debuggers include mainstream debuggers such as the ones for Python,
Perl, and Pharo [Fou, Por, BNDP10].

Since the debugger runs on the same process as the executed applica-
tion, the developer does not experience latencies when applying operations
during a debugging session (e.g., stepping into a method). This results in
a generally good user experience since the debugger is highly interactive
and provides immediate answers to the issued debugging commands.

On the other hand, to operate such debuggers, developers need to
have direct access to the application process. For instance, debugging
with Pharo’s in-place debugger requires a screen and keyboard plugged
into the machine that is being debugged. To overcome the need for direct
access, a second architecture was designed: remote debuggers.

2.4.3.2 Remote Debuggers

A remote debugger is an online debugger that controls the execution of
the debugged application from a separate process, i.e., the debugger pro-
cess. The debugger process offers the same commands and features to the
developers as an in-place debugger through its debugger interface. It does
this by dividing the Debugger Core into two components: the Debugger
API, running in the application process to instrument the application,
and the Debugger Model, running in the debugger process to transmit de-
bugging commands from the Debugger Interface to the debugger API. In
the resulting architecture, the target application is thus instrumented by
the debugger API that receives in turn its commands from the debugger
model. Examples of such debuggers are JPDA [Ora] for Java, GDB [GNU]
for C/C++/Objective C, Visual Studio remote debugger [Micc] for NET,
and Mercury [PBFD15] for Pharo Smalltalk.

The main benefit of this architecture is that it allows the debugger
to be deployed either on the same machine (typically a development sce-
nario) or remotely, i.e., deploying the two processes on different machines
connected over the network. All debugging operations in a remote debug-
ger, however, require inter-process communication between the debugger
and the application process. As such, users may experience extra latency
of the debugging operations for communication delays especially when de-
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bugger and application are deployed on different machines connected over
the network.

2.4.3.3 Discussion

In contrast to offline techniques, online debuggers capture the context of
an error at the moment that it manifests and provide tools to further
explore the program execution such as stepping commands, expression
evaluation, and state inspection. This removes the replaying time typi-
cal of offline debugging approaches. The operations performed during a
debugging session with an online debugger may introduce side-effects and
delays in the execution. This is often referred to as probe effect [Gai86).
These may alter the behaviour of an application and affect the reproduc-
tion of a bug, especially in a distributed and/or concurrent setting.

2.4.4 Comparison

To compare online and offline debugging approaches, we define different
properties and analyze how the different debugging models apply them.

Capture Error Context. Approaches with this property support an ac-
tive capturing of the error context upon an unhandled exception.
When a program fails, online debugging approaches capture the
state of the execution, to enable debugging. Offline debugging ap-
proaches, instead, capture a trace to later reproduce the error, or
rely on the last captured checkpoint to replay from it.

Remote Access. Approaches with this property support the debugging
of remote executions, e.g., on a cluster.

Latency. This property indicates the amount of latency a debugging ap-
proach introduces to the program execution. Trace recording, check-
pointing, using breakpoints, and performing stepping operations af-
fect differently execution times by introducing delays or pauses.

Residual side-effects. This property indicates whether a debugging tech-
nique introduces side-effects in the program execution as a result of
debugging operations (e.g., assigning a variable, writing to an out-
put stream). Once such side-effects are applied, in traditional online
debuggers they are not rolled back automatically and may affect the
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behaviour of the debugged program when it is resumed. Residual
side-effects are problematic because they alter the application con-
text, making it more difficult to reproduce the original bug. We
say that residual side-effects are global when they directly affect the
application context and scoped when they are limited to a different
environment.

Table 2.1: Overview of debugging techniques and their characteristics.

Debugging Technique Capture Remote Latency Side

Error Context  Access Effects
Printf Debugging X - Low  Global
Dumps - - Low N.A.

Record & Replay X - High Limited
Checkpoint-based X - High Limited
In-place v X Low  Global
Remote v v High  Global

Table 2.1 summarizes the different debugging approaches and their
properties. In particular, notice that offline debugging approaches other
than dumps do not capture directly the context of the error, since they
involve a re-execution to access the state of the failing program. Similarly,
they do not explicitly support remote access, although this is supported
when log files, dumps, traces, and checkpoints are shared across remotely
connected machines. While dumps manage to capture the error context,
these are often generated by the OS, including part of the current pro-
gram’s memory without any abstraction (e.g., pointers instead of variable
names), but also system calls and lower-level information. For these two
properties, both online debuggers support the direct capture of the error
context. In-place debugging, however, does not support remote access by
design, which is instead fully supported by remote debugging approaches.

Regarding latency, both record & replay debugging and remote debug-
ging introduce high latency. The first one is due to the trace recording,
the second one is due to the network communication required for every
debugging operation. Printf and in-place debugging approaches, instead,
present a low latency because they do not require heavy trace record-
ing, and all debugging operations, if any, happen locally. Finally, residual
side-effects are global to the application state for all debugging approaches
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that generate them. For instance, executing something in the context of
the printing operation when debugging using printfs can alter the context
of the executed application. Similarly, debugging operations such as ex-
pression evaluation in online debuggers (in-place and remote) also have
a global side-effect. Debugging through dumps, Record & Replay, and
checkpoint-based approaches does not directly affect the execution, but
recording a trace or a checkpoint could add side-effects to the computa-
tion by adding delays that potentially alter the behaviour of the debugged
application.

In this dissertation, we focus on Big Data applications, which often
run remotely in a cluster of machines. For this reason, we will focus
on approaches that allow remote access. Debugging approaches for Big
Data applications should also scale to the different characteristics of such
applications. For this reason, in the next section we give an overview of
bugs in Big Data, and then describe several debugging approaches that
can be found in the literature.

2.4.5 Debugging Big Data Applications

Big Data frameworks, as described earlier in this chapter, simplify the
development of distributed programs by providing a programming and
execution model that abstracts away several complex concepts such as
distribution, parallelization, and fault tolerance. We now turn our at-
tention to debugging support for Big Data applications. To this end, we
first describe common errors in Big Data applications and then delve into
current debugging approaches.

2.4.5.1 Bugs in Big Data

Bugs in Big Data applications normally manifest in several ways. Big
Data frameworks are, in fact, often subject to a complex configuration.
Misconfiguration is often the cause of failures in different stages of the
computation [RK13]. Furthermore, this is amplified by the recent trend
of executing Big Data processing applications in the cloud. Zhou et al.
[ZLZ*15] analyzed what issues are reported in cloud processing services,
showing that the majority of reported failures are generated by hardware
and (hosting) system side problems. The 37% of reported failures, how-
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ever, are attributed to customer-side code, i.e., to errors introduced by
the developers. They further categorize these errors in three types:

e code defect, when the error is related to buggy code, i.e., explicit
errors inserted by the developer.

e operation fault, when the error is caused by common operational
mistakes, e.g., non-intentional data deletion, file renaming, missing
resources or data, etc.

o misuse, when the error is caused by configuration errors, e.g., using
a wrong library version or a wrong proxy configuration, improper
input parameters, and improper system assumptions (e.g., overesti-
mating the capabilities of the system).

Interestingly, Zhou et al. remark that almost 40% of reported errors
are introduced by the the developers. The authors find this surprising,
since customers of a cloud computing service tend to report only problems
that they think are not caused by themselves.

Besides the aforementioned study [ZLZ"15], other studies [BK19] show
that debugging Big Data applications is not as easy as it looks and that
bugs can take many forms, i.e., application bugs, configuration bugs, and
bugs that are not caused by developers but by the service they use to run
their programs.

Finally, another recent study has shown that developers spend hours
trying to debug data-cleaning errors [MLW™19], finding that minor pro-
gramming bugs or a handful of fail-inducing records in the analyzed data
are often traduced in hours of lost computations. In these cases, however,
simply ignoring such errors at run-time may present little or no impact in
the final results for many classes of Big Data applications. It is already
common practice in data analytics Al algorithms to gain performance by
sacrificing some accuracy [Mit16]. For example, Chippa et al. [CCRR13|
show that a k-means algorithm may run up to 50x faster by giving up 5%
of accuracy.

2.4.5.2 Overview of Debugging Approaches for Big Data

We now describe current debugging support tailored to Big Data ap-
plications, and, more in general, Big Data frameworks. Literature has
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focused especially on dynamic automated debugging techniques, hybrid
static analysis techniques, and debuggers.

Dynamic automated and hybrid static analysis. The goal of dy-
namic automated and hybrid static analysis approaches is to generate a
set of the inputs that cause the execution to fail, adapting known ap-
proaches such as concolic testing and fuzzing to Big Data applications.
For instance, Kaituo et al. propose Sedge[LRS'13], a tool that analyzes
Pig Latin programs (i.e., a SQL-Like language that executes on top of
Map/Reduce) by producing input values, and executing an adapted con-
colic analysis to generate through the analysis those input values that lead
to an erroneous path. The analysis of Sedge, however, is limited to Pig
Latin queries and does not support the analysis of UDFs (i.e., User De-
fined Functions). Gulzar et al. [GMMK19] propose instead an approach
to generate faulty input data by similarly analyzing Spark applications
through a hybrid analysis. The analysis takes care of combining a logical
analysis of the relational operations of the Spark model, such as join and
group-by, with the symbolic execution of user-defined functions. Zhang
et al. [ZWG™20] instead propose to use fuzzing to find faulty input in
Spark programs. Before applying fuzzing, however, BigFuzz performs an
analysis of the AST of the application to produce the same application in
an executable specification. A guided fuzzing step is then applied starting
from user-defined input as seed, modifying the input data respecting its
structure, so to find meaningful variations of the input that cause errors.

Debugging techniques. On the other hand, in the literature we can
find different examples of debuggers for a variety of Big Data frameworks.
Different debugging solutions for Big Data rely on replay or partial re-
play of all or parts of the distributed computation [DZSS13, SSK*15].
Some [GIY'16, JYB11] offer online debugging primitives in the remote
debugging setup, since these applications are usually deployed on a remote
debugging architecture. These approaches hence require often more than
one execution to reach the moment of the bug. In long analysis programs
such as the ones usually run on Big Data frameworks, this might require
some time.

Record & Replay approaches for Big Data programs rely on the deter-
ministic execution of these models, in which the runtime uses a directed
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acyclic graph (DAG) of operations on certain data partitions, thus gen-
erating a trace of what was executed on certain data partitions. The
Arthur [DZSS13] debugger, for example, uses this information to limit
the amount of replayed execution to those jobs that are ancestors of the
one the developer wants to debug. The replaying, however, needs to be
performed on all ancestors, and this can be costly [GIY116]. Arthur also
allows developers to replay locally a recorded execution by retrieving data
from the remote execution and enabling stepping operations through a
conventional debugger.

Another approach to limit the amount of recorded execution is em-
ployed in Graft [SSK'15], a debugger for Apache Giraph, a graph pro-
cessing system aimed at Big Data processing. Particularly, when using
Graft developers select beforehand those computation vertices that they
want to be captured, and the code is instrumented accordingly. After
data is captured, developers browse it through the debugger’s visualiza-
tion. For debugging, Graft generates a test case from the trace of the
recorded execution in which global variables are mocked. Developers then
run this test using a classic online debugger, stepping line by line. If code is
missing, however, the developer needs to copy-paste it into the debugging
environment as the mocking does not substitute their local variables.

More recently, Daphne [JYB11] and BigDebug [GIY*16] explored on-
line debugging support for Big Data applications. While Daphne employs
remote debugging, BigDebug adds breakpoints to a checkpoint-based de-
bugging solution.

Daphne is an online debugger for DryadLINQ [Micb] which provides
a runtime view of the running system and the query nodes generated by
a distributed LINQ query. It allows developers to inspect the program
state through breakpoints and to guide the execution through stepping
commands using the Visual Studio remote debugger Debugging is done
remotely on the worker where the breakpointed node is executing, inter-
rupting it to debug it. Daphne also offers a mode to replay an execution
locally to the developer’s machine. This is enabled by retrieving data from
the halted vertex and replaying its execution under the Visual Studio de-
bugger.

BigDebug [GIY116] is a debugger for Apache Spark [Apad| which
introduces online debugging primitives such as breakpoints and stepping
on top of a checkpoint-based backend, that relies on checkpoints taken
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during the execution and data provenance to enable debugging. BigDebug
represents our closest related work and, as we will detail in Chapter 8, we
compared our approach to it in an experimental user study. For this
reason, in the next section we present BigDebug with more details than
the other approaches.

2.4.5.3 BigDebug

BigDebug’s philosophy is to limit execution replay, which can take a lot of
time in the Big Data application domain, by leveraging on the execution
model of Spark. It offers online debugging primitives on failed execu-
tions and simulated breakpoints triggered during the execution. Below we
describe in detail the main functionalities of BigDebug.

2.4.5.3.1 Debugging a Failed Execution The debugging model of
BigDebug is based on the concept of failure-inducing records, i.e., the
records that caused the incorrect behaviour of the program. When an ex-
ception is thrown in a worker, BigDebug captures the intermediate record
that causes the exception, returning it to the driver where the debugger is
hosted and continues the execution. The execution, however, stops when
all the other records reach the end of the current stage.

At this point, the developer can browse through the intermediate
record(s) that caused an exception during the execution, the lineage of
the current RDD (i.e., the series of transformations applied before the
failing one), and a stack trace of the exception. From there, the devel-
oper can skip or manipulate the failure-inducing record. When skipping
a record, it is not included in the rest of the computation; when repair-
ing it, it will be replaced with another record indicated by the developer
in a textual representation. The developer can also indicate a function
through the lazy code fix functionality, to apply with the failure-inducing
records as parameter to generate the record that substitutes it in the next
computational stage.

Overall, these primitives offer control to the developer to fix failure-
inducing records before the computation is aborted, while avoiding replay.

2.4.5.3.2 Simulated Breakpoints As part of their online debugging
features, BigDebug offers to developers simulated breakpoints, i.e., special
breakpoints that do not halt the execution. Simulated breakpoints take
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advantage of the execution model of Spark: when a breakpoint is hit, the
breakpoint stores the lineage of the current RDD since the last material-
ization point, i.e., the last point in which the current RDD (or its parent)
was persisted. When the data from the breakpoint is requested, BigDebug
replays the execution from the last materialization point to capture the
breakpointed record and allows the developer to inspect a textual form
of the record. On a breakpointed execution, upon retrieving the break-
pointed record, the developer can also step over the halted transformation
to its result or resume the execution.

2.4.5.3.3 Guarded Watchpoints BigDebug includes guarded watch-
points to inspect the state of the execution. The idea behind this is to
capture all records that pass by the watchpoint and that satisfy the as-
sociated guard, i.e., a filtering predicate that returns true for all records
that satisfy it. When a record passes the guard of the watchpoint it is
stored in the worker and sent in batches, upon request, to the driver node
where the debugger is hosted. Using a guard also ensures that not all of
the records will be captured in the watchpoint, since this will force the en-
tire dataset to be captured and transferred to the driver. The code of the
guard can be updated through the debugger if different records want to be
matched. In case a simulated breakpoint is inserted after the watchpoint,
only the records passing the guard of the watchpoint will be captured in
a simulated breakpoint.

Simulated breakpoints can only be added to the execution after a
guarded watchpoint, i.e., only records that pass the guard of the watch-
point are captured by a simulated breakpoint.

2.4.5.3.4 Code Patching Upon a simulated breakpoint, BigDebug
allows the developer to change the code of an applied transformation in
the current lineage. Particularly, the developer can change the lambda
function applied by a certain transformation to a new one, respecting the
same type signature. To do this, the developer interacts with the debugger
Ul, inserting the new code to be applied into a template.

When the execution is resumed, BigDebug restarts the execution from
the latest materialization point, using the new code for the changing trans-
formation.
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2.4.5.3.5 Backward tracing BigDebug also includes the backward
tracing of a failure-inducing intermediate record, i.e., discovering the orig-
inal dataset record that produced the now failure-inducing intermediate
record. The tracing functionality is enabled by data provenance, imple-
mented in Spark in the Titian framework [ISTT15]. A trace is recorded
by instrumenting the execution with tracing agents, that tag input and
output data at the boundaries of a stage. The produced trace stores the
identifiers in a provenance table, thus associating identifiers with each
input and output record.

Tracing is performed on an output record and happens by joining the
different provenance tables across the different transformations that are
associated with that record. In this way, the debugger tracks the original
record(s) that originated the analyzed output record. BigDebug allows
both backward and forward tracing, so navigating such trace backward
until the original record, or forward to the final result produced by the
same record.

The same authors of BigDebug extended the data provenance func-
tionalities of BigDebug in BigSift [GWKI18] by adding test-based data
provenance, i.e., data provenance based on the results of a custom test.
After the execution of a program, the developer can write a test that will
capture some of the final records that, for example, they believe to be
faulty. Based on the result of this test, an optimized backward trace is
applied to find the original records responsible for those final results.

2.5 Criteria of Debugging Approaches for Big
Data Applications

As described in Section 2.4.5.1, Big Data applications are notoriously diffi-
cult to debug due to their distributed execution, the complex technological
stack, and the amount of data they analyze. We believe that many of these
errors, qualified by Zeller [Zel09] as minor and trivial problems, can be eas-
ily solved in local applications using interactive debugging tools. However,
when those errors are present in Big Data programs, solving them with
the current state of the art debugging tools becomes a time-consuming
task even though the fix may be trivial because current debuggers require
replaying at least part of the execution to enable the identification of a
bug.
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Particularly, building on the common errors in Big Data described in
Section 2.4.5.2, we describe the criteria respected by debuggers for Big
Data applications.

Scalability to data. Debugging approaches for Big Data applications
should scale to the amount of analyzed data. For example, a debug-
ger needs to have a trade-off regarding how much data is retrieved
and displayed. This is a core difference between debuggers for Big
Data applications and other debuggers for distributed systems.

Low Replay Time. Debugging approaches for Big Data applications
should limit the amount of replayed execution to enable debugging,
avoiding replaying long running applications from the beginning.

Halt & Inspect. Debugging approaches for Big Data applications should
support halting and inspecting the state of all intermediate variables,
as it is possible in many debugging solutions for sequential programs.

Stepwise Execution. Debugging approaches for Big Data should offer
classical sequential operations on a debugged execution to let devel-
opers step into the execution of every line of their code.

Domain-specific Operations. Debugging approaches for Big Data ap-
plications should support domain-specific operations, for example,
to step through the concepts of the framework’s execution without
using multiple sequential stepping operations.

Code Updating. Debugging approaches for Big Data applications should
enable live updates of a remotely running application without hav-
ing to repackage and redeploy the application or the whole system.
This reduces the time of debugging new versions of an application.

Ignore Errors. Systematical ignoring of errors can help deal with te-
dious data-cleaning errors very present in data science applications
[MLW*19] and, in general, errors that impact a low amount of data
that doesn’t impact the result of an analysis. As shown in a paper
by Chippa et al. [CCRR13], many AI applications such as K-means,
SVM training, and GLVQ, present high resilience to incorrect com-
putation (i.e., injected failures or approximations). Thus, a debug-
ging approach for Big Data should support for ignoring failures,
within limits easily configurable by the developer.
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Table 2.2: Survey of the related work based on the criteria.

Debugger  Side Replay  Halt & Stepwise Dom.S. Code  Ignore
Effects Point Inspect  Exec. Ops.  Updates FErrors

Arthur Both Start X v X X X
Graft Both Start Rec. X v X X X
Daphne Both  Check.* v v X X X
BigDebug Global  Check. v* X v v* -

In Table 2.2, we present an overview of related work on Big Data
debuggers described in Section 2.4.5.2 with regards to the criteria defined
above.

Regarding side-effects, all debuggers introduce in some mode global
side-effects. BigDebug introduces global side-effects on the debugged exe-
cution since this happens in the context of a breakpoint. Daphne, Arthur,
and Graft, instead, present global side-effects when debugging remotely,
but local side-effects when replaying part of the execution locally.

Regarding replays, the two Record & Replay solutions (Graft and
Arthur) need to replay either from the beginning or anyway from the
beginning of the recorded execution. Daphne and BigDebug instead only
need to replay from the last checkpoint. Daphne, however, represents a
special case, since replay is limited to the local replaying of the execution,
and not to the debugging of a remote breakpointed execution, which is
not the case for BigDebug.

Daphne and BigDebug offer breakpoints to halt the execution. BigDe-
bug, however, does not support the inspection of the state of variables,
expression evaluation, and classical stepping into the execution.

Arthur, Graft, and Daphne also offer support for fine-grained stepping
operations, so stepping through a classical debugger. In all of them, this is
limited to the locally replayed execution and happens through a classical
debugger.

BigDebug is the only one of the analyzed debuggers providing domain-
specific debugging operations, i.e., stepping across the constructs of the
distributed execution, and a form of live code updates, albeit limited to
the updating of single lambdas applied by transformations, and not to
general code changes to the program.
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Finally, to the best of our knowledge, systematic ignoring of errors,
i.e., embedded in the execution and debugging of Big Data applications,
is not currently supported in the state of the art. BigDebug does support
the skipping of records that caused an exception, but this is a manual
operation to be done record by record and cannot be done systematically
on, for example, a predefined number of records.

Based on our analysis of related work, in this dissertation we propose a
novel online debugging approach that offers all adheres to all the identified
criteria debugging Big Data thus allowing developers to:

e Debug immediately a failing execution, without replays.

e Debug in isolation, scoping the side-effects to the debugged execu-
tion.

e Set breakpoints into the execution to debug at specific points.

o Offer both classical and domain-specific stepping operations in any
of the debugged executions (failed or breakpointed).

¢ Update the code of any part of the remote application without hav-
ing to redeploy it.

o Allow developers to ignore a predefined number of errors that would
raise in the execution.

2.6 Conclusion

In this chapter, we first presented the state of the art on Big Data frame-
works, focusing on the Map/Reduce and Spark models that we aim to
debug with our debugger. Then, we moved our focus onto the state of the
art of debugging, starting from the definition of bugs and moving onto
offline and online debugging approaches. Moreover, we discussed domain-
specific debuggers for Big Data applications and describe criteria for a
debugging approach to be suitable to Big Data applications. Chapter 5
presents a live debugging approach for remote applications complemented
with live code updating. Chapters 6 and 7 further explore applying our
debugging approach to two Big Data models: Map/Reduce and Spark.
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Before describing our debugging approach, we present in Chapter 3 the
frameworks on which we built our debugging support for Map /Reduce and
Spark-like applications.
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Chapter 3

Scalable Big Data
Frameworks for Pharo
Smalltalk

In this chapter, we introduce the two Big Data frameworks that we build
debugging support for. As our research platform, we use Pharo Smalltalk
(Pharo for short), a modern and popular open-source implementation of
the classic Smalltalk-80 [Gol84].

Recall from Chapter 2 that Map/Reduce and Spark are both based
on the Master/Worker model. In what follows, we thus describe the im-
plementation of a Master/Worker model for Pharo Smalltalk, as part of
an infrastructural layer that we use to develop both Port and Spa: our
two Map/Reduce and Spark frameworks in Pharo. Before delving into the
details of our frameworks, however, we briefly describe Pharo Smalltalk.

3.1 Experimental Platform: Pharo Smalltalk

Pharo is a class-based object-oriented dynamically-typed programming
language, in which (almost) everything is an object, including classes and
methods, compiler, AST, etc. The object model is class-based with sin-
gle inheritance and supports code reuse through stateful traits. Pharo is
single-threaded and models the execution with so-called processes, rep-
resenting a green thread running in the same OS process of the Pharo
virtual machine.
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Being a Smalltalk implementation, Pharo embraces the concept of the
interactive programming environment, by offering an integrated develop-
ment environment (IDE) to write, read, execute, test, and debug code.
The environment is image-based, so the state of the IDE itself is stored
in a full snapshot of the heap and can hence be restored at any time after
saving it.

Furthermore, Pharo is a reflective language, with primitives for the
reification of methods, class, and runtime structures such as the call-stack.
Many of the tools that are part of Pharo are implemented using the reflec-
tive capabilities of the language, including the Pharo Debugger. This is an
in-place debugger, i.e., it executes in the same process of the application,
and is used interactively by developers to debug both breakpoints and
unhandled exceptions. The Pharo debugger offers access to the execution
stack, and all the variables referenced at each of its frames. Besides the
classical stepping operations, it also provides an evaluator in the context
of the currently selected stack frame, in which developers execute or de-
bug arbitrary code. Furthermore, it offers a restart operation, that, when
selecting a stack frame, restarts the execution from the selected frame,
allowing to re-execute previous calls. Finally, it supports live code up-
dating, thus letting the developers change the code of a method in the
debugger and its reloading through the restart operation.

3.1.1 Pharo Syntax and Constructs

This section provides a summary of the Smalltalk syntax, that should help
the reader understand the code listings of the rest of this dissertation in
case they are not familiar with Smalltalk.

The listing below defines the sum method in the Foo class'. In Smalltalk,
the period (.) is the statement separator. Local variables, a and b in this
example, are defined directly after the method name between pipes (||).
In line 3, an instance of the Foo class is created by sending the message
new to the same Foo class. Classes are in fact also objects that can un-
derstand messages. Line 3 assigns the value 1 to the variable b through
the := operator. Finally, line 4 returns the result of the method, i.e., the

sum between b and c, through the ~ operator.

!For displaying method signatures, we use the convention Class >> methodName
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1 | Foo>>sum

2| |ab|

3 a := Foo new.
4 b:=1.

5 “"b+1

Methods and Messages. In Smalltalk, objects represent are instances
of one class and communicate by sending messages. Messages are looked
up in the inheritance chain of the class of the receiver object, starting from
the class of the receiver?.

There are three kinds of messages, depending on the number of param-
eters. Unary messages, such as new, have no parameters. Binary messages
have exactly one parameter and are named by symbols such as + and other
mathematical operators. Finally, keyword messages accept one or more
parameters encoded in their name. For example, the listing above shows

four lines in which the different kinds of methods are called.

1 foo := Foo new.

2 bar := Bar new.

3 sum =1+ 2

4 res := bar sumFoo: foo withParameter: sum.

For instance, the first and second lines send the unary message new
respectively to the Foo and Bar class to instantiate them in the foo and
bar variables. The third line sends instead the binary message + to 1 with
2 as a parameter to calculate their sum and store it in the sum variable.
The last line sends the keyword message sumFoo:withParameter: to an
instance of Bar (i.e., the bar variable), with foo as the first parameter
and sum as the second parameter.

The listing below shows the definition of the keyword method sumFoo:
withParameter:, i.e., method with two parameters: aFoo and anInteger?.

1 | Bar>>sumFoo: aFoo withParameter: anlnteger
2 “aFoo sumWithParameter: anlnteger.

2If no method is found in the inheritance chain, then the doesNotUnderstand:
message is sent to the receiver of the original method. The default behaviour of
doesNotUnderstand: is to throw a runtime exception.

3In Pharo it is a convention to encode, when possible, the type of a variable in its
name, so to increment the readability of the code. In this example, aFoo and anInteger
indicate that the two variables will have an expected type of Foo and Integer
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In line 1 the method is defined through two keywords, i.e., sumFoo:
and withParameter:, and the name of each parameter after a colon. In
line 2, this method returns the result of calling sumWithParameter: with
aFoo as the receiver, and anInteger as the parameter.

Closures Finally, Pharo features closures, called BlockClosures or more
familiarly blocks. For example, we show below a definition of a closure that
takes two parameters, a and b, and returns their sum.

1| sumBlock := [:a | a + 1]
2 sumBlock value: 1.

A closure is defined within square brackets and starts with the definition
of each parameter of the block, each preceded by a colon. A pipe sepa-
rates the definition of the parameters from the actual body of the block.
The body can contain multiple statements, separated by the statement
separator (.). A block returns the last statement of its body. An explicit
return of a block with the ~ sign returns the method that defined it. A
block is called using the value message, or value:, value:value:, etc.
when it accepts one or more parameters. For example, in the second line
of the above listing, we call value: with the parameter 1 to execute the
sumBlock closure.

Smalltalk languages generally include very few control flow statements.
Common control flow patterns such as if statements are implemented as
messages sent to boolean objects with closure(s) as parameter(s).

3.2 The Infrastructural Layer

In this section, we describe the infrastructural layer used by both Port and
Spa, our Big Data frameworks supporting a Map/Reduce and a Spark-like
model, respectively. The infrastructural layer is composed of a runtime
based on the classical Master/Worker model [GKYLO01]. Communication
between the master and workers happens through a custom communica-
tion protocol over HT'TP. We use HT'TP because it is a reliable protocol
that is already used internally in Big Data frameworks such as Apache
Spark. Furthermore, we can reuse client and server components already
available in Pharo as a library. In what follows, we describe the runtime
and the communication protocol that enable the execution of Port and
Spa.
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3.2.1 The Master/Worker Model in Pharo

Recall that Big Data applications are normally executed on a cluster of
machines, so Big Data frameworks are normally constructed to run on
different instances of a runtime, deployed on different physical machines.
In the case of Hadoop Map/Reduce or Apache Spark, the runtime is based
on the Master/Worker model in which the master and each of the workers
run in a dedicated process, with no shared memory.

Map/Reduce and Spark, however, normally execute on multithreaded
runtimes that can exploit the parallelization capabilities of the hardware
where they run. This is not possible in Pharo because its runtime is single-
threaded. As such, our master runs on a unique single-threaded VM,
having fewer capabilities than, for example, a master in Apache Spark,
that could employ all cores of the machine in which it is deployed. Sim-
ilarly, each of the workers also runs on a single-threaded VM. To reach
the capacity of parallelization in the machine(s) the workers are deployed
on, we run multiple single-threaded workers on the same machine. This
leads to more inter-processes communication between the workers and the
master. Even though is not as performant as the JVM-based runtimes of
Spark and Map/Reduce, Pharo provides us with an environment in which
it is easy to experiment our debugging approach thanks to its reflective
capabilities.

Similar to Apache Spark, in our runtime the execution is guided by a
driver, also running on its own single-threaded VM. The driver submits
different tasks to the master for running the application. It also handles,
returns, and/or prints the results of the executed applications.

Figure 3.1 shows an overview of our runtime. Each dashed box repre-
sents a single-threaded Pharo VM execution running in an OS process. On
the left side of the figure, there is the driver that includes an application
runner to run a particular application. All the components include and
use different Pharo libraries, such as the serializer of the Fuel [DPDA14]
serialization library, the HTTP Client and Server modules of the Zinc
[Zin] library, and various other libraries available in the Pharo runtime.

The core of the driver is the application runner, which communicates
with the master through the Master Server component, running an HT'TP
server. Similarly, the master communicates with the different workers
through their Worker Server and the worker communicates to the master
through the Master Server.
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Figure 3.1: The distributed runtime of Port and Spa.

3.2.2 The Communication Protocol

All the entities of the Port and Spa runtimes communicate through a
custom communication protocol based on simple synchronous and asyn-
chronous messages on top of HTTP, i.e., the master and worker receive a
synchronous HTTP request that they treat either synchronously return-
ing the result within the answer to the request, or asynchronously by
scheduling the execution and returning an acknowledgment. In practice,
the master and each of the workers run an HTTP server on a particular
port (fixed for the master, dependent on the worker id for the workers).
Communication happens always through a single-use HT'TP Client, that
sends a POST request to the master or worker server. In the contents of
the request, we include the message.

When the Master or Worker Server receives a synchronous message,
they execute it immediately in the (green) thread that is handling the
message reception. The result is then returned to the sender. When
receiving an asynchronous message the master/worker schedules it instead
in an internal thread by using the TasklIt library [Con]. Tasklt ensures
that all asynchronous messages are executed sequentially, i.e. one by one.
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The behaviour of the message handling is implemented as part of the
message itself. Fach message extends either the AsyncMessage or the
SyncMessage class and reimplements a method (executeOn:), that takes
a master or a worker as a parameter, to specify the behaviour of that
message.

The Application Runner and the Master mainly communicate in terms
of synchronous messages. The Master and Workers mainly communicate
through asynchronous messages.

Messages are passed by copy among the different components of the
runtime, thus they are serialized before being sent over HTTP. Serial-
ization happens through Fuel [DPDA14], a general-purpose object graph
serializer available as a library in Pharo. More in detail, Fuel serializes and
deserializes object graphs using a custom pickle format [BHOO] to cluster
objects by their class before they are serialized. In this way, information
about the class is stored in the cluster only once, thus reducing the amount
of data that has to be serialized.

We rely on Fuel because it is stable, used by several other Pharo li-
braries, and relatively simple to use and configure to our use case. For
example, in our configuration, Fuel does not serialize methods and sup-
poses that classes (and methods) of the objects present in its graph have
not changed between serialization and deserialization. This is because we
assume that the master and the workers run the same codebase.

3.3 Running Example

This section describes a running example that we later use to describe how
to program in Port and Spa. A classic example of a Big Data application
is a distributed wordcount, a program that counts the number of times
each word is repeated in a (distributed) file. In this thesis, we present a
variation of such a wordcount application: an election poll analyzer, akin
to the one presented by Gulzar et al. [GIYT16]. This application analyzes
a dataset containing the results of the election polls and computes, for one
region, the number of votes received by each of the candidates.

The election poll analyzer reads data from a CSV file, in which each
line contains a region, the name of the candidate, and a timestamp, sep-
arated by commas. For the purpose of this application, we assume the
file to be available at a certain path in all the nodes through a local, net-
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worked, or distributed file system. Furthermore, the application should
report results only for valid regions, returning a dictionary indicating how
many times each candidate has been voted.

1 raw := FileSystem / filePath.

2| parsed := raw lines collect: [:line | line substrings: ','].

3| valid := parsed select: [:array | (self isValidTimestamp: array third) and:
[self isValidRegion: array first] |.

4 mapped := valid collect: [:array| array second —> 1]

5 result := mapped reduceByKey: [:valuel :value2 | valuel + value2]

Listing 3.1: A sequential implementation of the election poll analyzer.

Listing 3.1 provides a sequential version of the polls analyzer appli-
cation. Line 1 loads the file. Line 2 parses the file to split the lines
on the comma character. Then, line 3 filters the valid records using
select:, equivalent to a filter in functional programming languages. Line
4 maps each candidate name to one in a key/value pair using the collect:
method, equivalent to a map. Line 5 sums all the values associated with
the same key using reduceByKey:, resulting in a dictionary containing
how many times each key (i.e., candidate) has been voted.

3.4 Port: A Map/Reduce Framework for Pharo

In this section, we introduce Port, the framework and programming envi-
ronment that we built to write and execute Big Data applications using
the Map/Reduce computational model in Pharo.

As described in Section 2.2, a Map/Reduce application is composed
mainly of two functions: a map function, that transforms all the elements
of the input collection, and a reduce function, executed after the map,
that can reduce all the intermediate results to a final one. As for the
popular Hadoop Map/Reduce, our implementation is built on top of the
Master/Worker model described in Section 2.1.

In Port, the execution is controlled by the driver, that instructs the
master to execute a Map/Reduce application. The master schedules the
map tasks for this application, and, when all maps are finished, it schedules
the reduce tasks. Before starting the map, the master assigns a portion of
the input file(s) to each worker, that proceeds to load it. We assume that
all workers have access to input files, expecting that they (i) all run on
the same machine or (ii) on different machines that share the file system
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(i.e., the data is in a folder mounted in all of the machines and shared over
the network), or (iii) that the file is available on the HDFS distributed file
System.

3.4.1 Map/Reduce by Example

A Map/Reduce application in Port is defined as a Pharo class implement-
ing the methods map: and reduce:. Listing 3.2 shows the core code of the
election polls analyzing application in Port. The map: includes all of the
mapping and filtering code. It first splits the input string to parse it into
an array with the substrings: method and then checks through a helper
method whether the timestamp and region are valid. If so, it returns an
association created using the operator -> with the name as key and 1 as
value. Otherwise, it returns an association of nil values.

The reduce:key: method is applied to a list of values that are asso-
ciated with the same key and that key. If the key is valid (i.e., not equals
to nil), it returns a key-value pair with the key (i.e., the name of the
candidate) as key and the size of the list as the value. Recall that the
framework handles the loading of the data and the parallelization for us,
so the application does not include any code related to that.

PollsAnalyzer >> map: al.ine
| splitted |
parsed := aline substrings: ',
((self isValidTimestamp: parsed third)
and: [self isValidRegion: parsed first])
ifTrue: [ © (parsed second) —> 1 |

ifFalse: [~ nil —> nil].

© W N O U kW N

[
o

PollsAnalyzer >> reduce: aListOfVotes key: aKey
| dict |
aKey ifNotNil: |
" key —> aSetOfVotes size

]
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Listing 3.2: A Map/Reduce implementation of the election poll analysis
application.

When the application is run, each entry in the input log files is first
mapped by the map: method. The master instructs the workers to par-
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tition and sorts the results by key before scheduling the reduce:key:
method. The application finally returns a set of key-value pairs with the
number of votes of each candidate.

3.4.2 Handling Intermediate Results

In Port, intermediate data can be persisted in memory or directly on the
disk of a worker, depending on configuration parameters. This makes
Port’s handling of intermediate files more similar to the one of Spark than
to other Map/Reduce implementations.

After a map computation, the resulting key/value pairs are physically
at the worker that performed the map. To reduce by key in a distributed
way, key/value pairs that have the same key have to be read by the same
worker. Before scheduling reduce tasks, a shuffling step is executed. The
master, knowledgeable of which worker holds which key, coordinates the
transfer of data among the different workers using the key’s hash to par-
tition them.

Scheduling of tasks is important to tune the performance of Map/Re-
duce (cf. Section 2.2). However, since the focus of Port is on enabling
debugging and not on full performance, the scheduler of Port does not
include many optimizations. For example, the scheduler of Port is embed-
ded in the master and schedules reduce tasks according to the location
of intermediate data but does not schedule map tasks according to the
locality of the input files.

3.5 Spa: A Spark-like Framework for Pharo

To support a programming and execution model similar to Apache Spark
(i.e., Spark-like), we implemented a framework for Pharo Smalltalk using
the same infrastructural Master/Worker layer as Port that we call Spa.
As described in Section 2.3, the Spark model is based on the concept
of a distributed data structure and on transformations and actions that
manipulate their data. Hence, we introduce the support for a distributed
data structure that we call DDD, similar to Spark’s RDD. In this section,
we detail how to write Spark-like programs in Spa and give some details
about the adaptations to the original Spark model present in Spa.
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3.5.1 The Spark-like Model by Example

Central to Spa’s programming model is the concept of a distributed data
structure (DDD), akin to Spark’s RDD [ZCD™"12], where applications are
expressed in terms of functional operations on distributed data structures
that are eventually executed in parallel by the infrastructure. Developers
create a DDD by distributing a data-source (i.e., as a collection or a file)
in a local or distributed file system, as shown in the following listing;:

collection := 1 to: 1000.
collectionDDD := spa distribute: collection.
fileDDD := spa readFile: ' /path/to/file/or/dir’

The spa variable is the entry point to the Spa framework. The contents
of a DDD are stored in different partitions on the different workers, i.e.,
each of the workers holds a part of the content of a DDD in memory.

A Spa application is defined by extending the SpaApplication class,
or by simply writing the code in the Spa playground (to be executed in
the UI). Listing 3.3 shows the implementation of our running example,
defined in Section 3.3.

1 raw := spa readFile: filePath.

2 | parsed := raw map: [:line | line substrings: ',"].

3| valid := parsed filter: [:array | (self isValidTimestamp: array third) and: |
self isValidRegion: array first] |.

mapped := valid map: [:array| array second —> 1].

reduced := mapped reduceByKey: [:valuel :value2 | valuel + value2].

result := reduced getCollection.

(=) ot -

Listing 3.3: An implementation of the elections poll analyzer in Spa.

As expected, the Spa implementation of the election polls analyzer is
closer to the sequential code listed in Listing 3.1 than the Map/Reduce
one listed in Listing 3.2. A Spa application is thus composed of a series
of calls on the DDD generated by the readFile: message in line 1. The
rest of the code follows the structure of the sequential implementation,
until the getCollection message is sent in line 6. Since this is an action,
it triggers the computation of all the (lazy) transformations called before
and returns the resulting collection. In the following sections, we further
detail how Spa handles the operations and persistence.
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3.5.2 Actions and Transformations

As RDDs, a DDD supports two kinds of operations: transformations and
actions. Both actions and transformations are functional and return a
new data structure.

Transformations are operations that transform the data returning a
new DDD. Common transformations include map:, filter:, and reduceBy-
Key:. Transformations are lazy and return a new DDD that internally
indicates that a transformation has to be applied to the original DDD.
If more than one transformation is called in a sequence, all these trans-
formations are pipelined. In Listing 3.3, each mapping operation returns
a different DDD. For instance, after executing the first three lines, the
DDD valid does not include data, but only the reference to the previ-
ous DDD (parsed) and the operation (filter:) that has to be applied.
As in Spark, transformations are either narrow, i.e., each partition of the
child DDD depends at most on one partition of the parent DDD, or wide,
i.e., any partition of the child RDD depends on more than one parent’s
partition.

Actions are those operations that alter both content and structure of a
DDD, returning a conventional data structure. Actions are eager, i.e., they
will be executed immediately when they are applied. Common actions
include sum:, count:, Examples of such actions are the getCollection,
take:, and takeSample:.

When an action is applied, the computation of all transformations is
triggered. If a wide transformation is present, the runtime first pipelines
all narrow transformations before it and finally executes the wide transfor-
mation. Similarly, the execution of all narrow transformations is pipelined
to be executed before the action, which then returns results in a conven-
tional data structure to the driver. In the example of Listing 3.3, line 6
sends a getCollection: message that first triggers the transformations
from line 1 to line 4, then executes a groupByKey in the context of the
reduceByKey: method. The reduceByKey: transformation is then ex-
ecuted on its result and the action (i.e. getCollection:) returns the
result in a collection to the driver.
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3.5.3 Persistence

Following the original Spark model, intermediate data is not persisted be-
tween transformations and developers can explicitly persist intermediate
data after a particular transformation. This is useful if that particular
DDD is reused later in the computation to avoid re-computing it. In Spa,
this is done by sending the execute message and the data is persisted
always in the memory of the workers. This operation is similar to Spark’s
persist, except that in Spa it is an eager action. Furthermore, the de-
veloper cannot specify a persistence level (i.e., persisting in memory, on
disk, or both) as in Spark.

Not persisting automatically intermediate results avoids systematical
heavy file writes during the execution to store temporary data, common
in Map/Reduce frameworks as already discussed in Section 2.3. It does,
however, impact the fault-tolerance properties: in Spark even if data is not
persisted, fault tolerance is given by the fact that it is always possible to
recalculate a certain partition of an RDD/DDD by using the lineage of the
distributed data structure, so by re-executing the set of transformations
and actions that generated it, as discussed in Section 2.3.

3.6 Deploying Port and Spa

As described in Section 3.2, Port and Spa run on different processes acting
as master, worker, and driver. The two frameworks can be deployed both
locally or on a cluster. This is relevant for the validation of our debugging
prototypes since we use this mode when testing our debugger. Deploying
happens through an additional component, the deployer, that spawns and
monitors all the processes.

Deploying locally. When deploying locally, the deployer takes a snap-
shot of the current image and starts the different processes using this
snapshot. This ensures that the framework processes execute separately,
and on a different image than the one used to spawn them, albeit having
its same code base. The Master Server (cf. Figure 3.1) always runs at the
same port, so the workers, once they are started, contact the master at
that address to communicate their presence. The deployer monitors the
execution of the different processes and can notify the master in case one
of the workers crashes. In that case, upon confirmation of the master,
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the deployer redeploys a new worker. When running locally, the process
that the developer uses to spawn the master and workers (i.e., a Pharo
execution) is also used to drive the execution, i.e., as a driver in Spark.

Deploying on a cluster. When deploying on a cluster, i.e., a set of
different machines connected through a local network, the deployer com-
municates with an instance of Apache Yarn running on the cluster. Using
Yarn allows us to abstract on the properties of the system, e.g., avail-
able memory, available CPU, general availability of a node, etc. Yarn is
commonly used to deploy frameworks such as Map/Reduce and Spark on
a cluster, especially when the size of the system increases. In our case,
Yarn handles the configuration and execution of the cluster, providing
deploying and node management.
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Figure 3.2: Overview our runtime when deployed on a cluster using Yarn.

Figure 3.2 shows the deployment architecture of Yarn. On the left, you
can see the Driver Process, i.e., a Pharo process that runs the deployer
together with the application runner. It communicates with the Yarn
deployer, which is run by Yarn in a container. The Yarn deployer is a Java
application responsible for requesting the allocation of new containers and
for monitoring their state. Upon requesting to allocate a container through
the deployer, the application master interfaces with the Yarn framework
to know where (i.e., on which node) the container was allocated. All
the resource constraints (e.g., requested memory vs available memory)
are handled by Yarn. If a container cannot be deployed at a particular
moment, it will be deployed when the resource constraints are satisfied.
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The deployer regularly queries the Yarn deployer to know the state of
the containers. In case the state has changed, e.g., a worker was added
or removed, the deployer is responsible for notifying the change to the
master. Deploying does not block the driver and the master/workers that
are already deployed. If a particular container is never spawned by Yarn,
the system can work with the ones that are already available.

3.6.1 Deploying and Running Port/Spa Programs

The main way to deploy Port/Spa is by using the dedicated front-end in
Pharo. This is a GUI built in Pharo to deploy and monitor the Port/Spa
runtime, as well as for running the applications.

Through this GUI, the developer can select which deployment mode
(i.e., local or cluster) to use. Workers are added and removed dynamically
through buttons in the UI, or through API calls on this instance of the
framework. The tool also offers a dedicated playground, i.e., an environ-
ment in which developers can write and execute code through a variable
that represents the entry point to the framework already bound. When
executing locally (and optionally also when executing in cluster mode)
the instance of the framework instantiated in the playground acts as the
application runner of the application, i.e., it executes the sequential part
of the code, and it spawns the parallelized computation upon actions.

In Port, an application is executed by calling the runApplication:
parameters: method, making sure to pass a PortApplication and its
parameters as parameters. In Spa, the developers execute a full Spa ap-
plication through the same API call as for Port, or they can dynamically
execute their application in the provided playground by calling methods
in the API of Spa. For example, by calling distribute: or textFile:
Spa will respectively distribute a collection passed as a parameter or the
contents of a file, which will return a DDD that can be used in the play-
ground.

3.7 Conclusion
In this chapter, we presented Port and Spa, two frameworks that im-
plement the support for Map/Reduce and Spark-like programming and

execution models in Pharo, respectively. They allow us to write and exe-
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cute Big Data applications on a cluster and conduct research experiments
on the debugging support.

Although Port and Spa do not present all the optimizations available
in mainstream systems such as Hadoop Map/Reduce and Apache Spark,
they are representative of such frameworks and provide a realistic envi-
ronment to investigate and develop our debugging support. In Chapter 8,
we validate the scalability of Port using a realistic workload and of Spa
throughout the benchmarks of our debugging approach.
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Chapter 4

A Call-Stack

Instrumentation Layer for
the Debugging of
Framework Code

Libraries and frameworks are instruments that define a set of functions to
accomplish common tasks. They are meant to be reused, so developers
don’t need to implement the same behaviour multiple times and can fo-
cus on the application they want to implement. For instance, they solve
problems in a wide range of domains: from unit testing (e.g., the xUnit
family of frameworks) to scalable parallel execution (e.g., Apache Spark
and Hadoop Map/Reduce), passing through concurrency (e.g., Akka ac-
tors) or persistence (e.g., Hibernate). In this chapter, we explore Sarto,
a call-stack instrumentation layer to enhance the debugging of framework
code by the use of several operations to tailor the call-stack to the needs
of the developer. Sarto represents one of the foundations of our debugging
solution for Big Data applications that we use to implement some of the
internals of our debugging solution in Chapters 6 and 7.

Even though stack traces are key in understanding the execution of a
program, finding the root cause of bugs remains difficult because raw call-
stacks are difficult to read: application frames and framework frames are
interleaved in the stack, although most developers are often (if not only)
concerned about their own code. Moreover, certain important information
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may be absent from a call-stack because it may be contained in methods
that already returned or that were executed in another thread. Moreover,
when debugging parallel or distributed applications, important debugging
information is scattered in different call-stacks of different processes that
users need to manually relate.

Classical online debuggers such as IntelliJ and Eclipse offer solutions to
filter stack-frames, but they require either developer interaction or rely on
heuristics defined within the debugger. Other solutions focus on domain-
specific debugging of particular frameworks, through specific views and
operations, as it’s the case for actors [GNVT11, SCM09] or Big Data
frameworks [DZSS13, JYB11, GIY"16].

Our work revisits the concept of a call-stack to enable a framework-
aware debugging experience. Application developers debug a call-stack
that is previously tailored to the frameworks they are using and can dive
into the original call-stack in case they are interested in the framework’s
code. To perform stack tailoring we propose Sarto, a call-stack instru-
mentation layer that framework developers use to hide, show or relate de-
bugging information within the context of a framework execution. More
concretely, Sarto proposes a set of six call-stack operations to (1) cut and
(2) concatenate call-stacks, (3) insert framework-specific stack frames, and
when given more than a call-stack, (4) compare two call-stacks to check
if they are similar, (5) calculate a delta (similar to a diff between two
call-stacks), and (6) apply such delta to other similar call-stacks.

Before delving into the concepts of Sarto and its stack-tailoring oper-
ations, we introduce four debugging use cases related to different frame-
works. Then, we show in practice how we used Sarto in the different
frameworks and provide some insights on the implementation details. We
validate Sarto by analyzing our experience in using it in the context of the
different frameworks, and by running performance benchmarks to assess
that Sarto does not introduce noticeable overhead during normal debug-
ging. Finally, we provide notes to the related work to describe in more
detail other approaches for debugging frameworks.
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4.1 Challenges of Debugging Frameworks

This section details the issues when debugging framework code employ-
ing four use cases in four different domains: web servers, unit testing,
promises, and parallel executions.

4.1.1 Case 1: Debugging Web Servers

Web servers are frameworks that wait for network HTTP requests and
dispatch the handling of such requests to the corresponding application
code. If an error occurs in the application, the call-stack presents applica-
tion frames, i.e., the method calls that produce the answer to an HTTP
request, followed by several frames representing internal calls in the HTTP
server. Figure 4.1 shows an example of such a call-stack when debugging
a failing execution in the context of the Zinc HT'TP framework of Pharo.
The top two frames of the stack are application frames while the rest,
under the dashed red line, are framework frames. When stepping in this
execution, the developer easily ends up in framework-related frames.

Smallinteger /
UndefinedObject Dolt User Frames
ZnValueDelegate handleRequest:

. . ! Framework
ZnManagingMultiThreadedServer(ZnSingleThreadedSe authenticateAndDelegateRequest: Frames

ZnManagingMultiThreadedServer(ZnSingleThreadedSe authenticateRequest:do:
ZnManagingMultiThreadedServer(ZnSingleThreadedSe authenticateAndDelegateRequest:
ZnManagingMultiThreadedServer(ZnSingleThreadedSe handleRequestProtected:
BlockClosure on:do:
ZnManagingMultiThreadedServer(ZnSingleThreadedSe handleRequestProtected:
BlockClosure on:do:
ZnManagingMultiThreadedServer(ZnSingleThreadedSe handleRequestProtected:
ZnManagingMultiThreadedServer(ZnSingleThreadedSe handleRequest:timing:
ZnManagingMultiThreadedServer(ZnMultiThreadedSen executeOneRequestResponseOn:
ZnManagingMultiThreadedServer(ZnMultiThreadedSen executeRequestResponseLoopOn:

ZnCurrentServer(DynamicVariable) value:during:
BlockClosure ensure:

ZnCurrentServer(DynamicVariable) value:during:
ZnCurrentServer class(DynamicVariable class) value:during:

ZnManagingMultiThreadedServer(ZnMultiThreadedSen executeRequestResponseLoopOn:
ZnManagingMultiThreadedServer(ZnMultiThreadedSen serveConnectionsOn:

BlockClosure ensure:
ZnManagingMultiThreadedServer(ZnMultiThreadedSen serveConnectionsOn:
BlockClosure ifCurtailed:

ZnManagingMultiThreadedServer(ZnMultiThreadedSen serveConnectionsOn:
BlockClosure newProcess

Figure 4.1: The call-stack when debugging a failing HT'TP server in the
Pharo debugger.
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We say in this case that the debugger offers irrelevant information
to the developer. The information about framework frames is not needed
to understand the failing user code and just adds noise to the debugging
experience. As mentioned in the introduction to this chapter, debuggers
in mainstream IDEs (e.g., Eclipse’s debugger) offer filtering operations to
hide such framework frames in the stack. Such filters are either delegated
to the application developer, who may not have enough knowledge to do
it correctly, or are based on several predefined characteristics such as type
and location, i.e., whether the class of the called method is in one of the
project’s dependencies, or it is part of a given list of packages. For example
in IntelliJ, when the developer presses the filter button all frames that the
IDE knows to be from known libraries are filtered out. This is based on
heuristics to recognize library code and may filter out important frames,
as it is the framework developer who has the best knowledge about the
framework internals, but they have no control over how the stack is shaped
once filtered by the IDE. Thus, the user of the debugger is presented either
with a complete stack or with a filtered stack in which important methods
are not present anymore.

4.1.2 Case 2: Debugging Unit Tests

Unit testing frameworks are tools available for most programming lan-
guages to support the implementation, execution, and reporting of tests
results. A unit test generally focuses on testing the behaviour of one func-
tionality of the system, i.e., a unit, using assertions that check that certain
properties hold, e.g., checking that a function returns a specific value. In
case of a test failure, i.e., in case the test raised an error or produced an
unexpected result, developers normally proceed to debug the test to fix
the application’s behaviour.

When a developer debugs a test execution, the debugger halts at the
point in which an exception is thrown or an assertion fails. In this case,
the bottom of the stack has application code calling the testing frame-
work, followed by frames of the testing framework, and finally the frame
representing the failing test assertion at the top of the stack. While the
framework frames are usually not interesting to the application developer,
there is one particular method that could provide crucial information to
find the root cause of a failing test: the setup method, i.e., a method that
is called before any test execution to setup the necessary resources. This
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method activation is usually either hidden in between the framework stack
frames or is not even present in the stack anymore. However, the setup
method is important for the developer to reason about the execution of
the unit test as it contains information on how the test fixture was ini-
tialized. For example, it shows which variables were initialized and which
methods were called. This information may help the developer to identify
variables that were not correctly initialized or not initialized at all.

In this case, the debugger misses information: the stack frames with
relevant information are hidden or absent in the stack, e.g., the setup and
teardown methods.

4.1.3 Case 3: Debugging Promise Executions

Promises are recurrent programming abstractions in concurrent languages
to reconcile asynchronous communication with return values [BGL9S].
Many mainstream languages provide libraries with support for promises,
e.g., Scala [Lig] and JavaScript [Syel4]. A promise represents the result
of an asynchronous operation that may execute concurrently. When such
execution succeeds, the promise is resolved with a value; if it fails, the
promise is said to be ruined with an exception. Developers add callbacks
to handle both successful and failing resolutions.

Consider a promise created to gather the results of an asynchronous
execution as in Listing 4.1. In Pharo, a developer creates a promise from
a closure. The promise is executed on a different thread and is resolved
later, possibly with an exception. In the example, the promise divides by
the argument n, and a callback is added to intercept the ruining of the
promise and open a debugger on the thrown exception.

PromiseRunner>>promiseDivision: n
promise := [1 / n] promise.
promise onFailure: [:err | err debug].

PromiseRunner new promiseDivision: 0.

Listing 4.1: A failing promise.

Let us consider that a promise is created capturing the value n =
0. When debugging this failed promise, developers find a call-stack that
includes only the promise execution, and not the frames that lead to the
creation of the promise. This happens because the creation and execution
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of the promised code happen in different threads, so it is difficult for
developers to trace back the origin of the value zero. As such, two call-
stacks are involved, one for the creation and one for the execution of the
promised code. Moreover, the stack frame that created the promise is not
available anymore because it returned right after creating the promise.
Figure 4.2 shows the two threads: the left one represents the promise
execution, and the right one the promise creation.

”””” Promise Resolution Thread ~~-~~77 ="~~~ Promise Creation Thread ===~~~}
DivideByZero >> signal: | WorkerPool>>privateSchedule
PromiseRunner>>[1/0] i WorkerPool>>scheduleTask

Task >> evaluateOn: Task >> schedule
WorkerProcess >> workerLoop 3§ BlockClosure >> promise
! | PromiseRunner>>myFailingPromise }

Figure 4.2: Representation of the two treads involving the creation and
execution of a promise.

In this case, the debugger is again missing information that is dis-
persed over different call-stack(s): part of the application code potentially
related to the error is in another thread or has already finished executing.
This observation leads to different domain-specific debugging techniques
whose goal is to reconstruct causal relations in asynchronous communica-
tion to offer an asynchronous track trace [SCM09, LCN17, Dral3]. In this
work, we explore a generalization of those techniques to a solution that
relates information present on different stacks.

4.1.4 Case 4: Debugging Concurrent Web Servers

Consider again an error happening multiple times when resolving cer-
tain HTTP requests in an HTTP server. HTTP servers are often multi-
threaded and spawn a thread for handling new requests. When an error
occurs while handling a request, the server will answer with a 500 Internal
Server Error as a response, staying available to resolve the next request.
When an internal server error happens multiple times, debugging those
problems requires an understanding of how those errors are related, as
their root cause may be related even though they happened in different
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threads. Even if those call-stacks are identical or even similar, the debug-
ger shows no relation between them. It is up to the developer to verify
whether they are related, debug them singularly, or abstract information
from all of the different exceptions.

In this case, the information about the bug is again dispersed over
different similar call-stacks. Issues related to debugging parallel executions
also arise in the context of debugging Big Data frameworks. In a Big
Data framework, operations on a certain data set are executed in parallel
on a cluster of machines, over different portions of the data set. Parallel
executions (e.g., for Map/Reduce frameworks) then generate multiple call-
stacks.

4.1.5 Summary

Through the four case studies presented in this section, we identified three
common problems when dealing with the debugging of framework execu-
tions. Particularly, some of the information available to developers is (i)
irrelevant, that is the case when many framework frames bloat the call-
stack hiding the user frames that actually present the incorrect behaviour;
(ii) missing, when crucial information such as the setup method of a unit
test is not present in the stack; (iii) dispersed when information about a
parallel or asynchronous execution is dispersed in different call-stacks.

4.2 Sarto: a Call-Stack Instrumentation Layer
for Framework-Aware Debugging

To enable a framework-aware debugging experience, we propose a call-
stack instrumentation layer that tailors call-stacks based on framework
information. Framework developers hook into this instrumentation layer
to hide, show or relate debugging information within the context of a
framework execution. More concretely, we introduce a debugging instru-
mentation layer with a set of six on-stack operations. These operations
transform the call-stack before it is given to the debugger that we call
Sarto. As a result, the debugger exposes framework-specific information
when debugging a particular framework without having to adapt the un-
derlying language or runtime.
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In this section, we first present a general overview of the six stack
operations and then describe how the different operations are used to tailor
call-stacks for the debugging of the four aforementioned cases: HTTP
server, unit testing, execution of promises, and parallel executions. In
particular, we describe how they are used to hide useless information,
display useful information, and relate dispersed debugging information.

4.2.1 Terminology

Before delving into the specifics of each operation, we provide our defi-
nition of the necessary terminology that we use to describe our work. A
call-stack is a linked list of stack frames. A stack frame represents the
activation of a method or function: it holds a reference to the method and
the current program counter. Each stack frame references its caller (i.e.,
the stack frame that generated it), its arguments, the receiver (i.e., self
in Smalltalk or this in Java), and the local variables.

Exception >> signal: E Exception Frame

7

User Code
Framework >> CallBack D Framework Exit Point

ramework Code

Framework >> APICall D Framework Entry Point

User >> method % User Code

Figure 4.3: Representation of a call-stack, marking each frame as user
code, framework entry/exit point or framework code. The most recent
frame is at the top.

Figure 4.3 illustrates a call-stack where user code invokes framework
code, and in turn framework code invokes user code in a callback. Starting
from the bottom, a user frame calls the framework entry point, i.e., a
framework stack-frame that was invoked by application code. This is
followed by a series of framework-related frames and by a framework exit
point, i.e., a framework stack-frame that invokes application code. Finally,
a series of user-related frames calls the exception frame, i.e., the frame
representing the signalization of an exception. In this example, the call
to the framework API generated by the user method is the framework
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entry point, and the method that performs the callback to user code is
the framework exit point.

4.2.2 The Stack Operations

Sarto presents six operations to tailor the debugging information present
in a call-stack. Table 4.1 briefly summarizes the proposed operations.

Table 4.1: Overview of the stack operations.

Operation ‘ Description

Produces a new call-stack by filtering out some

tack cutti
Stack cutting activation frames.

Produces a new call-stack by inserting a custom

Crafti tack f
rattmg a stack trame stack frame in between two other frames.

Produces a new call-stack from two call-stacks to

Concatenating stacks . . .
simulate a sequential execution.

Compares two call-stacks to determine if they

Stack Comparison L. .
represent two similar exceptions.

Produces a delta stack containing only the

Delta Stack Calculati
elta Stack Calculation differences between two similar stacks.

Produces a call-stack from merging a call-stack

Delta Stack Application with a compatible delta stack.

Stack cutting. The stack cutting operation takes a call-stack and pro-
duces a new call-stack by removing all stack frames in between framework
exit and entry points, thus hiding irrelevant framework stack frames. In
our approach, framework entry and exit points are explicitly marked by
framework developers in framework code with method annotations (cf.
Section 4.3).

For example, Figure 4.4 shows the call-stack of a failing HT'TP request
in a web server that has been tailored by Sarto. In the figure, framework
frames at the bottom of the stack are displayed in gray to illustrate the fact
that they have been cut out, while the framework exit point and the user
frames are kept in the debugged stack. With this operation, application
code is isolated from framework code in the debugged execution. Letting
the developers focus on debugging their code, without unintentionally
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DivideByZero >> signal: Ex. Frame

Smallinteger >> /

7 User Code

MyServerLogic >> handleRequest:

HTTPServerDelegate >> handleRequest: D Fr. Exit Point

Figure 4.4: Representation of the stack upon an exception in the HTTP
Server.

stepping into framework code. It is the choice of the framework developer
to mark in the framework code which frames are framework entry and exit
points, so that stuck cutting is applied at the right frames.

Crafting a stack frame. The crafting a stack frame operation produces
a new call-stack that contains a custom stack frame inserted in between
two other stack frames, thus introducing information that was otherwise
missing. As explained in Section 4.1.2, this is the case of methods that
already returned or were called in a different thread.

Framework developers define a method that will either substitute or
go under the framework exit point. In this way, application developers are
offered call-stacks augmented with relevant information for debugging.

Exception >> signal: ﬁ Ex. Frame
7
User Code
Framework >> CallBack D Fr. Exit Point
Framework >> AbstractedMethod l Crafted Context

Figure 4.5: Representation of a call-stack, with a crafted context inserted
before the framework exit point.

Figure 4.5 displays the stack of Figure 4.3, where the exit point was
substituted with a custom frame. In this case, to avoid incompatibility
between a frame and its caller, we employ stack cutting to remove the
stack frames below the exit point.
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Concatenating stacks. The stack concatenation operation produces a
call-stack by concatenating two different call-stacks, thus reconciling two
threads of execution and giving the user the illusion of a single sequential
execution. This is the case of, for example, the call-stack of the remote
resolution of a promise (cf. Section 4.1.3), or more in general, the call-
stack of a user code callback within the remote execution of a framework.

””””””””” Thread A====~~=======5r=============--Thread B~~~""""""""""7
Ex. Frame 3 Exception >> signal:
7 ; |
User Code 3 i EE Fr. Code
1 i i
Fr. Exit Point D} Framework >> CallBack ):q’ Framework >> APIRemoteCall iD Fr. Entry Point
: i 7z
Fr. Code User >> method } User Code
|4
'

Figure 4.6: Representation of two call-stacks during a failing remote exe-
cution of a framework call.

Consider Figure 4.6, displaying two call-stacks related to two threads:
thread B (on the right of the figure) that presents the call-stack including
the original user call to the framework entry point, and thread A (on the
left in the figure) in which the framework exit point calls back user code
that then generates an exception. The stack concatenating operation links
the two call-stacks using the entry and exit point, present and marked in
both the call-stacks. Figure 4.7 shows the resulting call-stack.

Error >> signal: a Ex. Frame

%
é User Code

Framework >> CallBack Fr. Exit Point
Framework >> APIRemotecCall Fr. Entry Point
User >> Method User Code
7

Figure 4.7: The results of concatenating two call-stacks from different
threads.

In this way, when debugging an exception raised in thread A, develop-
ers are presented with a unique call-stack that includes both the exception
raised by the framework exit point and the user code leading to the frame-
work entry point. This implicitly hides the framework frames that e.g.,
take care of the network communication.
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DivideByZero >> signal: ii DivideByZero >> signal: 3 Ex. Frame

UserApp >> [:x | x/y] ii UserApp >> [:x | x/y] 3 User Code
Framework >> CallBack “ Framework >> CallBack D Fr. Exit Point
P 4 Fr.Code

Figure 4.8: Representation of two similar call-stacks.

Stack comparison. The stack comparison operation analyzes two call-
stacks and determines whether they are similar. Two call-stacks are con-
sidered similar when they are structurally the same, as in the case of
Figure 4.8. More precisely: two call-stacks are similar when, by travers-
ing their frames in pairs, they present the same sequence of method calls
and in each pair of stack frames the program counter of the method is
the same. Furthermore, each pair of frames should have the same type of
receiver.

This is useful in combination with the remaining two operations (delta
stack calculation and delta stack application), explained in following para-
graphs. Call-stack comparison identifies similar call-stacks among those
that are dispersed across a parallel or distributed execution, or across two
or more different executions. When comparing the call-stack of two ex-
ceptions, the stack comparison first checks whether the two exceptions
have the same type before comparing their two call-stacks. This is be-
cause the call-stack of two different exceptions will differ at least in one
of the frames, i.e., the frame that throws the exception, making the two
call-stacks not similar.

Delta stack calculation. The delta stack calculation operation takes
two similar call-stacks and produces a shrunk call-stack that contains only
the values that differ between the two call-stacks.

Given two similar call-stacks, thus under the assumption that the two
call-stack are structurally the same, frames are traversed in pair and all
their associated values are compared (i.e., receiver, arguments, and tem-
porary variables). When they differ, the different values are stored in the
resulting delta stack, i.e., a representation of the call-stack that includes
frame by frame not a full stack frame, but just the computed delta among
its variables.

70



4.2. SARTO: A CALL-STACK INSTRUMENTATION LAYER FOR
FRAMEWORK-AWARE DEBUGGING

UserApp>> [x/y] UserApp>> [x/y]
x:1 X:2
y: 0 y:0
self: anUserApp(#123) self: anUserApp(#123)

Figure 4.9: Two stack frames and their variables in the calculation of the
delta stack.

|
Reference Stack | Delta Stack
|

UserApp>> [x/y] 204814

x: 1
y: 0
self: anUserApp(#123)

Figure 4.10: The calculated delta stack for this frame.

For example, consider Figure 4.9 showing a portion of the call-stack
presented in Figure 4.8. In the example, the two variables y are the same
in both stacks, as is the case for the receiver of the method. The two
x variables, however, differ in the two call-stacks. Figure 4.10 shows the
resulting delta stack on the right, compared to the reference call-stack.
Instead of the full frame, a frame of a delta stack includes only the variables
that do differ, in the same order as they are internally represented in the
original stack frame. For the others, a placeholder indicated as # in the
figure is included in the delta stack. Hence, in this delta stack the variable
x, which was 1 in one stack and 2 in the other, is included in the delta. The
other two variables (y and self) were not differing, so they are substituted
with a placeholder marked as # in the figure.

Since only the values that differ are kept, and not the original one, the
delta calculation is not a commutative operation.

Delta stack application. The apply delta stack operation takes one
full call-stack and a delta stack associated with it and produces a new
call-stack representing the application of the delta to the full call-stack.
The delta stack must have been created from a similar full call-stack or a
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copy of it. This enables the reconstruction of multiple call-stacks from a
single full call-stack and several delta stacks.

In a scenario with many similar remote call-stacks, only the first must
be stored entirely. All subsequent similar call-stacks are stored as delta
stacks instead. This is the case for consequent executions for example of
an HTTP framework, but also for Big Data applications, where several
workers can fail with the same exception. This operation will be used and
further discussed in Chapter 7.

4.3 Sarto in Practice

In the previous section, we defined the 6 call-stack instrumentation opera-
tions provided by Sarto. By using these operations, framework developers
can provide an improved experience to application developers when de-
bugging applications with library framework code. In this section, we
elaborate on how these operations are used to enable framework-aware
debugging tools.

We prototyped Sarto’s set of operations as a library for Pharo Smalltalk.
Sarto’s operations apply after a runtime call-stack reification step, but
before opening a debugger: the operations are applied to the reified call-
stack, producing an instrumented call-stack that is fed to the debugger.
In other runtimes, instrumentations could be applied in the debugging
instrumentation layer.

Sarto supports the different operations through method annotations
and an API of calls on a Sarto static instance. In Table 4.2 we detail the
main methods of Sarto’s API in relation to the operation.

In the next section, we describe the practical application of these op-
erations in the context of the four use cases.

4.3.1 Enabling Sarto in Framework Code

Since Sarto manipulates the call-stack, the call-stack needs to be reified
and available to the framework developer, as is the case in Smalltalk. To
include support for Sarto, framework developers need to insert instrumen-
tation calls in the points in which they want to apply Sarto’s operations.
In these points, the developers use Sarto to extract the reified call-stack
and store it in a variable for further manipulation. In Smalltalk, the
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Table 4.2: Overview of Sarto’s API.

Operation ‘ Description

Framework entry /exit <frameworkEntryPoint: #FrameworkName>
point definition <frameworkExitPoint: #FrameworkName>

Stack cutting | Sarto cutAndDebug:

Crafting a stack frame | Sarto newSubstituteMethod methodAt:

Concatenating stacks | Sarto combineStackOfRemote:withLocal:

Stack Comparison | Sarto compareStackException:with:

Delta Stack Calculation | Sarto calculateDeltaStackBetween:and:

Delta Stack Application | Sarto applyDelta:toException:

stack is reified on-demand, i.e., explicitly by the developer through a call
to the runtime, or at the moment of an exception if an exception han-
dler is present. The framework developer explicitly extracts the call-stack
through a call to Sarto captureStack!. Alternatively, if instrumentation
happens in the context of an exception handler, framework developers use
the error reification of Smalltalk, which includes the call-stack.
Furthermore, the runtime also needs to support method annotations
to let developers annotate methods as framework entry and exit points.
The framework developer defines framework entry and exit points by
adding method annotations?. The following snippet of code illustrates
how to add such annotation to identify framework exit points. Please
note that the procedure to add a framework entry point is equivalent.

HTTPServerDelegate>>handleRequest: aRequest
<frameworkExitPoint: #HTTP>

4.3.2 Cutting the Call-stack Before Debugging

The framework developers use stack cutting to remove framework frames
from the execution that is about to be debugged. For instance, in the

!Using Sarto captureStack is syntactic sugar in Pharo for copying the value of
thisContext, a pseudo-variable that reifies the call-stack.

2In Smalltalk, a static method annotation is denoted between lower and greater signs
at the beginning of a method definiton
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case of the HTTP framework, developers can add an exception handler
to the code that manages incoming requests, and thus capture errors and
manipulate the stack before opening the debugger.

The listing below shows the code to enable this operation in an ex-
ception handler, using the error and call-stack reification provided by
Smalltalk already in the exception handler.

[...] on: Error
do: [:err| Sarto cutAndDebug: err].

This operation performs stack cutting on the defined framework entry
and exit points. To perform cutting, this operation navigates the call-
stack from the top to detect a framework exit point, and then further
navigates it down to detect the framework entry point. If no entry point
is found, the operation will cut the call-stack at the exit point. If it is
found, the stack is cut between the two entry and exit points.

4.3.3 Crafting a Stack Frame

To illustrate the usage of crafting a stack frame, we extend the unit test
framework scenario to augment it with setup and teardown methods.
The framework inserts a stack frame with a method containing the code
of the setup method otherwise not present in the call-stack, and then a call
to the actual test. This method shows useful information to the developer
while hiding all of the internal framework calls. Sarto cuts the call-stack
at the framework exit point and inserts the crafted frame with the custom
setup method below it. The developer sees the setup next to their test and
can re-execute the setup and the single test without having to go through
any framework code.

The framework developer adds a custom stack frame by specifying a
mapping between the frame to replace and the method that will replace it
in the call-stack. The replacement method is either an existing method or
a method constructed on the fly, since Pharo allows to compile methods
reflectively at runtime.

The following code snippets show how to replace the frame of the
performTest method with an existent method (setUp) or with one crafted
by hand (contextForDebuggingSetup). The framework developer option-
ally specifies the program counter to keep the stack consistent.

| TestCase>>initialize
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substituteContexts
at: #performTest
put: (Sarto newSubstituteMethod methodAt: #setUp})

TestCase>>initialize
substituteContexts at: #performTest
put: (Sarto newSubstituteMethod compiledMethodAt:
#contextForDebuggingSetup ; pcAt: #performTest) }).

An optional flag enables developers to keep or hide the given framework
entry and exit points in the call-stack, as shown below. If such flag is set
to false, the crafted stack frame will substitute an entry/exit point.

TestCase>>initialize
substituteContexts
at: #performTest
put: (Sarto newSubstituteMethod compiledMethodAt:
#contextForDebuggingSetup ; pcAt: #performTest ; keepMethod: false) })

4.3.4 Concatenating Stacks

Consider again the case of debugging a promise execution as explained
in Section 4.1.3. We use the stack concatenation operation to take both
call-stacks and link them at the framework entry and exit points, in this
case the promise invocation and the callback to the promise resolution,
respectively. Stack concatenation requires framework developers to (i)
identify framework entry and exit points, and (ii) explicitly capture the
call-stack at an entry point using an eager stack capture. The result is a
single asynchronous stack, exposing both the local and remote execution
contexts, depicted in Figure 4.11.

DivideByZero >> signal: Ex. Frame
Remote
Execution PromiseRunner>>[1/0] User Code
Local BlockClosure >> promise Fr. Entry Point

Execution - — -
PromiseRunner>>myFailingPromise

User Code

Figure 4.11: Representation of the instrumented stack of a failing promise,
tailored for debugging.
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Our approach takes inspiration from Leske et al. [LCN17], who pro-
posed a debugging model for promises in which the call-stack that leads
to the generation of the promise is linked to the one of the promise execu-
tion through proxies. However, our approach potentially applies not only
to promises but also to other asynchronous execution models such as the
actor model.

In the case of concurrent promises, as shown in Listing 4.2 we define the
framework entry point in the method promise. We first eagerly capture
the call-stack at the entry point (line 3) and then add a callback to the
promise (line 5). In case of a failure, the callback will lazily capture the
call-stack at that point and concatenate both call-stacks (line 7). We then
forward this stack to the debugger (line 8).

BlockClosure>>promise
<frameworkEntryPoint: #Promises>
stack := Sarto captureStack.
promise := Promise from: self.
promise onFailureDo: [:err |

combinedStack := Sarto combineStackOfRemote: err withLocal: stack.
Sarto cutAndDebugError: err withStack: combinedStack)].

N OO oA W N

Listing 4.2: Capturing and debugging the stacks of a promise.

4.3.5 Debugging with Delta Stacks

To illustrate the usage of the delta stack operations (stack comparison,
delta stack calculation, and delta stack application), we show the example
of debugging several failed HT'TP requests. In fact, when a server fails in
handling several HT'TP requests, chances are that similar requests failed
several times, hence representing different instances of the same problem
or bug. It is usually the developer’s responsibility to tell if two call-stacks
are similar or not and to debug them singularly.

With Sarto, we extended the debugger when debugging HT'TP frame-
works to detect similar call-stacks with stack comparison and create delta-
stacks in those cases on the server-side. When debugging, only one excep-
tion is presented for different similar exceptions, grouping the exceptions
by their call-stack shape. A representation of such a debugger Ul is shown
in Figure 4.12.

By selecting one of the four x values, the developer debugs that par-
ticular call-stack. This triggers the application of a delta stack to the

76



4.3. SARTO IN PRACTICE

original call-stack and presents the user with a call-stack that is a copy of
the original call-stack generating the problem.

— - ---Data --,
DivideByZero >> signal: ! |

Smallinteger >> /

xX X X X
2N = O

MyServerLogic >> handleRequest: 44

HTTPServerDelegate >> handleRequest:

Figure 4.12: Representation of a debugger showing an instrumented call-
stack, with the different possible variables found in the delta stacks.

To use delta stacks, the framework developer relies on the call-stack
reification upon handling an error to store it. If a captured call-stack is
similar to an already stored call-stack, they add the instrumentation code
to calculate the delta stack and store that one instead. To illustrate this,
we show how delta stacks are used in the case of multiple consecutive
errors happening in a web server.

1 | MyRequestHandler>>handleRequest: req

2 [ ...] on: Error do: [:error |

3 similarError:= errors at: error exceptionID ifFound: [:similar |

4 compare := Sarto compareStackOfException: error with: similar.

5 compare ifTrue: [delta := errors at: error exceptionID put: (Sarto
calculateDeltaStackBetween: error and: similar.

6 deltas at: error exceptionID put: delta.] ]

7 ifNotFound: [errors at: error exceptionID put: error].

Listing 4.3: Handling errors using delta stacks in an HT'TP server.

Listing 4.3 shows the code of the request handler of our web server
including support for delta stacks. When an error happens, the error
handler captures the call-stack and checks if there is already an entry for
that call-stack (line 3). If there is, then #compareStackOfException: is
called to check whether the exceptions are similar (line 4). If they are,
a delta stack is calculated and stored in a different data structure (line
5). On the client-side, the framework developer retrieves the exceptions
and uses Sarto>>#applyDelta: delta toException: exception to
do the inverse.
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4.4 Validation

To validate our solution, we conducted two sorts of experiments. We first
show that Sarto applies to various frameworks, each with different re-
quirements. Second, we show that our solution is practical and efficient
by conducting performance benchmarks to show that Sarto does not in-
troduce significant overhead to the execution or debugging code of the
three use cases.

4.4.1 Experiences in using Sarto

To validate that our approach works for a variety of different frameworks,
extending the debugging support for the following Smalltalk frameworks:
Zinc, an HTTP server framework; SUnit, the classic unit testing frame-
work of Smalltalk; TaskIt?, a framework for task scheduling that we
adapted for remote execution.

Depending on the debugging needs of each framework, a different com-
bination of operations from Sarto was used. Table 4.3 summarizes which
operations are applied for which framework. Three operations are applied,
in different combinations, to all of the frameworks: stack cutting, crafting
a stack frame, and concatenating stacks. The A (delta) stack operations
row groups the use of the remaining three operations, i.e., stack compari-
son, delta stack calculation, and delta stack application. This is because
they are used in combination, and only when debugging multiple execu-
tions that happen either in parallel or across long computations. Finally,
we applied AStack operations to debugging the HT'TP framework.

Table 4.3: Usage of basic stack operations on the four frameworks.

Operation ‘ Zinc SUnit Tasklt
Stack cutting v v v
Crafting a stack frame v
Concatenating stacks v
AStack operations v

For this validation, we analyzed a series of exceptions found while
using the three different libraries (Zinc, SUnit, and Taskit). By analyz-

*https://github.com/sbragagnolo/taskit
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ing those exceptions, we derived the framework entry and exit points as
those methods that actually performed a callback to user code. From our
experience, finding the framework entry/exit point was not particularly
time-consuming, since it happened gradually while debugging application
code using the aforementioned frameworks. Thus, stack-cutting was rela-
tively easy to put in use in the case of Zinc, but in the case of the SUnit
framework cutting also required crafting a new stack frame so that the
instrumented call-stack would be consistent, and this proved to be a more
complex task. For example, we had to analyze the code and test mul-
tiple times the way we crafted the setup method into the instrumented
call-stack, so it wouldn’t cause incompatibilities on the stack. The inter-
face proposed in Section 4.3 allows developers to define a crafted stack
frame by specifying which method should be used in the stack frame, and
giving control on what context should be crafted, e.g., whether it should
substitute the exit point.

In Sarto, concatenating stacks is related mostly to the correct defini-
tion of framework entry/exit points, and it was relatively easy to apply
it to Tasklt as described in Section 4.3. Finally, the only requirement
to using the delta stack operations (comparison, calculation, application)
was to handle the exceptions by capturing the call-stack, grouping simi-
lar exceptions together (for example in a dictionary), and managing the
calculated delta stacks.

4.4.2 Performance Benchmarks

In this section, we evaluate the performance overhead of exception han-
dling when using our approach. Particularly, we run two experiments to
assess Sarto’s impact on the time of exception handling for debugging in
the different frameworks. First, we analyze this for the Zinc and SUnit
frameworks. Second, we analyze the same property for the Tasklt frame-
work while increasing the size of the data referenced by the stack, since
this may impact stack concatenation. The performance of delta stack op-
erations will instead be assessed as part of the validation to the overall
debugging approach in Chapter 8.
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Setup

We perform our benchmarks using Pharo 8.0, which already packages Zinc,
SUnit, and Tasklt, on a MacBook Pro 2017 with an Intel(R) Core(TM)
i7-7567U CPU @ 3.50GHz and 16 GB of RAM DDRS3.

In both experiments, we iterate each measurement 25 times and report
averages and standard error. To measure exactly when a debugger is
opened, we extended the debugger to store a timestamp just before it is
opened. We compare that timestamp to the one retrieved before starting
the execution of the framework call.

4.4.2.1 Overhead on Exception Handling

To verify the performance impact of our solution we compare the time to
handle an exception with our approach and without it in the Zinc and
SUnit frameworks. For Zinc, we setup an HT'TP server (with and without
Sarto’s stack cutting operation), and we measure the time between per-
forming an HTTP post request through a client, and the moment in which
the debugger is opened. Similarly, for SUnit we measure the time between
running the test and the moment in which the debugger is opened.

Table 4.4: Time to open a debugger with or without Sarto. Times in
milliseconds.

Framework ‘ Sarto  Errg ‘ Default  Errp ‘ Diff.

HTTP Framework | 71.5 3.1 103.5 7.74 | -30%
Unit Testing 2832 1.5 75.08 4.2 -62%

Table 4.4 shows the results of our benchmark: the Sarto column shows
the average execution when managing the exception with Sarto, the de-
fault column represents the average execution time when managing the
exception with the default handler. The error columns represent the stan-
dard error of the mean. Both managing or not managing an exception
show average delays in the order of 103.5 milliseconds at maximum, which
we consider small enough for an interactive debugger. Handling an ex-
ception with our instrumentation layer resulted in about 50 milliseconds
faster than the unmanaged one. Although this looks like a performance
improvement, we believe the result is related to traversing the stack fewer
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times. From those results, we conclude that our instrumentation layer
does not introduce a significant impact on the execution.

We did not include the Tasklt framework in this analysis since it will
be further discussed in the next section.

4.4.2.2 Scalability when Increasing Stack Size

This benchmark measures the influence of the stack size on our approach,
particularly for the Tasklt framework. This use case requires a copy of the
call-stack, hence it gives a measure of the overall overhead of our approach.
This benchmark is a variation of the previous one, thus we measure the
time since a promise is created until a debugger is opened on a failing
promise. Note that, to avoid the influence of network communication, the
promise is resolved in the same virtual machine that created it.

Time to open a debugger on promise failure
increasing stack size

200
180
160
140
120

100 ———Managed

30 - — Unmanaged

60
40
20

1KB 10KB 100KB 1MB 10MB 100 MB

Figure 4.13: Runtime of a failing promise, when increasing the size of the
stack.

Figure 4.13 shows the results of our benchmarks. When increasing the
size of the stack our approach does not introduce a significant overhead.
The black dashed line represents the execution time in the absence of our
infrastructure (unmanaged), while the blue line represents the execution
time in the presence of Sarto (managed). Both of the trends are linear
to the amount of data, although, at first sight, it may look like the two
curves are exponential: the X-axis grows exponentially by a factor of 10.
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4.5 Notes to Related Work

In this section, we discuss several approaches that deal with domain-
specific debugging of code, which relate to the concepts described in this
chapter and complement the related work presented in Section 2.4. We
do not include debuggers for Big Data frameworks, as they were already
discussed in Section 2.4.5.2.

There exist several works in the literature about debugging techniques
to help developers debug domain-specific code, specifically for framework
executions. Particularly, many classical online debuggers offer primitives
to hide from the call-stack those frames that include framework code. For
example, when debugging Python code in GDB [GNU] developers can
define different frame filters to hide some stack frames from the view.
Similarly, Eclipse’s debugging support offers a filtering operation that fil-
ters out some stack frames based on heuristics, e.g., the file or package
where the executed method was defined. These approaches generally work
for known frameworks but require in many cases to manually filter stack
frames as part of the debugging process.

The moldable debugger [CDGN15] instead provides different views of
the call-stack and the debugged method depending on which framework is
being debugged. Developers can extend the debugger to display different
information such as bytecodes or to target it to debug parsers, notification
systems, etc. This approach mainly focuses on the visualization of the
debugged information and requires interacting with the user interface of
the debugger to extend it properly.

Debuggers for asynchronous execution While the above approaches
represent a general take to the problem of debugging frameworks, several
domain-specific debuggers have been designed to debug different program-
ming and execution models. This is the case, for example, of debuggers
for asynchronous execution models such as promises and actors. In an
asynchronous promise execution, the thread that creates the promise has
a relationship with the thread that is executing the promise. In a clas-
sical approach, however, the developer debugs only one of them, which
is often the one that executes the promise. Different domain-specific so-
lutions for better debugging asynchronous promise executions have been
proposed. Dragos et al. [Dral3] focus on capturing stack frames at inter-
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esting points such as future creation to enable debugging on them. Simi-
larly, Chrome DevTools [Gooa] support debugging of asynchronous stack
traces by storing such information in the stack trace. Other approaches
[AZMT18, SBSB19] propose a graph visualization of the state of the
promise, based on run-time information about the asynchronous promise,
to help developers understand the execution. Leske et al. [LCN17] de-
scribe an approach in which the stack of a failing promise execution is
linked with the stack of the promising thread, at the point of the promise
creation. The developer then debugs a single stack that combines both
the frames leading to the promise creation and the ones of the promise
execution. In practice, the call-stack at promise creation is stored, to be
then linked through a proxy to the call-stack of a failing execution of a
promise.

As already partially described in section 2.4.2.2; different debugging
approaches exist to debug actor programs. In the case of actors, the focus
is not only on call-stack representation, but also on the display of actor-
related information, such as mailboxes, or more complex information such
as message causality [TLBST17]. For example, Causeway [SCMO09] logs
the message sends and receive that happen through an actor concurrent
execution. It then displays this information in the debugger UI showing
how the different events relate through the happens-before relation, thus
showing a partial order of messages that can help developers find a bug
in their program.

While log-based solutions provide some interesting insight on past ac-
tor executions, online debugging approaches, such as REME-D [GNV*11],
also enhance the debugging experience by providing domain-specific break-
points on message send or receive (and more). Part of the breakpoint
catalog offered by REME-D is inspired by the work on Wismuller [Wis97]
on message breakpoints for the MPI model.

4.6 Conclusion

In this chapter, we explored a debugging instrumentation layer to enable
framework-aware debugging. We introduced Sarto, a call-stack instru-
mentation layer that improves debugging of user code within framework
code with six call-stack operations to tailor the stack accordingly to frame-
work usage. With Sarto, framework developers define different entry/exit
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points in their framework code to delimitate the information that may be
hidden during debugging. They define custom stack frames to augment
call-stacks with otherwise missing information. Our solution also offers
operations to compose different call-stacks, e.g., to unify the execution of
the promise with the promising stack, and to relate and compose different
exceptions.

We applied our solution to three different use cases: an HTTP web
server, a unit testing framework, and promise executions. They all use a
different subset of the 6 operations. To show the validity of our solution we
first presented our experience in instrumenting the different frameworks.
Then, we conducted performance benchmarks to show that our approach
does not add noticeable overhead in exception handling.

The concepts of Sarto presented in this chapter form the basis for the
implementation of different features of our debugging approach for Big
Data applications, as will be detailed in Chapters 6 and 7.
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Chapter 5

Out-of-Place Debugging

In this chapter, we describe our novel debugging approach for Big Data
applications which explores the idea of live debugging in the context of
remote applications.

Recall from our comparison of debugging architectures in Section 2.4.4
that in-place debuggers execute in the same process as the debugged ap-
plication, thus presenting low latency debugging operations, but no access
to applications running remotely. A remote debugger, on the other hand,
executes on a separate process than the application and thus performs
debugging remotely, i.e., it sends operations via inter-process communi-
cation to the API of the debugger that then instruments the application.
Debuggers for Big Data applications with online debugging features such
as Daphne and BigDebug (cf. Section 2.4.5.2) adopt a remote debugging
architecture. A remote architecture, however, needs to pause the execu-
tion of at least one remote node for debugging, thus possibly introducing
delays in the computation. Furthermore, all side effects produced during
debugging directly affect the execution of the debugged program, thus
influencing its final results.

To tackle those concerns we introduce out-of-place debugging, a novel
debugging architecture that combines the low latency of in-place debug-
ging with the remote access of remote debugging, by moving the state of
the debugged application to a different process to be debugged in isola-
tion. This make sure that side effects are scoped to the debugger’s process.
Out-of-place debugging represents the main cornerstone of our debugging
approach for Big Data applications.
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5.1 The Out-of-place Debugging Model

The main goal of out-of-place debugging is to debug remote applications
with low latency and without influencing their execution, i.e., avoiding
residual side effects on the computation on the cluster. Similar to remote
online debugging, an out-of-place debugger hosts the debugged application
and the debugger in different processes. As such, the debugged applica-
tion includes a debugging API in its infrastructure. However, in contrast
to traditional remote debugging (e.g., [PBFD15]), out-of-place debugging
transfers the entire debugging session (i.e., the state of the application)
to the debugger process when the application reaches a breakpoint (or
throws an unhandled exception).

This results in two properties. First, out-of-place debugging provides
the user experience of an in-place debugger through debugging operations
such as stepping, state inspection, and expression evaluation, without suf-
fering from latency because all those operations happen locally. Second,
since any manipulations and side-effects performed while debugging hap-
pen in the debugger process environment, they do not affect the debugged
application. As a result, residual side-effects are scoped rather than global.
These two properties of out-of-place debugging are relevant to the debug-
ging of Big Data applications because they enable the use of a classical
debugger on a captured remote computation, without replaying any part
of the execution. This is possible for both unhandled exceptions and
breakpoints.

In our work, we also embrace the support for dynamic code updates
of a debugged application found in Smalltalk’s live debugging model, by
embedding it in our debugging approach. Particularly, in out-of-place de-
bugging once the developer finishes debugging, they send a patch with the
corresponding code changes. This allows the developer to debug in iso-
lation the application, apply required changes, and update the remotely
running application. This is particularly relevant in the context of debug-
ging Big Data applications since it enables propagating large code changes
to the remotely running system, without having to repackage the appli-
cation or restart the whole system.

Overall, out-of-place debugging is a general-purpose debugging model
usable in different contexts, and already experimented besides Big Data
in the context of IoT devices [MGBC*17, RCMBGB21]. In the remainder
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of this section, we detail the concepts and components of the out-of-place
debugging model.

5.1.1 Out-of-place Debugging Architecture

Figure 5.1 shows the architecture of an out-of-place debugger. Like re-
mote debugging (cf. Section 2.4.3.2), out-of-place debugging enables the
debugging of a remote application by being hosted in two processes: the
debugger process and the application process. In the application process,
the out-of-place debugger infrastructure consists of the Debugger Moni-
tor and the Updater. The debugger process, besides the debugger Ul, is
composed of the Debugger Manager, and the Changes Handler.

In what follows we detail the role of each component when debugging
an application. The numbers represent the order in which debugging op-
erations take place when a breakpoint or exception halts the program’s
execution. The described debugging architecture, throughout its different
components, represents the core model of out-of-place debugging. Debug-
ging, however, is enabled by the concept of a debugging session, which
captures the full application state and contextual information needed for
debugging.

Debugger Process Application Process
() ()
Debugger-Ul } 1 Application
Q

Changes Debugger L 33_{% Debugger | Updater
4

Handler Manager \Monitor
(6) T 4. (2) LF
(1)

Figure 5.1: Overview of an out-of-place architecture setup in two different

(e)

processes. The arrows represent inter-process communication: the one
marked with a 3 transfers debug sessions, the one marked with a 7 transfers
code changes.

Debugger Monitor. The debugger monitor is a component that resides
in the application’s process and takes the role of debugger API,
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being in charge of communicating with the debugger process. Its
main roles are to supervise and control the application execution.
When the program hits a breakpoint or raises an exception (1), the
debugger monitor suspends the program execution. Then it creates a
debugging session that includes a copy of the execution state, i.e., the
call-stack, and the associated application state (2). The debugging
session is then serialized and transferred to the Debugger Manager

(3).

Debugger Manager. The debugger manager resides in the debugger
process and is the component that the debugger interface Ul commu-
nicates to for initializing and performing debugging. Particularly, it
deserializes the debugging session sent by the Debugger Monitor to
recreate it in the debugger process. It then passes the reconstructed
debugging session to the debugger Ul for debugging (4). From the
user perspective, debugging the application works similarly to an in-
place debugger: through the Debugger-UI the developer can issue
common online debugging commands such as stepping, expression
evaluation, and state inspection (5).

Changes Handler. The role of the changes handler is to record all source
code changes done by the developer in their IDE while interactively
debugging the application (6). For this reason, it resides in the
debugger process. The changes handler captures all code changes
including class and method modifications, additions, and removals.
Once the developer considers the code ready to be deployed to the
remote application, they issue a commit operation. This generates
a patch containing all the code changes that is sent to the Updater

(7).

Updater. The updater resides in the application process, and its main
role is to apply all code changes to the application that were recorded
during the debugging session (8). It then notifies the debugger mon-
itor which resumes the application execution (9) after updating the
code.

In the next section, we describe in more detail what a debugging session
consists of.
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5.1.2 The Debugging Session

A crucial concept behind out-of-place debugging is the creation, transfer-
ring, and re-construction of the debugging session on a different machine.
This enables an out-of-place debugger to (1) reduce latency during debug-
ging because all of the operations happen locally, thus avoiding network
communication (2) scope the side effects of the debugging session to the
process of the debugger, while allowing the remote application to con-
tinue working in the case of a distributed parallel application, such as a
Big Data application.

The process of creating a copy of the debugging session is akin to
remote cloning in the domain of code mobility [FPV98]. We now further
detail what creating a debugging session entails.

In most object-oriented programming languages, the application state
is encoded as objects stored in memory, usually in the heap. The execu-
tion state is stored in a stack data structure (i.e., the call-stack) which
references objects in the heap. Figure 5.2 illustrates how the stack and
the heap are related in the context of an application that analyzes tweets.
This application is used later in this dissertation while evaluating our solu-
tion (cf. Section 8.1.1.3). The figure shows that the analyseTweets stack
frame points to instances of the TwitterApplication (i.e., the receiver)
and Tweet classes (i.e., a local variable). Each of the stack frames contains
local variables that reference different objects in the heap. In some cases,
the stack frame also points to the object that the method is executed on
(i.e., the receiver, often accessible through pseudo-variables such as self
and this).

To create a debugging session, the debugger monitor extracts the call-
stack to prepare it for serialization. In practice, by including the serialized
call-stack, the debugging session includes two types of information: (i)
information about the execution, i.e., the activated methods, their PC,
and their order, (ii) the state of the application, i.e., state extracted from
the heap that is referenced by the different stack-frames.

Similar to traditional remote debugging, out-of-place debugging as-
sumes that the debugger environment has the same version of the code as
the debugged application. This means that an out-of-place debugger does
not need to copy and serialize the executed code, i.e., classes or bytecode.
Not only does this simplify the creation of a debugging session but it also
reduces the number of data transfers between the application and debug-
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Heap Call-Stack

‘ <<local variabless OutOfMemoryException >> signal
‘TweeterStream

TwitterApplication >> analyzeTweets
‘TwitterApplication

<<receiver>> Main >> main

Figure 5.2: Relation between the heap and the call-stack in a sample
application.

ger processes. In other words, an out-of-place debugger does not need to
implement progress migration, which requires one to copy and transfer
both code and execution state [FPV98].

5.2 Emnabling Out-of-place Debugging

The main concerns in implementing out-of-place debugging are (i) how to
capture a debugging session, (ii) how to perform code updates, and (iii)
how to handle remote resources. In this section, we present details on how
these three different concerns were approached when implementing out-
of-place debugging for different programming models and runtimes. In
particular, we describe our experience in applying out-of-place debugging
to long-running distributed applications and IoT applications. In Chap-
ters 6 and 7 we then detail how we implemented out-of-place debugging
for Big Data applications in the Map/Reduce and Spark-like models.

There exists at the moment two main implementations of out-of-place
debugging that target different runtimes and environments: (i) IDRA, The
original implementation of out-of-place debugging in Pharo Smalltalk; (ii)
WOOD, an adaptation of out-of-place debugging for debugging IoT ap-
plications [RCMBGB21], implemented by extending WARDuino [GSS19],
a WebAssembly VM running on microcontrollers.
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5.2.1 Capturing a Debugging Session

Depending on the execution environment on which out-of-place debugging
needs to be implemented, capturing a debugging session can be challeng-
ing. For instance, in some environments the call-stack is reified and thus
can be used directly to capture a debugging session without changing the
runtime. In other environments, the developer needs instead to change
the runtime to access this information.

Particularly, in Pharo Smalltalk the virtual machine deoptimizes and
reifies the call-stack on demand [IMBGB20] and this reification is used in
several reflective tools such as the Pharo debugger. Thus, in this disserta-
tion we rely on the call-stack reification of Pharo to implement out-of-place
debugging without changing the runtime.

When implementing out-of-place debugging in a VM that does not
reify the call-stack such as WARDuino, the debugger implementor needs
to extend the VM to extract the necessary information about the execu-
tion. This involves defining a format for representing the call-stack and
using different techniques to walk through the values referenced by the
stack. For example, to later reconstruct correctly a debugging session, it
is necessary to manage absolute memory addresses, function pointers, and
other low-level constructs.

Overall, these two implementations show that out-of-place debugging
can be integrated into two different platforms at the opposite sides of
the design space: one using existing reifications, and one modifying the
runtime to extract the execution state.

5.2.2 Synchronizing the Codebase

When changing the code of the debugged application, out-of-place debug-
ging models application updates through a commit operation. Detecting
and applying changes, however, is not trivial for all platforms: some pro-
gramming environments, like Pharo Smalltalk, reify code changes, others
do not. Particularly, in Pharo detecting and applying changes happens
through a library (i.e., Epicea [DCD13]) that records and reifies all changes
that happen to the codebase through the IDE. It is also able, given some
reified changes, to apply them in a different execution (i.e., in another
process), provided that the starting codebase is the same. The Dynamic
Software Update (DSU) support in Smalltalk (i.e., crating, modifying,
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and deleting classes and methods at runtime) facilitate the task of im-
plementing both the changes handler and the updater, since the debug-
ger implementor does not need to add infrastructure to detect and apply
changes.

DSU, however, is not a property unique to Smalltalk and it is present in
many other platforms such as Lisp, Erlang, and WebAssembly. CLOS and
other Lisp implementations allow developers to redefine classes, propagat-
ing the changes to active instances, as well as to redefine generic functions
and methods. Erlang offers built-in support for hot code swapping through
the recompilation of modules and, similarly, WebAssembly supports re-
compilation of modules, potentially enabling DSU for different languages
that target it. Particularly, DSU can be implemented by recompiling
full modules, instead of reifying and applying single code changes as in
Smalltalk. Research has also explored the application of DSU in safe up-
date points to avoid the impact of updating system libraryes [TPB*18].
Finally, other research has explored how DSU can be applied to main-
stream languages missing native support such as Java [ORH02, PGST11],
Python [TZ18], and C [NHSO06].

5.2.3 Handling Non-transferable Resources

In out-of-place debugging the state of the application is moved from the
application process, possibly located on a different machine, to the debug-
ger process. The application, however, might reference non-transferable
resources, i.e., external resources available only from the application pro-
cess/machine such as files, sockets, and sensors. This raises the question
of how to copy and transmit such non-transferable resources referenced
by the debugged application.

To exemplify the issues of handling remote resources, let us consider
an application that accesses the contents of a file, as shown in Listing 5.1.
After the path is created in line 3, line 4 opens the file, returning a file
stream. Then, a header is extracted in line 5 and checked for a pattern in
line 6. Different results are returned depending on the header, returning
in line 7 or 8.
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FileAnalyzer >> analyzeFileNamed: aName
| aFileStream header |
path := basePath / aName.
aFileStream := (File named: path) openForRead.
header := aFileStream next: 2.
(header == #(0 1) asByteArray)
ifTrue: [ aFileStream next: 10].
~ aFileStream upToEnd.

[oe} ~ [} ot e w [N =

Listing 5.1: Debugging a method accessing external resources.

Our approach is to instantiate a proxy so that calls to the non-transfer-
able resources that happen in the debugger process are proxied to the
original resource. proxied When this proxy is instantiated depends on
where the debug session is constructed and on the environment.

In a high-level object-oriented language such as Pharo, if the non-
transferable resource (i.e., the file in this example) is already referenced
in the call-stack, then object-substitution is used to substitute the proxy
to the non-transferable resource. This happens when the debug session is
created after the execution of line 4. If the session is instead created when
line 4 is executed, the debugging session captures the execution before the
creation of the file object, so no file object would be included in the debug
session. However, stepping through line 4 in the debugger process will
attempt to open a file from the debugger process on a different machine,
where the file is not available.

An out-of-place debugger thus needs to capture all accesses to possible
remote resources while debugging is happening. Code instrumentation
techniques, for example, allow us to substitute all accesses to pre-defined
classes (such as File) with the instantiation of a proxy to the original
resource. This operation happens transparently to the developer and is
not visible in the code. Upon applying the instrumentation, the developer
accesses the original file through the proxy. When implementing out-of-
place debugging in Pharo, we use Metalinks [Den08], i.e., meta-objects
that control the execution of AST nodes, to do code instrumentation.
Particularly, during execution, a Metalink provides hooks to execute code
before, instead, or after the execution of its annotated AST node. This
facility gives fine-grained instrumentation at the sub-method level. By
using Metalinks we transparently replace all accesses to external resource
classes by accesses to a corresponding proxy class.
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For those runtimes without meta-programming facilities for code in-
strumentation, supporting non-transferable resources requires changes to
the runtime. In WARDuino, for example, remote resources such as sen-
sors are not reified in memory, but they are represented by a certain
function reference and thus object substitution is not needed. Particu-
larly, in WOOD we extended the runtime to allow proxy calls on specific
functions, specified beforehand by the developer. Calls to those functions
are then substituted by the runtime with a proxy call to the application’s
process. This call then returns the actual value of the proxied resource
(e.g. a sensor).

Overall, there are different strategies to handle non-transferable re-
sources, and which one is used depends on the application domain and
running environment. For instance, code instrumentation can easily be
applied in environments with meta-programming facilities. Similar strate-
gies, however, are also applicable in those environments that do not offer
such facilities, e.g., WARDuino, by making changes to the virtual machine.

Scoping side effects in the context of non-transferable resources.
Recall that out-of-place debugging ensures scoped side effects while debug-
ging, i.e., side effects regarding local and global variables will be scoped to
the debugger process. However, side effects may propagate to the target
application when remote resources are used through proxies. For example,
writing to a file may still perform the write in the file system of the running
application. In those cases, other solutions such as mocking resources can
be explored in combination with proxying, further scoping side effects.

Comparing to remote debugging. In an out-of-place debugger all
the execution happens locally, i.e., all variable accesses are local, except
for the proxied non-transferable resources. We can thus consider that in
out-of-place debugging remote communication while debugging is limited
to the initial transfer of the debugging session and to the proxified non-
transferable resources. In contrast, in a remote debugger such as Mercury
[PBFD15], the remote debugger for Pharo Smalltalk, all variable accesses
during debugging are remote accesses through proxies. Particularly, Mer-
cury uses proxies for the whole debugging session including the call-stack,
the debugger model, etc. This leads to more network communication while
debugging as all the stepping operations, expression evaluation, etc. have
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to be applied through proxies. The network communication necessary
for out-of-place debugging will be later assessed in the evaluation of our
overall debugging approach (cf. Section 8.1).

5.3 Debugging Distributed Programs

As explained earlier in this chapter, the out-of-place debugging architec-
ture devises the use of two processes: a debugger process and an applica-
tion process. This makes the technique directly applicable to debugging
an application that is executing on a different machine than the debugger.
In this section, we discuss how the model also applies to applications that
consist of more than one process, possibly running on different machines.

Out-of-place debugging can be used to debug distributed applications
by running a debugger monitor in each application process and connecting
them to a unique debugger manager. A debugger manager accepts debug-
ging sessions from different application processes. This model also applies
when different processes are running different applications, thus enabling
to debug them in a centralized way from a unique debugger process.

Figure 5.3 shows a configuration similar to the one we used to de-
bug cyber-physical systems [Marl7]. All application processes host a de-
bugger monitor and an updater to enable out-of-place debugging of the
distributed application. The debugger process instead hosts a debugger
manager, the debugger U, and a changes handler to detect changes to the
application’s code. Each monitor sends independently debugging sessions
to the debugger manager, which is the one enabling debugging from a
centralized point.

In the distributed setup, updating the code of the remote application
now requires coordination to update all or only some nodes. This involves
adding support for updating different processes at once, i.e., sending the
same code updates to all connected processes, or selectively deciding which
of the remote processes should receive the update and perform it. When
committing code updates to a running distributed application, it is crucial
to decide when to safely apply the update: applying an update at the
wrong moment will disrupt the application by partially modifying the
code that is being executed. In our example, when the developer commits,
the changes handler creates a patch propagates it to the three different
workers. If the patch is applied without a strategy, the update will be
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Figure 5.3: The out-of-place debugging architecture on a distributed sys-
tem.

performed at different points in the execution in the different processes,
possibly modifying the code of methods that are being run, thus leading
to undefined behaviour.

We now further detail two different approaches for distributed software
updates. First, we could opt for a stop-the-world solution, i.e., locking all
the processes of the applications at specified synchronization points and
applying code changes at that point in all the processes. This approach is
however costly because it introduces delays in the execution resulting in
bad responsiveness. Second, an asynchronous approach where updaters
asynchronously decide when to apply code changes. This approach re-
quires the design of application-specific updaters. In our debugging ap-
proach for Big Data applications, we decide to use specialized updaters
that coordinate with the master to find the right moment to apply an
update. Chapters 6 and 7 will describe more in detail how this works for
Map/Reduce and Spark-like applications.
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5.4 Conclusion

In this chapter, we have presented the out-of-place debugging model, the
major building block to provide online debugging support for Map/Reduce
and Spark-like applications. We now discuss out-of-place debugging with
respect to the properties of debugging architectures discussed in Chapter
2.

Table 5.1: Overview of online debugging techniques based on their ability
to capture bug context, scope side effects, and operate remotely, compared
to out-of-place debugging.

Debugging Technique Capture  Remote Latency Side

Error Context — Access Effects
Record & Replay X - High Global
In-place v X Low Global
Remote v v High Global
Ours: Out-of-place v v Low  Scoped

Table 5.1 revises Table 2.1 to include the properties of out-of-place
debugging. As in-place and remote debugging, out-of-place debugging
captures the context of an error when it happens, thus avoiding replaying
the execution, which is typical of offline debugging approaches such as
Record & Replay. Importantly, out-of-place debugging retains the remote
access property of remote debugging, while providing the low latency of
in-place debugging. It also keeps the ability to access non-transferable
resources achieving a behaviour similar to remote debuggers. Finally, since
debugging happens completely on a different process on a reproduction of
the original execution, the side effects generated during debugging are
scoped to the debugging session, and not global to the execution as in the
other debugging approaches.

We now analyze out-of-place debugging w.r.t the criteria of a debugger
for Big Data applications, defined in Section 2.5. Out-of-place debugging
enables:

No Replays. Since debugging happens on a copy of a failed or break-
pointed execution, it does not require replays of the execution to
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reach the execution state of the error or breakpoint. This makes
out-of-place debugging a replay-free solution.

Debug in isolation, scoping side effects. Out-of-place debugging en-
sures scoped side effects by enabling the debugging on a copy of the
original execution.

Halt & inspect. In out-of-place debugging, breakpoints can be modeled
as errors, thus they are captured by the debugger monitor and the
developer can debug on a copy of this breakpointed execution.

Stepwise execution. Since the debugging over the reconstructed exe-
cution happens through a classical online debugger, out-of-place de-
bugging ensures the availability of classical stepping operations.

On the other hand, out-of-place debugging does not satisfy the follow-
ing criteria out of the box:

Scalability to Big Data. While out-of-place debugging enables replay-
free debugging, this does not yet scale to Big Data since serializing
full call stacks of an execution over a large amount of data might
involve transferring very big debugging sessions.

Domain-specific debugging operations. Out-of-place debugging does
not define any debugging operation tailored to the debugging of Big
Data application, as it remains a general-purpose model for debug-
ging distributed applications.

Live code updates. Out-of-place debugging offers an infrastructure for
live code updating, but it needs to be adapted to the application
domain. For instance, the propagation and coordination of code
updates to a distributed system has to be adapted to the debugged
execution model.

Ignoring of errors. Out-of-place debugging does not have explicit sup-
port for ignoring errors.

To adhere to all these criteria, we extend out-of-place debugging with
necessary concepts to support the debugging of Map/Reduce and Spark-
like applications in Chapters 6 and 7, respectively.
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Chapter 6

Debugging Support for
Map/Reduce

In this chapter, we present our debugging approach for Map/Reduce ap-
plications. Particularly, we start by describing an adapted out-of-place
debugging architecture for the Master/Worker model, which lies at the
basis of the Map/Reduce and Spark-like models. Then, we describe sev-
eral extensions to the out-of-place debugging model specific to the domain
of Map/Reduce programs, which introduce concepts for debugging a par-
allel execution in a centralized way, and some domain-specific debugging
operations. After that, we describe a prototype implementation of our
approach called IDRAyRr which employs some operations of Sarto (cf.
Chapter 4). Finally, we evaluate our approach through a concrete debug-
ging scenario.

6.1 Out-of-place Debugging for Big Data Frame-
works

As mentioned before, out-of-place debugging is a good building block for
debugging Big Data applications because it captures the error context of a
remote application and enables scoped local debugging, thus enabling an
in-place debugging experience that does not affect the remote application.
Furthermore, the code updating capabilities of out-of-place debugging al-
low developers to update the code of a remote application without having
to re-deploy it.
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In this section, we revisit the architecture of out-of-place debugging to
make it suitable to the Master/Worker model on which both Map/Reduce
and Spark are based. This entails making sure the architecture is designed
to centralize the debugging of a failure happening in a parallel execution
context while reducing the communication overhead.

As shown in Section 5.3, the out-of-place debugging architecture is
naturally distributed: a single debugger manager can connect to multiple
debugger monitors at the same time, making it possible to debug different
connected applications from a single point. This is important because
when debugging a parallel execution across different workers, it enables
the debugging of a bug that may manifest in different parallel tasks, raising
multiple exceptions.

In the context of a Big Data application, however, deploying a debug-
ging monitor on each worker and connecting it to an external debugging
manager might lead to an increase in the amount of data to be transferred
between single workers and the external developer’s machine. We thus re-
visited the debugging architecture to include only one debugger monitor,
hosted in the same process as the master. In this way, our approach limits
the communication of the workers to the only master, internally to the
cluster’s local network. On the other hand, workers have to be extended
to handle errors and breakpoints and report them to the master, which in
turn reports them to the debugger monitor for debugging.

In Figure 6.1 we depict the revised architecture for debugging an ap-
plication deployed on a cluster. The architecture thus presents a unique
debugger monitor, hosted in the same process as the master. In this archi-
tecture, the debugger manager is hosted in a process external to the cluster
execution, in the developer’s machine, i.e., the machine the developer uses
for debugging.

At the debugger process, alongside the debugger manager, there is a
changes handler to record code changes that happen locally to the debug-
ger session. Accordingly, the master and all workers run an updater, so
they can be updated with new code when the developer decides so.

This architecture supports the deploying of out-of-place debugging on
a Master/Worker model, thus enabling the out-of-place debugging archi-
tecture for Map/Reduce and Spark-like applications. As such, it lies at the
basis of both our debugging approaches for Map/Reduce and Spark-like
applications.
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Figure 6.1: The devised out-of-place debugging architecture targeted to
Big Data frameworks.

6.2 Debugging Map/Reduce Applications

To bring the out-of-place debugging model to Map/Reduce applications
we first revisit three different concepts of the model. First, we decouple
the concept of debugging session into two different steps:

Gathering debugging information. We introduce debugging events as
a debugging session that gathers the call-stack and contextual in-
formation about the failure-inducing record and its partition. De-
bugging events are also designed to reduce network overhead when
possible. This is further discussed in Section 6.2.1.

Centralizing the debugging session. To debug exceptions that hap-
pen in parallel, we combine the debugging events which are similar
and raised from the same parallel execution to create unique de-
bugging sessions, i.e., composite debugging events. This is further
discussed in Section 6.2.2.

Second, we revisit the code updating capabilities of out-of-place debug-
ging by handling distributed code updates of Map/Reduce applications
and defining how to resume a Map/Reduce application upon an update.
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This is important to let the developer choose what to re-compute once an
update has been issued. We discuss this in Section 6.2.3.

Finally, we augment the debugger GUI to display composite excep-
tions, enable live code updating, and offer different debugging modes that
allow developers to decide which data is used for debugging. This will be
discussed later in Section 6.3.2.

6.2.1 Extracting Contextual Information into Debugging
Events

During a parallel execution, an application may reach different halting
points. A halting point is a point of the execution in which the execution
is paused by a breakpoint inserted by the developer or by an unhandled
exception. In our model, when a halting point is reached in a Map/Re-
duce worker, the worker generates a debugging event. A debugging event
contains all the information necessary to construct a debugging session.
Since we use the out-of-place debugging model, this entails the call stack
and the different variables it references.

Reducing the size of debugging events. As detailed in Chapter 4,
however, the debugging information present in the call-stack throughout
a framework execution contains information related to the framework ex-
ecution such as stack frames related to scheduling. Hence, not all of the
frames are needed for debugging the user code of a Map/Reduce appli-
cation. Including this information would only increase the amount of
network communication to enable debugging.

To show this issue, consider as an example a Map/Reduce application
running in Port. When a halting point is reached in a worker, the call-stack
typically includes (i) frames representing method calls to the framework
to initiate the execution, followed by (ii) a call to map: or reduce:, which
leads to several calls to user-defined code. Figure 6.2 shows a representa-
tion of such a call-stack. Following the same color combination as defined
in Chapter 4, we depict in red the framework codes, in orange the frame-
work exit point, in this case the call to map:, in blue the framework(s)
associated with the user code, and in green the frame representing the
signaling of the error. To remove this information, we employ the stack
cutting operation of Sarto. This will be further discussed in Section 6.3.1.

102



6.2. DEBUGGING MAP/REDUCE APPLICATIONS

Error >> signal: E Exception Frame
)
V/
User Code
MRApplication >> map: D Framework Exit Point

4 Framework Code

Figure 6.2: The simplified stack of the exception. Depicted in red the
framework frames. Depicted in orange the last framework call before user
code. In blue, the user code frames, and in green the frame causing the
halting point.

Including failure-inducing records. When debugging Map/Reduce
applications, it is crucial to have access to the data that makes an appli-
cation fail to find the root cause of the bug. Sometimes, however, this
record may not give enough context to debug the application when com-
pared to having other data points from the same partition. For instance, a
Map/Reduce execution is applied record by record in the map phase, and
key by key in the reduce phase, i.e., the map: method is applied record by
record within a particular partition/split of the dataset and the reduce:
method is applied to a particular key and the set of its values. We call
the record that was being analyzed (i.e., passed as a parameter to either
function) event inducing record. Our approach is to have configurable de-
bugging events that, upon the choice of the developer, can include just
the failure-inducing record or all of its partition. This enables configurable
local debugging of a remote Map/Reduce execution.

6.2.2 Centralizing the Debugging Session with Composite
Events

As described above, a debugging event contains all the contextual infor-
mation about the halting point. This debugging event is sent to the mas-
ter which, as explained before, allows to centralize the debugging session.
Note that the Map/Reduce master has global knowledge of the distributed
program execution and status, not only of the failed worker(s) but also of
the rest of the running tasks of the application. As such, while creating
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a debugging session the master augments the debugging event with infor-
mation about the executed operation (e.g., the identifier of the current
execution, partition information, etc.).

The produced debugging event is then ready to be handled by the
debugger manager, that then looks into the different events to conceptually
merge the ones that are related into a unique composite debugging event.
Let us show a concrete scenario in which this applies. While different
Map/Reduce workers are performing parallel map and reduce tasks, the
same bug may raise multiple exceptions while analyzing different data
partitions in different workers. For instance, while parsing formatted data
from a dataset, if more than one record has the wrong format, then the
same failure will occur many times during the parallel execution. This
generates many individual debugging events that have to be processed by
the debugger monitor. All these events, however, conceptually belong to a
single failure that manifested in different portions of data. For this reason,
they will present the same identifier, since they are raised during the same
execution.

To assess whether two events are part of the same composite event,
the debugger monitor first checks that the execution identifier matches,
i.e., whether the events were raised during the same parallel execution.
If the event is raised by an exception, it checks whether the type of the
exception matches the two events. The stack comparison operation defined
in Chapter 4 is then used to determine whether two exceptions are similar,
as detailed later in Section 6.3.1.

The debugger monitor then sends first a message to the debugger man-
ager to indicate a composite event has been created, together with the
debugging event generated upon the first event. Then the monitor sends
update messages to the debugger manager containing the call-stack and
metadata information of the following debugging events that are part of
the same composite event.

Through this process, similar debugging events that happen during
the same parallel execution are aggregated into a composite event, thus
enabling the centralization of the debugging session for that composite
event.
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6.2.3 Live Code Updating and Resuming the Execution

Recall that in out-of-place debugging a developer the changes a developer
applies to fix bug are recorded, and the developer can use the Ul to create
a code patch and propagate it to the master and the workers.

The code patch is propagated by the changes handler to the updater
instance running alongside the Map/Reduce Master. At this point, the
Updater notifies the master of the code patch, and in turn, the Master
schedules a special updating task. Through this task, the worker contacts
the updater to perform the updates indicated in the code patch.

Note that the update propagation does not happen atomically in all
workers at once since each worker will apply the updates only when it
finished executing the current task. Our approach, however, ensures that
the different workers are not running a different codebase when executing
a particular task. The Master makes sure that the update task is sched-
uled between different tasks, i.e., not in the middle of the execution of a
map, or when the worker is idle. The way the update is propagated thus
represents a variation of out-of-place debugging, designed specifically for
the Map/Reduce model.

Once the code changes are deployed the debug session is finished, de-
velopers are offered the following operations:

1. Re-schedule all partitions that halted. This avoids the re-execution
of tasks that finished with success.

2. Re-schedule the application from the start on all the partitions. In
case the modified code requires an entire re-execution.

The first option is particularly useful when only a small part of the com-
putation failed due to a few failure-inducing records. In this case, the
developer preserves most of the execution, avoiding tedious replay times,
and restarting only the failed part of the computation.

6.3 IDRAwMR: An Out-of-place Debugger
for Map/Reduce

We prototype our debugging solution in IDRAyR: an out-of-place de-
bugger for Port Map/Reduce applications. The implementation relies on
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different stack-tailoring operations of Sarto, discussed in Chapter 4. The
GUI of the debugger offers dedicated views for the displaying of compos-
ite debugging events and code updating. Furthermore, it offers domain-
specific debugging modes to select which records to use for debugging.
While debugging, the developer uses classical online debugging features
including common stepping operations such as step into or step over, and
other debugging primitives such as restart, i.e., a debugging operation to
restart the execution from a particular frame of the call-stack.

In this section, we first present how Sarto’s operations are used to
build our debugging solution and then describe the dedicated views and
debugging modes that enable domain-specific debugging of Map/Reduce
applications.

6.3.1 Sarto’s Operations in IDRA g

In our implementation, we use three of Sarto’s stack tailoring operations
to (i) improve the size of debugging events, (ii) identify similar debugging
events to construct composite debugging events, and (iii) enhance the
debugging experience.

Improving the size of debugging events. A debugging event in-
cludes the call-stack of the halting point, together with information about
the event-inducing record. To reduce its size, before sending the debug-
ging event from the worker to the master we perform the stack cutting
operation to cut framework stack frames.

To do so, we have marked the two API methods of Map/Reduce, thus
map: and reduce:, to be the framework exit point. All the methods
called before the framework exit points are framework code, thus there
is no need to add a framework entry point. We then apply stack cutting
removing all framework frames and thus all reference to the worker, other
data it references, etc.

Identify similar debugging events. Recall that the concept of com-
posite debugging events is an abstraction of the same event (i.e., an ex-
ception or breakpoint) that happened multiple times during the parallel
execution of a task, by using the stack comparison operation of our Sarto
library (cf. chapter 4).
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NumberParser >> error: (PC: 14) (PC: 14) NumberParser >> error:

VoteCountingMrApplication >> map: (PC: 32) (PC:32)  VoteCountingMrApplication >> map:

Figure 6.3: Two similar call stacks related to the same exception.

Figure 6.3 shows a simplified representation of two call stacks of ex-
ceptions part of the same composite event. In practice, through the stack
comparison operation we consider two events to be similar when (i) they
are generated by the same operation (e.g., map: in this case) and (ii)
each of the stack frames, in order top to bottom, has the same method
selector and points to the same program counter (PC). At this point, the
call-stacks of the two similar events are aggregated in the same composite
event. All following debugging events are compared with the first event;
if they are similar, they are added to the same composite event.

Enhancing the debugging experience. Before opening a debugger,
the call-stack is further tailored by using another stack-tailoring operation
from Sarto: crafting a stack frame. In particular, since the stack was cut
at the stack frame representing the map: method execution, an artificial
frame is added to the bottom of the call-stack, in which the call on the
(virtual or real) partition is performed, followed by a call to reduce:.
This ensures that the developer can debug locally a complete Map/Reduce
execution over the records present in the debugging event. For example,
they can debug the map and then proceed to the reduce to further analyze
the execution.

6.3.2 Domain-specific Debugging Operations

Debugging is enabled in the main view of IDRAyR, displayed in Fig-
ure 6.4, marked with an A. This view is the one presented to the developer
when they access, within the Port UI, the tab dedicated to the debugger.
We display the debugging of an error raised in the elections poll applica-
tion introduced in Section 3.4.1. Through this interface, developers see
the debugging events that happened across the execution that they are
monitoring, and they can analyze their stack-trace, the event-inducing
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events, and they can start debugging an event of their choice. We mark
with B and C the zoomed-in details of the view.

Particularly, on the left side of the main view, marked with a B,
IDRAygr displays the list of distinct debugging events, only one excep-
tion in this case. The number 3 between square brackets denotes the
number of times this exception was raised across the same parallel execu-
tion, meaning this is a composite debugging event for the three exceptions.
On the right side of the main view, marked with a C, IDRAyRr displays
the stack and the different records that caused the exception.

The debugging Modes The overall view (Figure 6.4 A) allows de-
velopers to select a composite event, look at the call-stack, and inspect
(through the inspect selected button) the different records that caused it.
Furthermore, the buttons in the bottom right part, under the overview of
the event inducing records, allow the developer to start a full live debug-
ging session by using three different debugging modes.

The debugging modes enable the developers to decide the amount
of contextual information available during debugging. As mentioned be-
fore, data in the Map/Reduce model is split into different partitions (or
splits), hence every event-inducing record has an associated data partition.
By collecting data from the partitions that contained the event inducing
records, we offer different modes that contain more or less contextual in-
formation. IDRA\r provides:

Debug a single halted record. Developers start debugging the map:
on one of the event-inducing records. Once the map on the associ-
ated record returns, the developers continue debugging on the rest of
the records in the same partition. If no partition was included in the
original debugging event (cf. Section 6.2.1), the partition associated
with this event will include only the event-inducing record.

Debug a virtual partition with all halted records. The developers
debug the map: on a virtual partition containing only the event-
inducing records, regardless of their original partition. In our ex-
ample, this operation will construct a virtual partition containing
all records visible in the bottom part of Figure 6.4 C and let the
developer debug the map: on this virtual partition.
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Figure 6.4: A screenshot of the IDRAyg Ul when handling a composite
event. A shows the main view, while B and C show detail respectively in
the overview of composite exceptions, and the call stack and data view.
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Debug a virtual partition with all halting partitions. The develop-
ers debug the map: on a virtual partition which is the union of all
of the partitions that contain at least one halted record. This vir-
tual partition will contain all records in those partitions, including
those that do not halt. If no partition was included in the original
debugging event, this operation is equivalent to the second one.

The selected mode affects the point from which the developers start
debugging in relation to the crafted frame (cf. Section 6.3.1). For ex-
ample, when debugging a single record debugging starts at the point the
halting point was reached. When the developer continues debugging and
returns to the map: method, the debugging will continue on the appli-
cation of the map: to the next available record. If records are finished,
the debugging session returns to the crafted method to proceed with the
local reduce:. Instead, when debugging on virtual partitions the devel-
oper starts debugging from the crafted method and is able to step into
the execution of map: of the different elements.

Committing code changes. Recall from Section 6.2.3 that the changes
handler records all code changes that happen during debugging. Through
the debugger, developers have access to a dedicated view to visualize and
commit those code changes. Particularly, the code changes are visualized
in the Code Manager tab of IDRAMR, displayed in Figure 6.5. The right
side of the code manager shows all of the changes made by the developer
while debugging, and the diff between such code changes to the original
versions. By clicking on the commit changes button, the developer sends
a code patch to the master through its updater.

6.4 Evaluation

In this section, we evaluate IDRAyr using an application in the domain of
blockchain analysis to index all the blocks of a blockchain (i.e., Ethereum).

More concretely, we developed this application in collaboration with
researchers of the RMoD team in INRIA Lille to experiment with port and
IDRAMR. We first describe the implementation of the blockchain index-
ing application and then delve into the debugging cycle using IDRAyR,
showing how different errors can be detected and debugged. The described
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Figure 6.5: A screenshot of the code manager tab of IDRAMR.

errors are actually some of the problems reported by the collaborating re-
searchers when implementing this application in Port.

6.4.1 Blockchain Indexing in Port

The application we designed for this evaluation uses an indexing algorithm
to index every block in the blockchain. Indexation is the first step to enable
further analysis of the blockchain data.

We have developed an indexing algorithm that uses a relational database
to store indexed data. Our index has the structure of a relational table
with standard database indexes. For example, the table representing the
block index has the block’s hash, but also a timestamp and its parent
block’s hash. Figure 6.6 shows an example of a blockchain index table in
which the two latter columns are indexed, so we can do fast queries on
blocks by both timestamp and their parent blocks.

To set up such an index, our core algorithm performs a full scan of the
blockchain inserting all the corresponding values in our database.

Listing 6.1 illustrates the implementation of this application in Port.
The map: method (lines 1 to 6) obtains a block given a block index through
a call to the blockchain driver, extracts the indexed property from the
given block, and returns a key-value pair with the block index as key and
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Block hash | Timestamp ParentBlock
ca896d6 28/01/2019 ... | da6b261
da6b261 27/01/2019 ... | Taa96ae
Taa96ae 26/01/2019 ... | d6d3614
d6d3614 25/01/2019 ... | 402d518

Figure 6.6: Example of a block index table. The Timestamp and Parent-
Block columns are indexed.

the indexed value as value. For example, in the case of indexing blocks by
timestamp, the indexed value is the timestamp of the obtained block. The
reduce: method (lines 8 to 9) receives a collection of pairs produced by
the map: method and instructs the database to store the indexed. values

MRIndexingApp>>map:blockIndex
| ethereumBlock mappedProperty |
ethereumBlock := BlockChain at: blockIndex.
mappedProperty := ethereumBlock
get: #timestamp.
"~ blockIndex —> mappedProperty

MRIndexingApp>>reduce:pairs
Database storelndexedValues: pairs.

© 00 N o o A W N =

Listing 6.1: Pharo implementation of a blockchain indexing algorithm.

We use Geth ! as blockchain data node. The communication with
Geth is managed by the Fog Ethereum driver for Pharo 2. Finally, we use
a Postgres database to store the indexed data.

6.4.2 Experiments

In this section, we describe our experiments for executing and debugging
the blockchain indexing application described above. These experiments
show two things: first, the scalability of Port in executing applications on
a large amount of data; second, a concrete debugging experience using our
debugger on a real error we encountered while developing and executing
the application.

"https://github.com/ethereum/go-ethereum/wiki/geth
*https://github.com/smartanvil/Fog
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6.4. EVALUATION

In what follows, we first describe the setup and then delve into the
two experiments.

6.4.2.1 Setup

We run our experiments on a cluster composed of one root node and ten
identical slave nodes. Each node presents an Intel Xeon CPU E3-1240
@ 3.50GHz, 32 GB of RAM, and 200 GB of SSD Storage. Nodes are
connected via a 1 Gb/s local network.

For all the benchmarks, we deploy Port on the cluster using Hadoop
Yarn, and we use 1 single-core master, and, depending on the benchmarks,
several single-core workers. Hadoop Yarn takes care of the allocation of
the master and workers on the cluster. The cluster runs Pharo 8.0.0 (x64)
on a Pharo 8.3.0 Headless VM.

We control the execution and perform debugging from a 2017 MacBook
Pro, running an Intel Core i7-7567U @ 3.5GHz CPU, 16 GB of RAM, and
500 GB of SSD storage. This machine uses SSH tunneling to communicate
to the cluster. On this machine we run the same version of Pharo as on the
cluster, but with the full VM, including UI, rather than with the headless
one.

Before starting our experimentations we setup a Geth node (version
1.8.17-stable) with the following command

1| geth ——datadir ./devdata ——rpcapi eth,web,net ——syncmode fast
——cache 2048 ——gcmode full

We waited several days until the node was completely synchronized
with the blockchain to then run our blockchain indexing algorithm.

In our configuration, the root node runs:
- A Postgres server that handles the database.

- Port’s Yarn deployer (cf. Section 3.6) to handle the external com-
munication with the different nodes.

One of the slave nodes runs exclusively Geth, the blockchain data node.
The rest of the slave nodes are used to deploy Yarn containers that run
the Port master and workers. There is always one container running a
Yarn application, one running a master, and a global maximum of 70
containers available to each run a Port worker. The number of actual
containers running a worker varies depending on the experiment.
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Figure 6.7: Execution time of indexing 10.000 block increasing the number
of workers.

6.4.2.2 Experiments on Scalability

Indexing the whole blockchain, even using a Map/Reduce approach, is
not trivial. Not only does the performance of the indexing depend on the
number of workers that parallelize the work, but also on how these workers
communicate with the blockchain data node, during the mapping phase,
and with the database, during the reduce phase. While the employed
database (i.e., Postgres) is designed for concurrent access and scales well
to concurrent requests, the blockchain data node (i.e., Geth) queries the
blockchain using the RPC protocol, which can support only a limited
number of concurrent calls.

Before running this experiment, we assessed through a small bench-
mark the ideal number of workers to use in our configuration. We indexed
a fixed number of blocks (10.000 blocks), variating the amount of workers
from 4 to 48.

Figure 6.7 shows the result of this preliminary benchmark. The blue
curve represents the average execution time of the full Map/Reduce, while
the orange curve represents only the average time of the map phase. The
black dashed line represents the average minimum amount of execution
time (i.e., 43.6 seconds with 20 workers). Hence, we selected 20 as the
number of workers to use in the rest of our experiments.

To further assess the scalability of Port, we run our indexing algorithms
to increasing portions of the Ethereum blockchain to finally index the
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Figure 6.8: Execution time of indexing an increasing amount of blocks
with 20 workers.

full blockchain. At the time of our latest experiments (29/01/2019), the
Ethereum blockchian consisted of 7.080.006 blocks.

Figure 6.8 shows how the execution time increases when increasing
the number of analyzed blocks. The blue line represents the execution
time, the grey line represents the execution time of the sequential imple-
mentation of the indexing algorithm. The values of the dashed gray line
are proportionally projected since the execution time was too high to ex-
periment with. The dashed black line represents what the proportional
expected duration is, calculated on the result for 10.000 blocks. Both
scales are logarithmic (logyg), hence the two axes are proportional.

The graph shows that the execution time grows linearly, as the black
dashed line, except for 100 and 1.000 blocks, where the execution time is
impacted by the overhead of Port.

Using 20 parallel single-threaded workers, we managed to index the full
Ethereum blockchain in 7 hours, 18 minutes, and 47 seconds. While the
experiments on up to 100.000 blocks were repeated at least 10 times, due
to time limitations the experiments over 1 million blocks were executed
only 4 times and the one on the full blockchain only once.
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6.4.2.3 Debugging an Error Using IDRAyRr

To demonstrate the debugging capabilities of our solution, consider a con-
figuration and installation error in which we did not load the driver to
the Postgres database in the codebase of the Pharo image deployed on
the cluster, and used by the different master and workers. This is akin
to not correctly packaging a library in the jar submitted for execution to
Hadoop Map/Reduce or Apache Spark. Our application will correctly run
through the execution of the map, but suddenly fail when executing the
reduce.

While classic approaches will let the application crash and require log
analyses to find the problem, Port reports to IDRA\R an exception, in the
same way as a classic application exception, in the Ul previously showed in
Figure 6.4. At this point, the developer will see an UndefinedClassError,
stating that the undefined class cannot be instantiated, and several key-
value pairs as causing the error.

At this point, the developer loads the library locally, and those code
changes are detected by the changes handler. A patch is then committed
to updating the codebase of Port, and the developer restarts only the
reduces since the intermediate data has been persisted on disk.

Debugging such configuration errors with IDRAyRr provides an im-
mediate view of an error in the remote cluster. Furthermore, the code
updating capabilities of our approach avoid invalidating a correct execu-
tion. The support for library code update avoids the hassle of packaging
errors and related re-compiling and re-deployment steps. This is particu-
larly useful, especially when configuration bugs appear only in a late stage
of the computation, as in this example.

6.4.3 Discussion

In this section we have evaluated our approach in a realistic scenario,
showing both the scalability of Port and a concrete usage of IDRANR.
We now discuss our debugging approach w.r.t the different criteria of a
debugger for Big Data applications defined in Section 2.5.

In Table 6.1 we revisit Table 2.2 to include IDRAyr. Particularly,
IDRA MR offers scoped side effects and replay-free debugging. Further-
more, it supports halting the execution to inspect the execution state
and the use of classical stepping operations. With the introduction of
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Table 6.1: Comparison of IDRAyRr with related work w.r.t. the criteria
defined in Section 2.5.

Debugger  Side Replay  Halt & Stepwise Dom.S.  Code  Ignore
Effects Point Inspect  Ezec. Ops.  Updates FErrors

Arthur Both Start X v X X X
Graft Both  Start Rec. X v X X X
Daphne Both  Check.* v v X X X
BigDebug Global  Check. v X v v -
IDRAMR  Scoped No v v v* v X

the debugging modes, IDRAyR supports domain-specific debugging of
Map/Reduce applications but does not include support of domain-specific
stepping operations. Regarding code updates, we showed in this section
how IDRA\R’s code update capabilities can be used to update a remote
application without redeploying. Finally, IDRAygr does not support the
systematical ignoring of errors.

During our experiments, we also experienced some problems with
the scalability of our approach. When developing and debugging the
blockchain indexing application, for example, we choose to include the
partition of the failure-inducing record in the debugging session. As a
result, while the debugging experience was smooth when analyzing a low
number of blocks, the response time of the debugger increased when an-
alyzing more and more data. We also experienced this not only when
analyzing increasing data sizes, but also when having multiple parallel
exceptions, which produced composite exceptions containing several call
stacks. For these reasons, we further investigated more optimizations
to make the debugging experience more practical, which we describe in
Chapter 7.

6.5 Conclusion

In this chapter, we presented our solution for debugging Map/Reduce
applications, based on the concepts of out-of-place debugging, previously
introduced in Chapter 5.
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Composite events enable the centralization of the debugging experience
of debugging events raised during a parallel and distributed execution.
To reduce data transfers and improve the debugging experience we make
use of Sarto, namely of its stack cutting and crafting of a stack frame
operations.

Furthermore, we introduced three different debugging modes for do-
main-specific debugging of a composite event, allowing developers to de-
bug on virtual partitions of data containing, for example, all the failing
records. In this way, the developer can test locally its solution on a portion
of the data, before committing the code updates to the remote system.

We integrate the above concepts in a concrete prototype implemen-
tation: IDRAyR, a debugger for Port (cf. Section 3.4) in the Pharo
Smalltalk IDE. We provide views for the overview of composite events
and for code updating, and we rely on the Pharo Debugger for the local
debugging of the reconstructed execution. Finally, we assessed the ro-
bustness of Port by devising a blockchain analysis application for it and
showing a debugging example that highlights both the immediate debug-
ging feedback and code updating capabilities of our solution. More work,
however, is necessary to adapt this model to Spark-like applications, and
to improve performance and debugging experience of an out-of-place de-
bugging approach for Big Data applications. This will be discussed in the
following two chapters.
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Chapter 7

Debugging Support for
Spark-like Applications

In this chapter, we present our debugging approach for Spark-like applica-
tions. As for debugging Map/Reduce applications, we build our approach
on top of out-of-place debugging (cf. Chapter 5) using the debugging ar-
chitecture already presented in Section 6.1. On the one hand, we improve
the scalability of out-of-place debugging with several optimizations and we
expand our support for domain-specific debugging by introducing different
stepping operations tailored to the Spark-like model. On the other hand,
we introduce a solution for ignoring errors which extends the failure model
of a Spark-like model with the ability to ignore application failures up to
a custom threshold, inspired by acceptability-oriented computing [Rin03]
and relaxed programs [CKMR12].

In what follows, we first describe our debugging approach by further
refining the concepts of debugging session into dynamic local checkpoints
and introducing the domain-specific stepping operations, complemented
with our solution for supporting relaxed computations. Then, we present
an implementation of our debugging approach called SpaDebug which is
built on Sarto’s concepts.

7.1 Debugging Spark-like Applications

As explained in the previous chapters, out-of-place debugging provides
local debugging of remote failures. Particularly, when an exception hap-
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pens in the cluster, part of the execution environment (i.e., the execution
stack with its associated data) is transferred to the developer’s machine
to create a debugging session that enables local debugging of the remote
computation. As a result, developers can debug errors in isolation while
avoiding replays.

In this chapter, we build on the debugging model presented in Chap-
ter 6, reusing the concepts of composite debugging events for debugging
Spark-like applications. However, we need to consider that the execution
model now relies on a distributed data structure with a larger functional
APT than Map/Reduce. Overall, our debugging approach for Spark-like
applications focuses on the following aspects:

Debugging events. We revisit the concept of debugging events to form
dynamic local checkpoints, i.e., debugging events that store more
information about the event to include the lineage of the current
execution, at least part of the current data partition, and part of
the original partition.

Scalability. We optimize dynamic local checkpoints to reduce their size
making our approach more scalable.

Domain-specific Stepping Operations. We propose a combination of
fine-grained stepping, i.e., classical stepping operations, and domain-
specific stepping operations that allow developers to step through
a Spark-like execution based on its functional model, e.g., to step
to the next iteration, transformation, and the final result of the
debugged execution.

Ignoring errors. We enable different debugging modes to allow devel-
opers to ignore errors in applications that can accept a loss of accu-
racy. This requires revisiting the concept of exception handling of
the Spark-like model, since we should now be able to ignore failures
according to the selected mode.

In what follows, we first describe dynamic local checkpoints and the
optimizations that make them practical, followed by details on how we
reconstruct the execution for debugging, and how we augment the debug-
ging with debugging operations specific to Spark-like applications.
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7.1.1 Extracting Contextual Information with Dynamic Lo-
cal Checkpoints

We now describe the concept of Dynamic Local Checkpoints, an evolution
of the concept of debugging events originally devised for the Map/Reduce
model and that we now apply to a Spark-like model. Similar to debugging
events, at the moment an exception is thrown or a breakpoint is reached,
a dynamic local checkpoint is created by the worker through an exception
handler, and the call-stack is extracted and cut to exclude framework-
related stack frames. In practice, a dynamic local checkpoint includes
the call-stack of the exception, the partition of the event-inducing record,
and its lineage. Having this information allows a full reconstruction of
the execution for debugging, thus a more complete debugging experience
for the developer that can step into the execution not only of the event-
inducing record, but also of other records in the same partition.

To reduce the size of dynamic local checkpoints, we include two crucial
optimizations: partition windowing, i.e., cutting the partition of the event
inducing record, and delta composition of events to reduce to the mini-
mum the amount of information of a composite debugging event and thus
the amount of communication between the cluster and the developer’s
machine. In what follows, we detail the two optimizations.

7.1.1.1 Partition Windowing

Including in a dynamic local checkpoint the event-inducing record as well
as at least part of its partition, increases the amount of contextual infor-
mation on the debugging event, which is available for debugging. How-
ever, partitions may include GBs of records, making the dynamic local
checkpoint’s size potentially very big. To make debugging practical, we
perform partition windowing, i.e., include a reduced version of a partition
by cutting it around the event-inducing record.

In practice, after capturing the data necessary for a dynamic local
checkpoint, the worker trims the data of the failing partition around the
failure-inducing record to only include a subset of the partition’s records.
For example, if the runtime was applying a map: over a partition of 3000
elements, and the element at index 1234 fails, the failing partition is cut to
contain only a window of N elements, with indexes [1234 — (N/2), 1234 +
(N/2)], adjusted to respect the bounds of the partition.
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The window size parameter N is a customizable parameter that allows
the developer to choose a balance between performance and contextual
information: setting N to 0, results in the dynamic local checkpoints in-
cluding no partition data, except the event-inducing record. Setting N
to higher values, in turn, will include in the dynamic local checkpoints
records that did not cause a failure, i.e., the ones preceding the failure-
inducing record, and the ones that can potentially cause one, i.e., the ones
following the failure-inducing record.

Partition windowing heavily reduces the size of a dynamic local check-
point, thus reducing network overhead when transferring a debug session.
The impact of partition windowing on the size of dynamic local check-
points will be assessed in Section 8.1.4.

7.1.1.2 Composite Debugging Events with Delta Stacks

To further reduce network overhead, we revisit the concept of compos-
ite debugging events to work with dynamic local checkpoints and further
reduce their network overhead. Recall that composite debugging events
aggregate many similar debugging events that occur in the same parallel
execution regardless of their data partition or worker nodes. We consider
two dynamic local checkpoints similar if the associated events (i.e., excep-
tion or breakpoint) are of the same type, and they happened at the same
point of the execution, i.e., they present the same call-stack and program
counter.

Upon a composite debugging event, we extract the execution stacks
of two similar exceptions and for each pair of stack frames, we compute
their delta stack frame, i.e., a stack frame presenting only the value of the
variables that differ between the two stacks, and placeholders for the ones
that do not change. We then serialize only one of the call-stacks of the two
exceptions, i.e., the reference call-stack, and, instead of the full-stack of
the other dynamic local checkpoint, one only the delta stack composed by
the different delta stack frames'. When other dynamic local checkpoints
that are part of the same composite debugging event are detected, a new
delta stack is calculated using the reference call-stack as the baseline.

By employing composite debugging events with delta stacks, only one
full dynamic local checkpoint needs to be serialized over the network. If

'For more details about the delta stack operations please refer to Section 4.2.2,
particularly to Figures 4.9 and 4.10
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call-stacks reference variables with the same values, that is often the case
for parallel iterative Spark-like applications, they will be omitted resulting
in lower network usage.

7.1.2 Domain-specific Stepping Operations

Once a debugging session is opened at the developer’s machine, out-of-
place debugging provides classical online features such as a view of the
state of all the variables for each frame of the call-stack, the possibility
to inspect and evaluate code in the debugged context, and operations to
step into and over the execution of methods. Thus, developers can step
into the application of a certain transformation and debug its execution.

Furthermore, as argued in Section 2.5, we also want to provide domain-
specific debugging operations to enable debugging across the execution
model of Spark-like applications. Namely, a Spark-like execution is mod-
eled to execute a series of transformations followed by an action or a wide
transformation that triggered them. Inspired by the stepping over a trans-
formation of BigDebug [GIY16], we devise a set of three domain-specific
stepping operations targeted to Spark-like executions that work in combi-
nation with the classical stepping operations offered by online debuggers.

Those operations apply when debugging a particular execution of a
transformation within the execution of an action or wide transformation.
Below, we describe the three operations:

Step to next record. Steps to the next execution of the same transfor-
mation, i.e., to the next record.

Step to next transformation. Steps to the first execution of the next
transformation (akin to BigDebug’s step over).

Step to action result. Steps until the point in which the next action is
applied (locally). At that point, the developer inspects the result to
evaluate (i) if the execution finished correctly and (ii) the result of
such an action.

7.1.3 A Relaxed Computational Model for Spark-like Ap-
plications

As mentioned in Section 2.4.5.2, not all errors are harmful: there are
situations where ignoring certain application errors has little or no impact
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in the final result of the application. For instance, many times developers
spend hours solving errors related to dirty data [MLW™*19], which could
simply be ignored. This is the case, especially for many data science
applications that allow for a certain degree of accuracy loss. For example,
in a K-Means algorithm not all data is sensitive and a certain loss of
accuracy is acceptable: Chippa et al. [CCRR13] show that a k-means
algorithm may run up to 50x faster by giving up 5% of accuracy.

For the applications that do accept a certain degree of accuracy loss,
allowing developers to instruct the framework to ignore a certain number
of errors leads to a more scalable debugging solution where only relevant
errors need to be manually debugged. In our approach, developers have
control over when and which exceptions may be ignored by the runtime.

The simplest way to ignore errors is by revisiting the mechanisms of
exception handling present in the underlying execution model with new
methods to handle and deal with exceptions. If a developer knows where
an application error might happen, that error can be ignored by adding
an explicit exception handler. The challenge, however, is how to deal with
unanticipated errors. This often requires manual creation of exception
handlers (or exception handling techniques) scattered around the code
base, especially if developers want to keep track of the ignored records.
To tackle this problem, we build on the ideas of acceptability-oriented
computing [Rin03], which envisions a failure model where errors are ac-
cepted automatically by the runtime, avoiding boilerplate exception han-
dling code. This is also referred to as relazed computation [CKMR12].

In particular, we propose a relaxed computation model for Spark-like
applications in which developers can instruct the runtime to ignore errors
up to a certain threshold, combined with the debugging support for de-
bugging errors that were not ignored. The overall model presents three
main features:

1. Developers can explicitly ignore errors happening in both actions
and transformations on DDDs.

2. Developers can specify a threshold of the number of ignored ex-
ceptions in terms of the original dataset size. This determines the
maximum loss in accuracy given by ignoring errors.

3. Developers have access to the ignored records and can debug their
execution.
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To incorporate the proposed relaxed failure model, we adapt how run-
time exceptions are handled. In Big Data frameworks, exceptions across
the parallel computation are usually caught by a global exception handler
that reports them to the master, which eventually terminates the exe-
cution. To enable relaxed computations, the Big Data framework (i.e.,
Spa) is instructed to catch all exceptions with a relazed exception han-
dler. Those exceptions will be ignored locally, and the execution will be
resumed from the next iteration of the same operation. When the num-
ber of ignored exceptions across the parallel computation goes over the
given threshold, the default handler is invoked to report the error to the
master. To enforce the ignoring threshold, each of the operations is ini-
tialized on the master with a counter, called the exception counter, that is
incremented whenever a worker ignores an exception through the relaxed
handler.

7.1.3.1 Enabling and using the relaxed failure model

We propose a relaxed failure model that can be activated both globally for
all actions or locally to a particular action (and its related transformations
in the pipeline). In our implementation in Spa, the global relaxed mode
and its threshold are set by a developer through a call to Spa’s API or from
the Ul, in a similar way as launching an application in "debug” mode in a
classic IDE, as further detailed in Section 7.2.2. The local relaxed model,
instead, is set programmatically for actions and wide transformations (and
their pipeline of transformations). To this end, we extended Spa’s API
with a new action: ignoreExceptions. This action forces the ignoring
of exception of its preceding pipeline and returns a new distributed data
structure (DDD) on which operation can be applied within a relaxed ex-
ception handler. Spa also includes an ignoreExceptions: variant, where
the ignore threshold is specified as a percentage of the size of the entire
data set. By default, calling ignoreExceptions without parameters is
equivalent to calling ignoreExceptions:100.

To illustrate our extension, consider Listing 7.1, which applies the
local relaxed failure model to the running example on the word count
application. Line 1 creates a DDD from a collection of 2001 numbers on
which a map operation is applied. To enable ignoring of exceptions for the
mapping transformation, the developer adds a call to ignoreExceptions
before applying the getCollection action (in line 3). In this way, the
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execution of that action returns an error-free result, that does not contain
the result of 1/0.

data := framework distribute: (0 to: 2000).

mapped := data map: [:e |1/ e].

result := mapped ignoreExceptions getCollection.
>> {1.1/2 ... 1/2000}.

Listing 7.1: Enforcing the relaxed failure model on a particular execution.

W N =

As described earlier, when a particular exception is ignored, our ap-
proach filters out the failure-inducing record, so that the resulting data
structure does not include it (or a transformation of such record). This,
however, does not lead to a complete loss of information: a reference to the
ignored record, i.e., its index in the data partition, is kept in the returned
DDD. To retrieve more information about that record, three operations
are made accessible to developers to (1) retrieve how many records were
ignored, (2) obtain a collection with all records that were ignored, and
(3) obtain a new DDD containing all failure-inducing records. Listing 7.2
shows these three operations in the context of the relaxed operation shown
in Listing 7.1.

1 count := mapped ignoredCount.
2 ignored := mapped fetchlgnoredValues.
3 ignoredDDD := mapped createDDDFromIgnoredValues.

Listing 7.2: Retrieving information from an ignored execution.

7.1.3.2 Enhancing exception handling with ignore awareness

As mentioned in the introduction of this chapter, Spark-like applications
will either terminate without errors or fail with a runtime exception after
the framework unsuccessfully re-schedules the failed execution in other
workers. Recall that we call failure-inducing record the record that is
being processed when the exception occurs.

In Spark-like frameworks, developers can add an exception handler in
the closures passed as arguments to the operations. In Spa, developers
can also add their exception handler through a functional call to a certain
pipelined transformation.
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1 mapped := collectionDDD map: [:e | e / 0]
2 mapped handle: ZeroDivide with: [:error | 'infinite’ ].

The above listing displays how to add an exception handler to a specific
transformation, i.e., a map of a division by zero. While this is syntactic
sugar for adding the exception handler to the closure execution, treat-
ing the addition of the exception handler as a functional call enables the
introduction of a pipeline reification to guide the execution.

In Spa, exception handlers on transformations can be used regardless
of the global failure mode, and always take priority on the selected failure
model: if an exception is handled by a user-defined exception handler, it
is not propagated to the default or relaxed handler. Through the pipeline
reification, developers can decide to ignore particular exceptions in the
exception handler, as shown in Listing 7.3.

Line 1 adds an exception handler to the map: transformation for a spe-
cific type of exception, i.e., ZeroDivide. The closure that is passed to the
exception handler takes two parameters: the exception (stored in error)
and an optional reification of the current execution (stored in pipeline).
To instruct the runtime to ignore that particular error, the ignoreError:
method is called within the exception handler on the pipeline reification.
In line 2, the call to getCollection triggers the execution of the map:,
and returns the resulting data structure. In the execution, the first el-
ement (0) throws an exception that is caught by the exception handler
(in line 1) and ignored. As such, the getCollection executes without
throwing the error, and the result (shown in line 3) contains each of the
original elements as denominator except for the failure-inducing record (0)
as if the ignore mode was active.

When an exception is ignored in a custom exception handler, the state
of the relaxed handler will determine how the exception is processed: if
the relaxed handler is active, it will handle the exception, increasing the

1 mapped handle: ZeroDivide with: [:error :pipeline | pipeline ignoreError:
error).

2 result := mapped getCollection.

3 >> result = {1.1/2 ... 1/1999 . 1/2000}.

Listing 7.3: Ignoring an exception in the exception handler.

127



CHAPTER 7. DEBUGGING SUPPORT FOR SPARK-LIKE
APPLICATIONS

exception counter, and taking the ignored exception into account when
checking the counter against the threshold; if the relaxed handler is not
active, the exception is ignored without checking if the exception counter
is lower than the threshold, since it is not set in the selected failure model
of the action.

7.2 SpaDebug: an Out-of-place Debugger for
Spark-like Applications

We prototype our solution in SpaDebug: an out-of-place debugger for
Spark-like applications. SpaDebug is an extension of IDRAyg and thus
retains its code update capabilities and domain-specific debugging modes,
i.e., the debugging on virtual partitions. It also shares with IDRAyRr the
UI for displaying composite debugging events.

SpaDebug, however, introduces new optimizations (cf. Section 7.1)
and new domain-specific stepping operations available when debugging
an execution. Finally, it offers different execution modes to apply relaxed
computations.

In what follows, we first detail how we used different stack-tailoring
operations from Sarto to implement different features of SpaDebug. Then,
we further describe how to activate the different execution modes in SpaDe-
bug and detail how domain-specific stepping and relaxed computations
were enabled in the debugger.

7.2.1 Sarto’s Operations in SpaDebug

SpaDebug takes advantage of several operations of Sarto (cf. Chapter 4
to tailor the call-stack for debugging, particularly to (i) reduce the size
of dynamic local checkpoints, (ii) identify similar debugging events, and
reduce the size of composite debugging events, and (iii) enable classical
and domain-specific stepping operations.

Reducing the size of dynamic local checkpoints. As IDRAyR,
SpaDebug uses the stack cutting operation to exclude framework frames
from the call-stack, thus reducing the size of a dynamic local checkpoint.
To do this, we mark as framework exit point all transformations and
actions in the implementation of the DDD partition.
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Identify and reduce the size of composite events. As IDRAyg,
SpaDebug also uses the stack comparison operation to determine whether
two debugging events are similar. Furthermore, the delta stack calcula-
tion operation is used to further reduce the size of composite debugging
events. Considering two similar call-stacks related to the same composite
debugging events, the delta stack calculation extracts a delta stack that
includes only the variables that change among the two similar call-stacks.

Enable classical and domain-specific stepping operations. Before
debugging, the delta stack application is used to reconstruct the call-stack
related to a particular execution. This ensures that all variables are set to
the state they had at the moment the dynamic local checkpoint was taken.
Furthermore, the crafting a stack frame operation is also used to insert
in the debugged call stack a method representing a sequential execution
of the different transformations that are being debugged. This is further
discussed in Section 7.2.3.

7.2.2 Debugging Modes in SpaDebug

By introducing a relaxed failure model, we introduced a novel debugging
mode for Spark-like programs in which errors can be systematically ig-
nored. Overall, we provide three global execution modes for SpaDebug:

Debug. When selecting the default debug mode, SpaDebug will effec-
tively use the default error handler, catching errors, reporting the
failure to the master, and reporting dynamic local checkpoints to
the debugger to enable debugging. Errors are visible shortly after
in the UI and are debugged interactively as described earlier in this
chapter.

Ignore. When selecting the ignore mode, SpaDebug will use globally
the relaxed error handler, catching the errors and ignoring them
without reporting a failure to the master. An ignoring threshold
can be set, and it applies to each pipeline of transformations: if a
distributed collection includes 100 elements, and the threshold is set
to 30%, up to 30 failures will be ignored across the parallel execution
of a particular action. In case the failures exceed the threshold, the
following failures are handled using the default error handler, i.e.,
as if the debug mode was selected.
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Figure 7.1: The dropdown for the selection of SpaDebug mode.

Ignore and Debug. The “ignore and debug” mode combines the re-
laxed execution with our debugging capabilities. In practice, when
using the ignore and debug mode, a special exception handler is used
that behaves like the relaxed handler in terms of how the exception
is handled, but also performs a call to the default handler to gen-
erate a dynamic local checkpoint and report it to the developer’s
debugger. As for the ignore mode, a threshold can be set to limit
the amount of ignored exceptions.

The developers can select the global SpaDebug mode from the Spa Ul
as shown in Figure 7.1. This is similar to how they would typically select
to run a program in debug mode in a conventional IDE.

As already mentioned in section 7.1.3.1, the ignore mode can also
be limited to certain action execution by calling ignoreExceptions (or
ignoreExceptions: ignoreThreshold) before calling an action. Analo-
gously, the ignore and debug mode can be activated on single action execu-
tion by calling ignoreAndDebugExceptions (or ignoreAndDebugExcepti-
ons:ignoreThreshold). Finally, ignoring exceptions can also be triggered
directly in the exception handler as further discussed in Section 7.2.4.

7.2.3 Domain-specific Stepping Operations in SpaDebug

In this section, we describe our approach to correctly reconstruct a remote
execution at the developer’s machine for debugging, enabling the domain-
specific stepping operations.

Let us re-introduce the election pools analyzer first described in Sec-
tion 3.3. Listing 7.4 shows the implementation of the election polls ana-
lyzing application case in Spa, extracted from Listing 3.3.

130



7.2. SPADEBUG: AN OUT-OF-PLACE DEBUGGER FOR
SPARK-LIKE APPLICATIONS

MessageNotUnderstood >> signal

SpaApplication >> isValidTimestamp:

SpaPartition >> filter:

Figure 7.2: The instrumented call-stack when a MessageNotUnderstood
error is signalled during a Spa execution.

1 | parsed := raw map: [:line | line substrings: ','].

2 | valid := parsed filter: [:array | (self isValidTimestamp: array third) and: |
self isValidRegion: array first] |.

3 | mapped := valid map: [:array| array second —> 1].

4 |result := (mapped reduceByKey: [:valuel :value2 | valuel + value2])
getCollection.

Listing 7.4: Part of the code of the vote counting application in Spa
extracted from Listing 3.3.

In this code, line 1 parses the raw contents of a file, and the resulting
collection is filtered (line 2) to extract only the records that have a valid
timestamp and a valid region. Then each record is mapped to the number
1 in line 3 and reduced by key to count how many times each record has
been voted in line 4.

When executing, Spa schedules the execution in two main tasks, simi-
lar to Spark’s stages. The first task executes the first map, followed by the
filter and the second map, and part of the reduceByKey. This is because,
after reducing the closure of the reduceByKey locally to each partition
in each worker, a grouping operation is called to group the data by key,
thus shuffling data so that all key-value pairs of a certain key are in the
same partition. At this point, the second task is executed to further re-
duce the data, and finally return the result to the developer to the call to
getCollection.

Figure 7.2 displays the call-stack when an error happens during the
filter, thus the second transformation of the first task. Since we cut the
framework frames out of the call-stack, it now contains no information
about what generated the filter below the bottom stack frame. To debug
the full execution of a certain action or wide transformation, there should
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be a method below the activation of filter:, that makes the sequential
call to all the different transformations, as the one shown in Listing 7.5.

1 | SpaExecution>>execute
2 | (((partition map: [:line | line substrings: ','])
3| filter: [:array | (self isValidTimestamp: array third) and: [self
isValidRegion: array first] |)
1 map: [:array| array second —> 1]) reduceByKey.
Listing 7.5: An example of the reconstructed activation method for
debugging the execution of Listing 7.4 locally.

Through the crafting of a stack frame operation of Sarto, we add a
method into the call-stack as the one presented in Listing 7.5. To construct
it, we first extract the lineage information about the debugged action/wide
transformation and then add each call sequentially to the crafted method.
We then add the method at the bottom of the call-stack, setting the PC
to the right transformation call.

7.2.3.1 The Domain-specific Stepping Operations in Action

The crafted method enables the domain-specific stepping operations of
SpaDebug. To showcase the different operations, let us consider the prac-
tical example of debugging a breakpointed execution of the election polls
analyzing application. Figure 7.3 shows the view of the debugger halted
in the execution of the filter:. You can see that several stepping opera-
tions are offered to the developer. From the left, the first 5 are the classical
stepping operations offered by the Pharo debugger. The three following
ones are the domain-specific stepping operations that we introduced with
SpaDebug.

In this example, the execution is halted in the filter:. Stepping to
the next element will step to the same filter:, but applied to the next
record of the available partition. Stepping to the next transformation will
instead step to the following execution of map: on the first record of the lo-
cal partition. Finally, stepping to the action result will inspect the results
of the action or wide transformation, reduceByKey in this case, allowing
the developer to further analyze them. As for the whole debugging ses-
sion, the execution of these domain-specific debugging operations is local
to the developer machine and does not require network communication
with the remote execution of Spa (i.e., the cluster).
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x -0 Halt Bytecode GT ~
Stack »Proceed (% Restart 3 into 7 Over ¥ Through - NextElement = NextTransformation * Action Result ~=
SpaElectionPollsApplication(Object) halt
SpaElectionPollsApplication isvalidTimestamp:
SpaElectionPollsApplication runWithData: [:array | (self isvalidTimestamp: array second) and: [ self isvalidRegion: array first]]
OrderedCollection select:
SpaDDDPartition filter:
SpaDDDPartition(PortDistributedExceptionMetaData) ~ currentExecution

i dPi i c¢ debugContext: [ self value. Processor terminateActive ]
Source @, Whereis? [7Browse

runwWithData: data
| results splitted valid mapped |
splitted := data map: [ :line | line substrings: ' ' J.
valid := splitted filter: [:array | (self isValidTimestamp: array second) and: [self isValidRegion: array first] ].
mapped :=( valid map: [ :col | col first -> 1 ]).
results := (mapped reduceByKey: [ :a :b | a + b ] )getCollection.
A results.

Figure 7.3: The view of the debugger opened on a failing filter in the
election polls analyzing application.

7.2.4 Integrating the Relaxed Computational Model
in SpaDebug

In this section, we detail how we enable relaxed computations through
a relaxed exception handler in SpaDebug. Particularly, we focus on how
failure-inducing records are treated and how the ignoring threshold is en-
forced.

What happens to the ignored failure-inducing record? When a
particular exception is ignored, the runtime filters out the failure-inducing
record, so that the resulting data structure does not include it (or its
transformations). As an example, let us consider again the vote counting
application (cf. Section 3.5.1). Its code includes a map:, a filter:, and
another map: followed by a reduceByKey:.

In the example, an error happens during the filter, within the call
of isValidTimestamp:, as depicted in Figure 7.4. When that error is
ignored, the handler returns a placeholder (represented as ##) to the first
method after the API call, so the call of select:, a method of the Pharo
Collection APT used during filter:. If any record was ignored, a flag
will instruct the worker to remove placeholders from the collection before
feeding the intermediate results to the following transformation, a map:
in this case.
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MessageNotUnderstood >> signal

SpaApplication >> isValidTimestamp: .

Collection >> select:

SpaPartition >> filter:

Figure 7.4: The instrumented call-stack when a MessageNotUnderstood
error is signalled during a Spa execution, and before the error is ignored.

Enforcing the ignoring threshold To enforce the ignoring threshold,
each of the operations is initialized on the master with a counter. This
counter is replicated in each of the workers and is incremented whenever
the relaxed exception handler ignores an exception. The worker sends
the increment of the counter to the master, which then returns the latest
updated value of the counter. If the returned counter is higher than the
threshold, then the relaxed handler simply forwards the exception to the
default handler, which will generate a dynamic local checkpoint to enable
debugging.

7.2.4.1 Notes on Related Work

The ideas of acceptability-oriented computing and relaxed computations
have been already explored in different contexts. For example, Rigger
et al. [RPM18] have used the concept of relaxed programs to prevent
buffer overflows in C, avoiding aborting the program on a buffer overflow,
through implementing a failure-oblivious system via a recovery logic. In
another example, Zhang and Monperrus [ZM19] also use the concept of
failure-oblivious system to improve the reliability of Java programs, by
testing the execution of a program, and, if a failure is found, injecting
empty exception handlers to handle them; if the addition of the handler
does not generate a failure in all the application’s test cases, then it is
kept and signaled to the developer. To the best of our knowledge, this is
the first work that explores them in Big Data parallel computations.

134



7.3. CONCLUSION

7.3 Conclusion

In this chapter, we have described our practical out-of-place debugging
approach for Spark-like applications. Particularly, we described how dy-
namic local checkpoints extend debugging events with more contextual in-
formation of the execution and with two crucial optimizations for reducing
their size: partition windowing and composite debugging events with delta
stacks. We then introduced the domain-specific stepping operations tai-
lored to Spark-like applications and we described a relaxed computational
model that extends Spa’s execution model for ignoring errors. The per-
formance and usability of our proposed approach are validated in the next
chapter.
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Chapter 8

Validation

In this chapter, we validate our debugging approach for Big Data ap-
plications. The goal of this validation is two-fold. First, we assess the
scalability and the overall performance of the different features of our de-
bugging approach; second, we assess its usability through an experimental
user study.

We perform the benchmarks across different applications written in the
Spark-like model, ranging from classical parallel distributed applications
such as wordcount and grep, to popular data analysis algorithms such as
K-Means.

We then present the details and results of an experimental user study
in which 17 participants performed two debugging assignments over two
data analysis applications, i.e., K-Means and decision tree learning, using
SpaDebug and a reproduction of BigDebug, a state of the Art debugger
for Spark (cf. Section 2.4.5.3).

This validation does not only validate the features of our debugger for
Spark-like applications but also of the underlying debugging layer shared
by both the debuggers proposed in this dissertation.

8.1 Performance Evaluation

In this section we assess the scalability and performance of our debugging
approach by answering five research questions:

PQ 1. How does our debugging approach scale to Big Data?
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PQ 2. What is the impact in reducing the size of the debugging session
of the two optimizations, i.e., partition windowing and composite
debugging events with delta stacks?

PQ 3. How much time does out-of-place debugging save in comparison
to replay and checkpoint-based debugging?

PQ 4. What is the overhead of the relaxed computational model?

PQ 5. How does the relaxed computational model scale to a big number
of exceptions?

To answer these questions, we conducted several performance bench-
marks across a benchmark suite including typical Big Data and data anal-
ysis applications. In what follows, we first describe the benchmark suite,
then the setup of our environment, and finally we present the experiments
and their results.

8.1.1 The Benchmark Suite

We run our benchmarks on three different Big Data applications, com-
monly used to test the performance of Big Data frameworks [WZL*14]:
distributed grep, wordcount, and K-Means. In what follows, we describe
the three different applications.

8.1.1.1 The Distributed Grep Application

The purpose of the distributed grep is to analyze one or multiple large
text files, extracting from the files only the lines that include a certain
string.

1 | SpaGrepApplication >> runWithData: fileDDD
2 " (fileDDD filter: [ :line | line includesSubstring: parameter |) execute.

Listing 8.1: The code of the Distributed Grep application.

Listing 8.1 shows the application code. The application expects a DDD
representing a file as parameter. Line 1 defines the method, and line
2 applies a filter that accepts only the lines that include a certain sub-
string, parameter, that is set as application parameter before running it.
execute is called to trigger the execution.
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8.1.1.2 The Wordcount Application

Wordcount is another classical application to test Big Data frameworks.
As the name suggests, the goal of the application is to count how many
times each word is repeated in one or more files.

1 | SpaWordCountApplication >> runWithData: fileDDD

2 |mapped|

3| mapped := (fileDDD flatMap: [:e | e substrings: ' ' ]) map: [:e | e —> 1
].

4 " (mapped reduceByKey: [:a: b | a + b ]) execute
Listing 8.2: The code of the Wordcount application.

Each line of the file is flat-mapped to split by the character space, thus
extracting each word of the file. Then each word is mapped in a key-value
pair to the number 1 using the map transformation. The last line reduces
by key the mapped data, summing the values associated with each key,
thus returning a collection in which each word is mapped to the number
of times it was repeated.

8.1.1.3 The Twitter K-Means Application

The purpose of the Twitter K-Means application is to understand which
hashtags are more popular based on the number of likes tweets receive.
K-Means is also a representative application to evaluate our relaxed com-
putational model, as a lower accuracy does not heavily impact its re-
sults [CCRR13].

Listing 8.3 shows the main method of the application executed by
Spa. First, line 2 parses the tweets, and line 3 makes pairs for all the
tweets by associating each of the hashtags of a tweet with the number
of likes the tweet received. Line 4 a reduceByKey: is applied to sum,
for each hashtag, the number of likes it got. Lines 5,6, and 7 send the
message top:withBlock: which extracts the trending N hashtags, i.e.,
the N hashtags with the most total likes. For each hashtag, lines 8 and
9 extract from the pairDDD data structure the values that have that
particular hashtag. This is returned as a Dictionary. Lines 11 to 21
correspond to the iterative part of the K-Means algorithm called on each of
the trending hashtags (and the subset of tweets that include that hashtag).
In a nutshell, the K-Means algorithm runs different iterations to find the
optimal clusters of tweets, returning a result for each of the hashtags.
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1 | K—MeansClustering TweetsExperiment>>runWithData: data

2 parsed := self parse: data.

3 pairDDD := self makePair: (parsed filter: [:e | e isNotNil]).

4| scores := pairDDD reduceByKey: [ :v1 :v2 | vl + v2].

5 trending := scores

6 top: nTags

7 withBlock: [ vl :v2 | v1 value > v2 value ].

8 likes := (trending asDictionary keys

9 collect:

10 [ :hashtag | hashtag —> ((pairDDD filter: [ :kv | kv key = hashtag
) map: #value) ])

11 asDictionary.

12 results := Dictionary new.

13 trending

14 doWithIndex: [ :t :idx |

15 rdd := (likes at: t key) execute.

16 centroids := rdd takeSample: nClusters.

17 K—MeansResult := K—Means

18 runK—MeansOn: centroids

19 withData: rdd

20 maxIterations: maxIterations

21 treshold: treshold.

22 rdd deallocate.

23 results at: t put: K—MeansResult.].

24 " results

Listing 8.3: Main method of the Twitter K-Means application.

Figure 8.1 shows the different stages in the twitter K-Means applica-
tion that conceptually belong together and that are grouped in pipelined
operations 1. These stages are (i) parsing the JSON dataset in Tweet
objects (ii) extracting the hashtags and related likes and grouping the
tweets by hashtags, and (iii) running the K-Means algorithm. Note that
the K-Means stage will be iterated several times for each of the different
hashtags, as indicated by the arrow in the figure.

More details about the application are described in the user study as-
signment material about this application, available at Appendix A. Par-
ticularly, the full code of the application is listed in Appendix A.3.

!To simplify the figure, the different transformations and actions happening during
the iterative part of the K-Means algorithm have been omitted.
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Stage 1: Parsing 3 Stage 2: Extract and group 1 istage 3: K-Means
| !Hashtags .

Load :
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O Persistance points Operation O Iterated

getCollection f

Figure 8.1: Overview of the different stages of the K-Means application.

8.1.1.4 Dataset

We run the applications on different subsets of a dataset containing roughly
100 GB of raw tweets, coming from a recording of a live Twitter stream?.
In this dataset, tweets are represented using JSON, as detailed by the
Twitter API3. The great majority of the tweets in the dataset are valid
(i.e they have an id, a text, etc.) and are thus correctly parsed by the
applications. However, since the dataset was recorded from a live stream,
it also presents around 17% of tweets that were malformed or miss in-
formation that causes the application to fail if they are not filtered out.
Deleted tweets are not valid for our analyses as they do not contain text
and thus are excluded in the analysis by our parser. In our experiments,
when we say that we inject failures it means that we change the parser to
leave some of those tweets in the parsed dataset as nil values, which will

let the application raise an exception later during the execution.

8.1.2 Setup

We run our experiments on a cluster composed of one root node and ten
identical slave nodes. Each node presents an Intel Xeon CPU E3-1240
@ 3.50GHz, 32 GB of RAM, and 200 GB of SSD Storage. Nodes are
connected via a 1 Gb/s local network. Depending on the benchmark,
we use a slightly different configuration using different amounts of slave
nodes. When this happens, we specify it in the benchmark.

For all the benchmarks, we deploy Port on the cluster using Hadoop
Yarn, and we use 1 single-core master, and, depending on the benchmarks,
several single-core workers. Recall that Hadoop Yarn takes care of the

2Particularly, the dataset used in our experiments includes random tweets recorded
on the 30th July 2017

Shttps://developer.twitter.com/en/docs/tweets/data-dictionary/overview/
intro-to-tweet-json
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allocation of the master and workers on the cluster (cf. Section 3.6. The
cluster runs Pharo 8.0.0 (x64) on a Pharo 8.3.0 Headless VM.

We control the execution and perform debugging from a 2017 MacBook
Pro, running an Intel Core i7-7567U @ 3.5GHz CPU, 16 GB of RAM, and
500 GB of SSD storage. This machine uses SSH tunneling to communicate
to the cluster. On this machine, we run the same version of Pharo as on
the cluster but including UI.

8.1.3 PQ 1: How does our debugging approach scale to Big
Data?

To validate the scalability of our debugging approach, we designed an
experiment to measure the time to handle an exception when increasing
the amount of analyzed data, as well as when increasing the number of
exceptions that happen in the parallel execution. To do so, we inject fail-
ures in the Twitter K-Means Application described in section 8.1.1.3 and
measure the amount of time until Spa reports a failure to the debugger,
for increasing amounts of data and parallel exceptions.

For this benchmark, we inject a failure-inducing record (i.e., nil) in
each partition of the RRD before executing stage 2, i.e., all workers fail just
after the tweets are parsed. We then measure the time needed to handle an
exception and generate an online debugging session, by measuring in the
master how much time passed since the computation has started when the
debugging session is sent for debugging. We run the same experiment for
datasets of different sizes, from 5 GB up to 50 GB. We run the execution 20
times for each of the portions of the dataset, and each number of parallel
exceptions. We report averages + standard error.
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Execution time when increasing number of exceptions,
failing at beginning of stage.
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Figure 8.2: Execution time of stage 2 when increasing the number of
exceptions happening in parallel, for different sizes of the dataset. Error
bars show the standard error.

Results Figure 8.2 shows the average execution time of the failing stage,
including the time to generate a debugging session, for each different size
of the dataset (shown in different colors). The results show that the exe-
cution time of the failing stage is relatively dependent on the amount of
analyzed data and of parallel exceptions. When analyzing five to twenty
GB of data (gray, orange, and blue line) the execution time is generally
lower than when analyzing more data. This difference, however, is always
lower than 200 milliseconds, which we believe to be an acceptable amount.
When increasing the number of parallel exceptions, however, the execu-
tion time generally grows for low amounts of data and stays stable for a
higher amount. The differences across the same data size, however, range
in around 50 milliseconds, which we again consider to be an acceptable
amount.

With these results, we conclude that our debugging approach scales,
for what concerns handling an error to create a (composite) debugging
session, to both an increasing number of errors and of parallel exceptions.
These results also include the overall impact of our debugging optimiza-
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tions, i.e., composite debugging events and partition windowing, that we
further investigate in the next section.

8.1.4 PQ 2: What is the impact in reducing the size of the
debugging session of the two optimizations?

In this section we assess the impact of the two main optimizations intro-
duced in our out-of-place debugger for Spark-like applications (cf. Sec-
tion 7.1, i.e., partition windowing and delta stacks.

To assess the impact of the two optimizations, we designed two bench-
marks using the K-Means application (cf. Section 8.1.1.3). First, we
measure the impact of partition windowing by changing the partition win-
dowing size parameter.

Second, we analyze the size of the dynamic local checkpoints when
delta stack calculation is enabled and compare it to the size of the dynamic
local checkpoints without the use of delta stacks.

Setup. Similar to the scalability benchmark, we let the application fail
at the beginning of stage 2, i.e., after the parsing. Since the scalability
benchmark showed that the amount of data does not affect the perfor-
mance of the debugger, we use a fixed amount of data, i.e., 40GB.

8.1.4.1 Impact of Partition Windowing

For this benchmark, we increase the size of the window from 1 (thus a
partition including only one record, i.e., the event-inducing record), to
256, increasing by the powers of four (i.e., 1, 4, 16, 6 4, 256). As detailed
in Section 7.1.1.1, the window size parameter sets how many records of
the partition of the failure inducing record to include in the dynamic local
checkpoint.

The total size of the checkpoint is measured at the debugger man-
ager when receiving a dynamic local checkpoint as part of a composite
debugging event. We measure the serialized size of the dynamic local
checkpoints. All 20 workers fail, hence producing 20 dynamic local check-
points. For each window size, we repeat the experiment 10 times, and
express the average across all the iterations, i.e., 200 single dynamic local
checkpoints for each window size.
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Figure 8.3: Average dynamic local checkpoint size when increasing the
size of the windowed partition.

Figure 8.3 shows the result of the benchmark. The Y and X-axis dis-
play the different partition sizes and the size of dynamic local checkpoint
expressed in bytes, respectively. Both scales are logarithmic.

We do not display standard error, since the differences across the dif-
ferent iterations were measured to be negligible.

As expected, the size of a dynamic local checkpoint grows linearly to
the size of the window, i.e., including more data causes bigger dynamic
local checkpoints, hence higher network usage.

8.1.4.2 Impact of Delta Stack Calculation

In this benchmark, we assess the impact of partition windowing when
toggling the delta stack optimization and measuring the size of the dy-
namic local checkpoints for different window sizes.When delta stacks are
disabled, each dynamic local checkpoint that is part of a composite debug-
ging event carries the full call-stack information, excluding the framework
stack frames (cf. Section 6.2.1). When delta stacks are enabled, a dynamic
local checkpoint only includes the calculated delta-stack compared to the
first dynamic local checkpoints in the debugging event. Recall that delta
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stacks are calculated using the delta-stack calculation operation defined
in Sarto (cf. Chapter 4).

Average Size of Dynamic Local Checkpoints Toggling the
Delta Stack Optimization

«
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Figure 8.4: Average dynamic local checkpoint size when increasing the
size of the windowed partition and toggling the delta stacks optimization.

Figure 8.4 shows the results of our experiment. As for the previous
experiment, we run the benchmark 10 times, on composite debugging
events with 20 dynamic local checkpoints, 19 of which contain a delta. We
report the results as the average across the different iterations, i.e. with
190 samples, and standard error. The horizontal axis scale is logarithmic.
Results show that the stack size grows linearly to the size of the partition
independently of the usage of delta stacks. The size of the dynamic local
checkpoint, however, is drastically lower when using delta stacks: when
the partition size is one, the delta stack is 59% the size of the original
stack. This number gradually lowers to 50.1% when the window size is
256, sending around 1 MB of data against the 2 of the full dynamic local
checkpoint.

To conclude, these two optimizations make our debugging approach
practical. In fact, they make it possible to generate compact dynamic
local checkpoints, that lead to a fully reconstructed execution debuggable
locally.
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Dataset Size Stage 1 Stage 2.

5 GB 46 s < 400 ms
50 GB 448 s < 400 ms
20 GB* 54 s* < 400 ms

Table 8.1: Average stage execution times depending on data size. The 20
GB indication of Stage 1 only includes the file read.

8.1.5 PQ 3: How much time does online debugging save in
comparison to replay and checkpoint-based debug-

ging?

In this section, we compare the time to open a debugging session of our
approach with both replay and checkpoint-based debugging approaches.

Comparison to replay debugging To compare our approach to replay
debugging, we analyze the execution time of the KMeans application in
the first two stages, injecting a failure at the beginning of stage 2, as
in the previous experiments. Table 8.1 in the first two lines shows the
execution time of the different stages for the 5 and 50 GB files. With a
replay debugger, an error at the beginning of the second stage requires to
replay the whole execution from stage 1. The execution time of stage 1 in
the previous experiment amounts to 46 seconds for the 5 GB file and up
to 448 seconds for the 50 GB file. These results show that generating a
dynamic local checkpoint is convenient in terms of runtime, since running
again stage 1 takes 100 times more for the 5 GB file and 1000 times more
for the 50 GB file.

Comparison to checkpoint-based debugging When comparing to
checkpoint-based debugging, the result of the previous experiment in which
the error happens at the beginning of stage 2 represents their best scenario
if the developer persisted after stage 1, i.e., after loading the data. In this
case, a checkpoint-based debugger does not need to replay any execution.
However, this quickly changes when an error occurs during or at the end
of a long stage, as explicit checkpoints are normally not inserted by devel-
opers in the middle of a stage for performance reasons. In those cases, a
checkpoint-based debugger would have to replay part of the stage, which
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leads to a more realistic comparison. We thus run an experiment in which
we inject the failure in the middle of stage 1 by removing an if-test for
null.

In this experiment, each worker reads a part of the dataset and im-
mediately starts parsing tweets and iterates the execution 20 times. Since
the previous benchmark showed that the size of the file does not impact
the time to create a dynamic local checkpoint, we use a 20 GB dataset.

Table 8.1 in its last row shows that reading the file takes on average 54
seconds for the 20 GB dataset. The execution then fails, on average, less
than 500 milliseconds after starting the actual parsing and the execution
terminates after an average of 55 seconds of total execution time. When
using a checkpoint-based solution, this time needs to be replayed to get
to the error, since there is no persisting operation between the reading
and the parsing. In comparison, as shown in Figure 8.2, the overhead of
getting a debugging session with our approach amounts to hundreds of
milliseconds.

From these experiments, we conclude that our approach provides faster
access to a debugging session by avoiding replay operations that both
replay and, partially, checkpoint-based debugging approaches for Big Data
rely on.

8.1.6 PQ 4: What is the overhead of the relaxed compu-
tational model?

We assess the overhead of ignoring exceptions by turning the “ignore”
mode on and letting the applications complete their execution without
errors, thus measuring the overhead of the infrastructure. In this way,
we simulate a setup in which the developer correctly filtered the initial
dataset, but still leaves the “ignore” or “ignore and debug” modes on,
in case something was missed in the data-cleaning process. We run this
benchmark on the three applications using three portions of the dataset
of increasing size: 15GB, 30GB, and 45 GB. We use as a baseline the
execution when the ignoring and debugging support is switched off and
compare it to the execution with it turned on. Each application is executed
at least 10 times, and a maximum of 25 times, depending on run-time.
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App Tbaseline Tignore A (%)
Grep 15G | 0,77 £ 0,35 0,76 = 0,30 -0,60
Grep 30G | 1,09+ 0,13 1,16 £ 0,28 6,52
Grep 45G 1,54 + 0,15 1,60 £ 0,11 3,92
WC 15G | 82,96 + 5,42 83,99 + 3,56 1,24
WC 30G | 170,38 = 8,98 | 172,86 + 10,55 | 1,46
WC 45G | 446,56 + 18,90 | 433,38 + 22,72 | -2,95
KM 15G | 171,15+ 1,08 | 180,11 &+ 0,69 5,24
KM 30G | 26344+ 0,8/, | 27391+ 1,06 | 3,97
KM 45G | 385,62 + 0,93 | 392,44 + 1,43 1,77

Figure 8.5: Runtime (in seconds) and overhead of running Grep (G),
WordCount (WC), and K-Means (KM) applications with and without
ignore mode active.

Results Figure 8.5 displays the runtime of the different applications for
different sizes of the datasets, with the ignore mode turned off ( Tpuserine)
and on turned on (Tignore). We report the average time of the multiple
iterations with the standard error. The last column presents the overhead
of the ignore mode in terms of percentage of ( Tpuseline)-

The table shows that the overhead varies between -2,95% to +6,52%.
By further analyzing each application, we observe that Grep, the fastest
benchmark, shows a big variation among the different data sizes, starting
negative, then growing to 6%, and then lowering to 3,9%. The confidence
intervals, however, overlap, which makes us conclude that there is no sig-
nificant performance degradation. This is probably caused by the short
duration of the benchmark. On the other hand, we observed a more con-
sistent overhead pattern in both WordCount and K-Means: the overhead
seems to lower when increasing the amount of data.

To conclude, this benchmark showed that the activation of the ignore
mode always introduces some overhead, that decreases as the execution
We attribute this overhead to the initialization of the
replicated counter that counts the possible amounts of exceptions for each

time increases.

action, since, especially in an iterative algorithm as K-Means, happens
hundreds of times during one execution.
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8.1.7 PQ 5: How does the relaxed computational model
scale to a big number of exceptions?

We now assess the performance impact of the relaxed computational model
when exceptions raised during the execution are ignored. In this bench-
mark, we use the first phase of the K-Means application, in which the
tweets are parsed and then grouped by their hashtag. We gradually leave
invalid tweets in the dataset to cause an exception when extracting the
hashtags. It has to be noted that we did not inject more invalid tweets
than the ones already present in the dataset.

We distribute a fixed portion of the dataset and filter out all the failure-
inducing records, to then inject them again in a controlled amount and
proportionally across the different partitions. We test two different por-
tions of the dataset: the first 5 GB (Dataset 1), and the first 20 GB
(Dataset 2). Since we had 17% of failure-inducing records in the original
dataset, we set the ignoring threshold to 50%, so we are sure that all of
the errors are ignored. It is not set to 100% because in our implemen-
tation this disables the increments of the exception counters, since all of
the exceptions need to be ignored anyway, thus lowering the effective time
to ignore an exception and hampering the results of this benchmark. We
test the K-Means application and measure the total time to completion.

Dataset 1 contains 996.576 records that represent valid non-deleted
tweets, and we gradually inject at every iteration 20.000 failures, dis-
tributed amongst all the workers so that each of the workers will have
to ignore the same number of exceptions. Similarly, dataset 2 contains
4.003.315 valid non-deleted tweets, and we inject at every iteration 80.000
failures (corresponding again roughly to 2% of the original records).

Results The boxplot in Figure 8.6 displays our results for dataset 1, us-
ing 5 GB of data. More concretely, t shows the amount of time it takes to
parse and group tweets with the K-Means application while injecting an
increasing number of failure-inducing records. We repeat each measure-
ment 100 times and we report average times in milliseconds. The results
show that the runtime increases linearly with the number of ignored ex-
ceptions. Particularly, analyzing the data we calculated that ignoring ex-
ceptions for this example costs on average between 6 and 10 microseconds
for each exception.
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Execution time when ignoring an increasing number of exceptions (5 GB)
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Figure 8.6: Run-time when ignoring an increasing number of exceptions on
dataset 1 (5 GB). The color gradient represents the number of exceptions
that where ignored, also visible in the legend below.
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Execution time when ignoring an increasing number of exceptions (20 GB)
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Figure 8.7: Run-time when ignoring an increasing number of exceptions on
dataset 2 (20 GB). The color gradient represents the number of exceptions
that where ignored, also visible in the legend below.
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Figure 8.7 displays the results for the same experiment on dataset 2
(20 GB). Every measurement was repeated 50 times and we report the
average time in milliseconds. The result of this bigger dataset confirms
the linear increase in runtime when ignoring exception with a slightly
lower amount of average time needed to ignore each exception: between
3 and 7 microseconds. This is because updates of the exception counter
are sampled, i.e., the replicated counter is only updated when it is incre-
mented by a certain amount about the size of the data. This leads to less
frequent updates for bigger datasets, thus producing slightly less network
communication for each ignored exception.

8.1.8 Discussion

From these benchmarks, we conclude that our debugging approach is prac-
tical and scalable based on the following results:

e The impact on the execution time of our debugging approach re-
mains stable when increasing the amount of analyzed data and par-
allel exceptions.

e The impact of partition windowing leads to lower sized dynamic
local checkpoints linearly to the size of the window, and that delta
stacks produce dynamic local checkpoints up to half the size of the
original ones.

e The relaxed computational model introduces negligible overhead
when the ignore mode is on and there are no errors to be ignored

o Ignoring exceptions impacts the execution time linearly to the num-
ber of exceptions that are ignored.

8.2 User Study

In this section, we assess the usability of SpaDebug in a study with 17
subjects that tested SpaDebug and a reimplementation of the closest re-
lated work, namely BigDebug [GIY+16], on top of Spa*. The goal of the

“In this section, Spa refers to the execution framework described in Section 3.5,
SpaDebug refers to our debugger for Spark-like applications, and BigDebug refers to
the reimplementation of BigDebug [GIY116] in Spa further detailed in Section 8.2.4.4.
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study is to assess whether our debugging solution has an impact on the
time to find bugs and on the participants’ perception of the features of
our debugging solution when compared to the state of the Art. We first
detail the design of the user study, then its methodology, and finally the
results.

8.2.1 User Study Design

Since the goal of this study is to assess both the impact on time to find bugs
and the perception the participants have of the features of our debugging
solution, we employ a mized method experimental design [Chrlb]. This
method entails both a quantitative and a qualitative analysis.

Quantitative Analysis. In the quantitative study, we aim to assess
experimentally if there is a cause-effect relationship between the debugger
that is used (i.e., the independent variable) and the time to find the bug
(i.e., the dependent variable).

Experimental research designs can be of three types: Weak, Quasi,
or Strong [Chr15]. Their type is defined by the ability of isolating the
effects of the independent variable on the dependent variable. Since we
can isolate the effect of the independent variable (i.e., which debugger
is used), thus maximizing the internal validity and reducing the external
threats to validity, we employ a strong experimental design. During the
study, we administer two experimental conditions:

1. Solve a debugging assignment using SpaDebug
2. Solve a debugging assignment using BigDebug

Strong experimental designs can be of different types, i.e., within par-
ticipants, between participants, mixed, and factorial. For this study, we
employ a within participants design [Chrl5, CS63, SCC02] in which all
participants are exposed to the two experimental conditions, and fill in a
post-test after being exposed to each of the conditions. External threats
are limited using a random assignment of participants in two different
groups, in which the independent variables are introduced and evaluated
in a different order. We further randomize across the two groups the order
in which the participants are exposed to the two experimental conditions:
the first group is first exposed to debugging with SpaDebug and later with
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BigDebug. The second group is exposed to the debuggers in the opposite
order. Employing a within-participants design allows us to let every par-
ticipant test both of the debugging solutions, thus maximizing the number
of data points while having a limited number of participants.

Qualitative Analysis. The qualitative part of the study consists of
the analysis of the answers to specific questions. These include questions
about the debugging experience, evaluation of different features of each
debugger, and comparison across the features of the two debuggers. We
collect answers to a questionnaire as part of the post-test of the study,
which is filled in by the participants after they end their assignment with
a particular experimental condition.

Overall, the study is designed so to answer four research questions:
UQ 1. Does the debugger impact the time to find and solve the first bug?
UQ 2. How was the debugging experience evaluated?

UQ 3. Does the debugger influence the number of re-deployments?

UQ 4. How were the features of SpaDebug perceived?

8.2.2 User Study Methodology

Throughout the study, participants have to solve two debugging assign-
ments, always in the same order for both groups: the first one is to debug
the Twitter K-Means Application, already described in Section 8.1.1.3,
and the second one is to debug the Amazon ID3 Application described
more in detail later in Section 8.2.2.2. Each application presents two
bugs: the first bug is related to the formatting of the input data; the
second bug is related to a logical error in the application, i.e., the final
result is not correct.

8.2.2.1 Experimental Setup

We conduct the study with 17 volunteer subjects (9 master students and
8 researchers), randomly split into two different groups. Each participant
executes the two assignments with both debuggers but in a different order.
The master students had followed (and passed) at least two master-level
courses in which they had to program one project in Pharo Smalltalk and
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one in Spark. All researchers had experience using Pharo Smalltalk and
knowledge of Spark.

Due to COVID-19 restrictions, we run the study in timed sessions in
a physical room at the university campus or a virtual one over Zoom.
The study, in both online and on-campus versions, has the same struc-
ture. First, participants attended a 15-minute presentation and hands-on
demo about programming with Spa (cf. Chapter 3) without debugging.
Before each assignment, they attended a 20-minute presentation about
the debugger they will use and a hands-on demo about debugging an
application. At this point, the participants were handed the material
and had 45 minutes to complete each assignment. After 45 minutes we
stopped the participants from further completing their assignment. Af-
ter the first assignment, they filled in the first part of the post-test that
includes general questions about their experience in debugging and devel-
oping software and questions about the debugger they used. Then, after a
small break, we repeated the same process for the second experiment, i.e.,
participants attended a presentation and hands-on demo of the second
debugger, performed the second assignment within 45 minutes, and filled
in the post-test.

Throughout the study, the host of the experiment is always present in
the (campus or virtual) room, answering questions about the debuggers in
private, as well as helping with technical issues. All participants received
monetary compensation of 10€ at the end of the study.

Group Composition As mentioned before, the 17 participants are di-
vided into two groups, called group X and group Y. Since roughly half of
the participants joined online and the other half joined physically, we made
sure to have a balance across the two randomly assigned groups. Partic-
ularly, half of the online participants were randomly assigned to group X
and the other half to group Y. The same randomization was used to split
into the two groups the participants that joined the study physically.
Before the study, and after they were already randomly split into two
groups, we asked the participants for a time slot that would suit them to
do the study. We had several slots for the on-campus participants limited
by the availability of the university’s computer rooms. By crossing the
availability of the on-campus participants with their slots selection, we
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created subgroups of X and Y, namely X.1, X.2, Y.1, and Y.2, that would
contain participants of group X and Y that had a compatible slot selection.

Similarly, we created groups X.3, X.4, Y.3, and Y.4 for the online par-
ticipants. The creation of these sub-groups allowed us to have manageable-
sized groups (max 3 people), that were required by the university for the
use of the physical rooms, due to COVID-19 restrictions.

There is no difference, however, in the treatment given across a group
in the different subgroups. Since all presentations were the same and the
order of the experimental conditions as well, for our analysis we consider
only two groups: X and Y.

The Debugging Tools Participants employed the same IDE, i.e., the
Pharo Smalltalk environment including Spa, but they interacted with the
two different front-end debuggers corresponding to SpaDebug and a re-
constructed version of Big Debug on Spa.

Since Pharo is image-based, we provided participants with a Pharo
image already set up for the experiment, with an open Spa Ul and easy
access to predefined code to run the experiments. This Pharo image was
available both on the rooms’ computers for the on-campus participants
and online for online participants. We compiled two images, one for each
group. The only difference across these two images was the order in which
the debuggers are used, i.e., the code to launch the experiments that were
available in the image performed different calls depending on the right
order of the debuggers. Participants deployed Spa locally on the same
machine they are using for the experiment. We do not let them execute
on the cluster to control the experiment setup, avoid concurrent access
to the cluster, and avoid differences in the network communication with
the cluster between the on-campus participants and the ones that joined
online. Our focus, in fact, is to analyze the participants’ feedback over
the different debuggers and their features and not their raw performance
on big amounts of data.

To keep the participants as unbiased as possible, SpaDebug and BigDe-
bug are randomly renamed respectively Debugger A and Debugger B in
all the presentations and in the debugger’s Ul. Furthermore, both debug-
ger interfaces are accessible through the same debugger tab. SpaDebug
offers all of the features described in this paper, but the ignore mode is
enabled exclusively in global mode. This was necessary to limit the ex-
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planation of SpaDebug to a similar length to BigDebug’s. The BigDebug
reimplementation provides the key features of the original work [GIY16],
namely guarded watchpoints, simulated breakpoints, stepping and resum-
ing, record skipping, record substitution, code patching, and tracing to
input. However, instead of being a separated web GUI as in the origi-
nal work [GIY116], we integrate it in the Big Data framework’s IDE, i.e
Pharo Smalltalk. More details of our reimplementation are described in
Section 8.2.4.4.

8.2.2.2 Debugging Assignments

As mentioned before, participants have to solve two bugs in each assign-
ment: the first one causing an exception and the second one producing
wrong results. Before tackling the second bug, they have to solve the first
one. The system gives them feedback when they have solved the first
and the second bug (cf. Appendix C). Furthermore, the system automat-
ically logs the activity of the participants while debugging, e.g., time to
find bugs, interaction with the UI, etc., as well as the source code of the
applications when they finish the experiment.

The first assignment is the debugging of the Twitter K-Means appli-
cation described in Section 8.1.1. For the first bug, we previously deleted
the code that cleaned the data, which leads to data-cleaning errors be-
cause of deleted tweets that missed the hashtags. For the second error, we
introduced a bug in the application’s logic: the original dataset included
tweets with non-ASCII characters that could not be displayed correctly
within the final result. Those tweets have to be identified and removed.

The second assignment involves debugging an implementation of the
popular ID3 decision tree algorithm [Qui86| that analyzes a set of Amazon
Reviews to find out which of the features of the review (e.g., length of
the text, amount of stars, etc.) makes the review the most helpful, i.e.,
produced the highest count of the helpfulVotes feature. The dataset
is retrieved from the Amazon Customers Reviews Dataset® and presents
amazon reviews per product category, stored in a tab separated value
format. For the first bug, we modified the dataset by removing some
features from some records, so that a data-cleaning error would appear
when the application is executed for the first time. For the second bug, a

5h‘l:tps ://s3.amazonavs . com/amazon-reviews-pds/readme.html
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wrong classification of the number of stars makes the algorithm return a
final decision tree that is not correct. The wrong classification code has
to be identified and corrected.

Experimental Material Before doing an assignment, all the partici-
pants are handed several documents to help them in the assignment, listed
below.

1. The description of the two assignments, including details and full
code of the applications (cf. Appendices A and B).

2. Two cheatsheet containing the same information about the Spa API,
Pharo syntax, and a column with information about the two different
debuggers (cf. Appendix D).

3. A copy of the slides used by the host to explain Spa and the relevant
debugger available at https://soft.vub.ac.be/~mmarra/userStudy/
UserStudyMaterial.zip.

The Questionnaire After each debugging assignment, participants fill
in the questionnaire used for our qualitative analysis. The questionnaire
is divided into five parts:

1. About you. General questions to collect information about the expe-
rience of the participants with debuggers and distributed program-
ming.

2. General questions (for each assignment). A set of five questions
to collect information over the general debugging difficulty, whether
they had enough time to solve the assignment, and how many bugs
they found.

3. Debugging with debugger A. A set of ten questions to assess their
debugging experience with debugger A, i.e., SpaDebug.

4. Debugging with debugger B. A set of nine questions to assess their
debugging experience with debugger B, i.e., BigDebug.

5. Overall experience. A set of four open questions to assess their per-
ception of the differences between the two debuggers and to collect
information about technical problems.
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After completing the first assignment, participants answer to sections 1,2,
and either section 3 or 4 depending on which debugger they used in the
first assignment. After completing the second assignment, participants
answer to sections 2, 3, or 4, depending on the debugger that was used
for the second assignment, and 5. A copy of the questionnaire is available
in Appendix E.

8.2.3 Results

In this section, we present the results of the study for each of the four
research questions that drive this study, described earlier in Section 8.2.1.

8.2.3.1 UQ 1: Does the debugger impact time to find and solve
the bug?

To answer this question, we automatically measured the time that each of
the participants took to correctly identify and resolve the first bug. We
did this for both applications and debuggers. Figure 8.8 shows a box plot
of the time it took participants to find the first bug, aggregated across the
two applications and the two debuggers. We show the time to first bug of
participants that managed to find the first bug within the set time limit.
Particularly, 15/17 participants found the first bug when using SpaDebug
and 16/17 found the first bug when using BigDebug.

We execute a Welch Two Sample t-test on this data to check whether
there is a statistically significant difference between the two means. The
average time to find the bug with SpaDebug is 1136.8 compared to 1766.7
for BigDebug. The test reports a p-value of 0.007252 (t-value: -2.8901,
df: 28.765). Since the test’s p-value is lower than 0.05 we can say that the
two means are significantly different, concluding that participants took
less time to find the bug with SpaDebug when compared to BigDebug.

Regarding the second bug, we do not report the results since the suc-
cess rate was low for both debuggers, making the sample too small to draw
conclusions. Only 6/17 participants found the second bug across the two
applications when using SpaDebug, and 4/17 when using BigDebug. This
may indicate that we underestimated the complexity of the second bug
and that the 45 assigned minutes were not enough to solve both bugs.
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Figure 8.8: Time to find the first bug with both debuggers.

8.2.3.2 UQ 2: Does the debugger impact the evaluation of the
debugging experience?

To answer this question, we asked in our post-test how much each debugger
helped them in identifying the cause of the bugs, and whether debugging
that particular application was difficult. To answer, participants used a
Likert scale from 1 to 5 (1=Not at all, ..., 5=Very much).

How much did the debuggers help in solving the bugs? Figure 8.9
presents the results in a violin plot, i.e., a plot similar to a boxplot that
shows in its variating width the distribution of the data. We observe that
for BigDebug answers cluster around 2, while they cluster around 4 for
Spa. The average, shown by the dot, is around 2.5 for BigDebug, and just
above 4 for Spa. From these results, we conclude that the participants
perceived as advantageous the features of SpaDebug, while they did so
less for BigDebug.

How difficult was debugging each application? Figure 8.10 dis-
plays the answers of the participants to this question. Each line shows
a debugger, colors represent which answer was given, and the percent-
ages show, left to right, the amount of negative, neutral, and positive
answers. When debugging with SpaDebug, 29.4% of participants declared
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How much did the debugger help you in finding the bugs?

5
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Figure 8.9: Violin plot of the answers to "How much did the debugger
help you in finding the bugs?”, where 1 is not at all and 5 is very much.
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Figure 8.10: Likert plot with the answers to "Debugging the application
was difficult”, where 1 is very easy and 5 is very difficult.
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How many times did you have to redeploy?
>5
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Figure 8.11: Boxplot of redeployment count across the two applications
with the two different debuggers.

that debugging the application was difficult /very difficult, against 47% for
BigDebug. Accordingly, 35.6% of the participants declared that debug-
ging the application with SpaDebug was easy/very easy, against 17.7% for
BigDebug.

Overall, these results make us believe that our debugger was perceived
as more useful than BigDebug, leading to an easier debugging of the as-
signments.

8.2.3.3 UQ 3: Does the debugger influence the number of re-
deployments?

To answer these questions, we asked the participants how many times
they had used the redeploy button, present in the Ul of both debuggers.
Through these buttons, participants could restart master and workers us-
ing the updated code-base, thus performing a full redeployment of the
application. Redeploying an application is a relatively slow process, espe-
cially in contrast to live updating its code.

Figure 8.11 shows a violin plot with the answers. We observe a clear
difference between the two debuggers: with SpaDebug, on average partic-
ipants had to redeploy 1 time, with most of them being clustered between

163



CHAPTER 8. VALIDATION

0 and 3. For BigDebug, participants re-deployed on average 5 times, be-
ing clustered between 4 and more than 5 times. Note that the average
of BigDebug might be even higher because the questionnaire only allowed
“more than 5” as the maximum value.

This means that the participants had to spend less time waiting for
Spa to be redeployed when using SpaDebug. We attribute the number
of lower redeployments of SpaDebug to the live code-updating function-
ality, which allows participants to apply code patches without requiring
a full redeployment. We discuss the general appreciation of the live code
updating functionality in the next research question.

8.2.3.4 UQ4: How the features of SpaDebug were valued?

To answer this question, we analyze the results of two post-test questions.
First, one that asked how useful they perceived the debugging functionali-
ties of SpaDebug®. Second, one that asked which feature of each debugger
participants missed when using the other one.

How useful are the advanced debugging functionalities of SpaDe-
bug? To answer this question, participants were asked to rate how use-
ful the debugger’s features were using a Likert scale from 1 (not at all)
to 5 (very useful). Particularly, we asked them how useful they found
fine-grained stepping, coarse-grained stepping, ignore mode, and live code
updating.

Figure 8.12 shows the answers for each feature. We observe that,
except for the ignore feature, the majority of the participants gave a 4
or 5 rating to both kinds of stepping, as well as to live code updating,
the best rated feature (as it did not receive any rating below 3). On the
other hand, the ignore functionality was considered neutrally useful (with
a rating of 3) by most of the participants, although they could have used
it to solve the first error of each assignment.

Is there a feature of a debugger that you missed when using the
other debugger? This question was asked twice after the participants
had completed assignments, i.e., at the end of the study. While no partic-

5To avoid bias, we have asked the same question also for BigDebug, but we do not
report those results as they are not relevant to this dissertation.
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Figure 8.12: Likert scale showing how useful each feature of SpaDebug
was rated by the participants. 1 is not at all, 5 is very much.

ipant indicated a feature of BigDebug that was missing in our debugger,
different participants indicated several features of our debugger as missing
in BigDebug.

Feature ‘ N of participants
Local debugging 11/17
Live code updating 6/17
Full breakpoints 3/17
Abstractions over the exceptions 1/17

Table 8.2: Features of SpaDebug reported as missing in BigDebug.

Table 8.2 shows how many participants indicated in their answer one
of the features of SpaDebug that they missed when debugging the assign-
ment with BigDebug. Examples of answers that were classified as the
"local debugging” feature are: ”the interactive debug session” and “Nor-
mal stepping, easy browsing and editing code”. The other classifications
took into consideration whether they explicitly mentioned the feature in
their comment. Interestingly, one participant explicitly answered: ”Ab-
stractions over the exceptions” as a feature they missed in BigDebug.
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From the results in this question, we conclude that the participants
generally appreciated the features of SpaDebug. This is also confirmed by
the answers to the question "Which feature of Spa did you find useful?”,
in which 16 out of 17 participants (i.e., 94%) selected ”Live Code Updat-
ing”, 15 selected "Debugging locally a remote exception in an interactive
way” (i.e., 88%), and 9 selected "Breakpoints on parallel execution” and
”Advanced Stepping Operations” (i.e., 53%).

8.2.4 Threats to validity

Although the results of the study are very positive, we have to consider
some threats that may limit the validity of our experiments. The main
threats to validity are given by the number of participants, their profile,
the representativity of the bugs, and their difficulty. Furthermore, another
threat to validity is the quality of our BigDebug reproduction. This is
discussed more in detail after the discussion over the other threats.

8.2.4.1 Number of Participants and Participant Profiles

Since we required a particular profile of participants (i.e., familiarity with
both Pharo and Spark) we were only able to recruit 17 participants. For
this reason, we opted for a within-participants study, which allowed us to
maximize the data points. Furthermore, within-participants studies also
present the advantage that single participants serve as their own control,
thus balancing the differences in experience and training that could arise
by having two different groups. Within participants studies, however,
present different limitations, some of which are part of the threats to
validity to our study that we discuss in what follows.

Since participants experience both experimental conditions, they might
suffer a carryover effect. We try to limit this by counterbalancing, i.e., by
randomizing in the two groups the order of the two tools. Having to
experiment with both tools, which were both totally unknown to the par-
ticipants, also led to the unavoidable presence of more explanation of the
tools, since the computational model and both debuggers had to be ex-
plained to the participants. This made the study longer, and, together
with the cognitive tax of having to use two different tools, potentially in-
creased the level of fatigue of the participants. This threat, however, is
also limited by counterbalancing.
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8.2.4.2 Accidental Bias

In order to avoid accidental bias, we have taken several measures. First,
we renamed the two debuggers to Debugger A and Debugger B randomly
and we also randomized the order in which participants were exposed to
the two debuggers. Second, the front-end of both the debuggers have
a similar look and feel, as they are both integrated in the same main
debugger tab. Finally, we prepared demos and presentations to be of the
same length for the two debuggers.

We also informally asked to some of the participants at the end of the
study which they thought was SpaDebug, and we received mixed answers.
We did not, however, include this question into the questionnaire and thus
we have no scientific way to show that accidental bias was completely
avoided.

8.2.4.3 Bugs Representativity and Difficulty

The assignments were both based on popular algorithms for data analysis,
but not all participants were familiar with them. Furthermore, the bugs
were not taken from public reports but were injected into the code based
on common bugs for these data analysis applications as described in Sec-
tion 2.4.5.1, i.e., one bug caused by dirty data and one by a code defect.
This may have led to too difficult bugs to be solved in the time frame of
the assignments; while all of the participants except one solved the first
bug in both applications, only 6 and 4 participants solved correctly the
second bug in the first and second assignment, respectively. We believe,
however, that this does not limit the results of our study, since the quan-
titative experiments are based only on the time to find and solve the first
bug, and the qualitative experiments are guided by the overall experience
with both debuggers.

8.2.4.4 BigDebug Reproduction

When designing the study, we had to decide how to compare our approach
to BigDebug, the closest related work. Since Spa, and thus SpaDebug,
runs on top of Pharo Smalltalk, we considered that using the real BigDe-
bug on Apache Spark would have entailed not only a difference in the
debugger, but also a cognitive mismatch between the IDESs, tooling, APIs,
and programming languages. For this reason, believing in the concepts
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of the reproducibility of scientific results, we decided to re-implement the
core features of BigDebug. To this end, we employed the details described
in the original paper from Gulzar et al. [GIY"16] and other details avail-
able on the project website and different publicly available demos. This
clearly represents a threat to validity, but we believe that it is a lower
threat than letting participants use two different tools in two different en-
vironments. Furthermore, technical differences between Spa and Spark,
e.g., optimizations, make our reproduction of BigDebug simpler, since it
does not have to de-optimize Spark execution. Moreover, it is possibly
not as performant as the original one. This is why we do not assess the
raw performance of the two approaches in our user study, but focus on
studying the usability of their features on debugging simple assignments
that we know both debuggers can handle in the same way.

We reimplemented BigDebug in good faith and tried to reproduce to
their best the main features of the debugger. However, our reproduction
presents some differences with the original implementation which we sum-
marize in what follows. For more details about BigDebug, we refer the
reader to our description of BigDebug in Section 2.4.5.3.

8.2.4.4.1 The BigDebug Reproduction UI As mentioned before,
we integrated the BigDebug UI into the general Spa UI designed in Pharo
Smalltalk.

The participants could access the data causing an exception or watch-
point in the debugger tab, as shown in Figure 8.13. On the left side, there
is a representation of the execution pipeline in which the filter is marked
with a red exclamation mark, indicating that the error is there. On the
right side, under watchpoint, there are all the records that caused the
exception. By selecting one record, the rightmost view updates showing
the textual form of the record. The three buttons in the bottom right
allow developers to modify the record (upon changing its textual form),
skip the record, or execute the tracing to input. Finally, the two buttons
on the bottom left side allow developers to step (over) a transformation,
and to resume the execution.

The stack trace. As in the original BigDebug, the stacktrace is avail-
able to the developers. Figure 8.14 shows an example of such a stack trace
printed in the Pharo Transcript (i.e., a sort of standard output).
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Status x Debugger

=) Watchpoints x -

lloadFrompFile: on: [0]

map: on: [1]

@ filter: on: [2]

map: on: [3]

execute on: [0] - (loadFromFile: map: filter: map: )

["lsaac”," 2021-04-01T00:00:00+02:00 * ["|saac","
["Kevin"," 2021-03-31T00:00:00+02:00  2021-04-01T00:00:00+02:00"]
["Matteo"," 1617228000"]

["Isaac”," 2021-03-31T00:00:00+02:00

["Matteo"," 2021-04-01T00:00:00+02:(

["Carmen"," 2021-03-31T00:00:00+02:

["Kevin"," 2021-04-01T00:00:00+02:00

["Isaac”," 2021-03-31T00:00:00+02:00

["Jim"," 1617228000"]

["Scull"," 1617228000"]

["Jim"," 1617228000"]

["Kevin"," 2021-04-01T00:00:00+02:00

["Kevin"," 2021-03-31T00:00:00+02:00

["Isaac”," 2021-03-31700:00:00+02:00

["Scull"," 1617228000"]

["Matteo"," 2021-03-30T00:00:00+02:(

["Scull"," 2021-04-01T00:00:00+02:00"

Step Resume

Modify Skip Trace Toln|

Figure 8.13: The debugger tab of BigDebug.

-0 Transcript -
UZI-U5-10T12T427272,983U53F0U2T00 — [EAPERLIMENT START] EXperiment Start A
ERROR:

Date class>>readFrom:
DateAndTime class>>readFrom:

DateAndTime class>>fromString:
ByteString(String)>>asDateAndTime

OrderedCollection>>select:
SpaDDDPartition>>filter:
BlockClosure>>on:do:

SpaOperation>>runOnPartition:

SpaDDDPartitionAction>>executeOn:
MessageSend>>value
TKTGenericTask>>evaluateOn:
TKTTaskExecution>>doExecuteTask

TKTTaskExecution>>executeTask

L

MessageNotUnderstood: receiver of "isAlphaNumeric" is nil
UndefinedObject(Object)>>doesNotUnderstand: #isAlphaNumeric
UndefinedObject>>doesNotUnderstand: #isAlphaNumeric

DateAndTime class>>readFrom:defaultoffset:

SpaVoteCountingApplication>>checkTimeForPair:
[ :pair | self checkTimeForPair: pair ] in SpaVoteCountingApplication>>runWithData: in B1

[ ddd perform: command withArguments: parameters ] in SpaOperation>>runOnPartition: in Bl
SpaBigDebugErrorHandler>>runAndManage:

SpaOperation>>runOnPartition:remainingPipeline:
SpaDDDPartition>>performPipelinedOperations

SpaWorker>>performOperation:OnDDDPartition:
SpaWorker>>executeDDDPartitionAction:

TKTReadyTaskState>>performTaskExecution:

[ self executeTask ] in TKTTaskExecution>>value in Block: [ self executeTask ]
[ activeProcess psValueAt: index put: anObject.
aBlock value ] in TKTConfiguration(DynamicVariable)>>value:during: in Block: [ activeProc,

>

Figure 8.14: Stacktrace of an exception as shown in BigDebug.
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Status X Debugger -

de Watrhnsind ~ =

loadFromFile: on: [0]

map: on: [1] Q Please write the new closure that should be applied
@ filter: on: [2]

map: on: [3] Iﬂ:var |i

execute on: [0] - (loadFromFile: map: filter: map: )

OK Cancel
["Kevin"," 1617228000"]
["Matteo"," 1617228000"]
["Matteo"," 1617228000"]
["Scull"," 1617228000"]
["1saac”," 1617228000"]
["Kevin"," 1617228000"]
Step Resume " Modify Skip Trace Toln|

Figure 8.15: Code patching in BigDebug.

Code patching. Finally, patching the code executed by a certain trans-
formation happens similarly to the original BigDebug. By double-clicking
on one of the transformations in the left panel of Figure 8.13, the dialog
shown in Figure 8.15 pops up, giving the participant the possibility to fill
in a closure to be applied instead of the original one.

8.2.4.4.2 The BigDebug Reproduction Details While adding sim-
ulated breakpoints and watchpoint was straightforward, only requiring
small changes in the Spa API and runtime execution, replaying from
checkpoints, tracing, and code patching required some more implemen-
tation work, discussed in what follows.

Data Provenance Backend. As described in Section 2.4.5.3, BigDe-
bug relies on Titian, a framework that extends Apache Spark with data
provenance. In practice, Titian makes sure to tag and persist data with
provenance metadata across stage boundaries, i.e., before data is reduced.
The first step to implementing BigDebug on top of Spa was to build a
data provenance extension, that could thus persist data at stage bound-
aries and tag records to track which partition they belonged to before and
after shuffling. Our implementation of the data provenance engine pow-
ers the checkpoint-based replay of our BigDebug reproduction, as well
as tracing to input. However, we only support data provenance on a
record across one stage boundary. Although this limits the power of our
BigDebug reproduction, tracking down the bugs in the experiments did
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not require tracing across more than one stage boundary. As such, the
limited data provenance support did not impact the usage of the trace to
input functionality during the user study.

Code Patching To implement the code updating features of BigDebug,
we compile the changed lambda function in an empty execution context,
thus capturing only the input parameters of the lambda function and no
other variables from the execution context. The complied lambda func-
tion is then substituted in the execution pipeline of the halted execution.
This relies on Spa’s internal reification of the pipeline, which associates
transformation calls to an internal BlockClosure representation.

8.3 Discussion

In this chapter, we evaluated our approach for debugging Spark-like ap-
plications through a performance evaluation and a user study. We now
discuss our prototype SpaDebug with regards to the different criteria for a
debugger to be suitable for Big Data application introduced in Section 2.5.

Table 8.3: Overview of related work compared to IDRAygr and SpaDebug.

Debugger  Side Replay  Halt & Stepwise Dom.S.  Code  Ignore
Effects Point Inspect  Ezec. Ops.  Updates FErrors

Arthur Both Start X 4 X X X
Graft Both  Start Rec. X v X X X
Daphne Both  Check.* v v X X X
BigDebug Global  Check. v X v v* -
IDRAMRr— Scoped No v v v* v X
SpaDebug Scoped No v v v v v

Table 8.3 revisits Table 6.1 to include SpaDebug. Particularly, SpaDe-
bug offers scoped side effects and replay-free debugging, together with
all the other characteristics already supported by IDRAyg, i.e., halt-
ing and inspecting the execution, sequential stepping, and live code up-
dates. It also expands the domain-specific debugging support of IDRA R
with domain-specific stepping operations tailored to the Spark-like model.
SpaDebug thus adheres to all the criteria defined in Section 2.5. Further-
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more, the results of this validation showed that live online debugging is not
only applicable to Big Data processing but also scalable tanks to the op-
timizations introduced in SpaDebug. Moreover, the user study conducted
to evaluate SpaDebug shows that its live debugging features were highly
appreciated by the participants. Although in this chapter we validated
only the performance of SpaDebug, we believe that all the optimizations
and the support for a relaxed computational model that we introduced
in Chapter 7 are also applicable to the Map/Reduce model and hence to
IDRAMR. More concretely, applying them to the Map/Reduce model in-
volves the adaptation of the two employed optimizations for using delta
stacks and partition windowing, as well as the adaptation of the domain-
specific stepping operations to step to the reduce: instead of the next
transformation. Finally, also the support for ignoring errors can be ex-
tended to Map/Reduce programs by both applying the global execution
modes and extending the API of Port with methods for ignoring while
mapping and reducing.

8.4 Conclusion

In this chapter, we validated our debugging approach for Spark-like appli-
cations, presented in Chapter 7. This includes our out-of-place debugging
solution for Spark-like applications which uses Sarto’s stack tailoring op-
erations, combined with the concepts of a centralized debugging session
through composite debugging events presented in Section 6.2.2.

Particularly, we conducted a quantitative and qualitative evaluation,
to assess both the performance and the usability of our debugging solu-
tion. By answering five research questions, the quantitative evaluation
showed that our approach scales to an increasing amount of data and par-
allel exceptions. Furthermore, we showed the positive impact of partition
windowing and composite exceptions with delta stack in reducing the size
of dynamic local checkpoints. Finally, we showed that the relaxed com-
putational model introduces a negligible overhead when no failures are
present, and an overhead linear to the number of failures when ignoring
them.

For the qualitative part of this validation, we conducted an experi-
mental user study with 17 participants using a within-participants strong
experimental design. In this user study, participants had to solve debug-
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ging assignments with our debugger and with a reproduction of BigDebug,
the closest related work for debugging Spark-like applications. Overall, the
results of the study showed that the features of our debugger presented in
this dissertation, particularly in Chapter 7, are generally perceived as use-
ful and that our debugger has helped the participants in solving the bug
faster than with BigDebug. The live debugging and live code updating
functionalities were appreciated by most of the participants, thus showing
that a live debugger for Big Data applications is not only possible but also
highly usable and functional. On the other hand, the systematical ignor-
ing of exceptions was not particularly used by the participants probably
due to the limited explanations and its novelty.

To conclude, we believe that both the performance benchmarks and
the positive results of the user study show the potential and validity of
a live out-of-place debugger for Big Data applications, particularly for
Map/Reduce and Spark-like data science applications.
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Chapter 9

Conclusion

This dissertation introduced a novel live debugging approach for Big Data
applications with support for relaxed computations. This chapter con-
cludes this dissertation by summarizing its most important concepts and
by revisiting our contributions. We also present a discussion over the
limitations of our work and indications of possible future work.

9.1 Overview of our Approach

At the beginning of this dissertation, we introduced our research state-
ment, stating that a live online debugging solution could help developers
in the process of developing and debugging Big Data applications. After
an initial definition of problems in current debugging approaches for Big
Data (cf. Section 1.1), we defined in Section 2.5 different criteria that a
debugger for Big Data should uphold. Below, we discuss how our approach
satisfies the criteria.

No replay times, halt & inspect, stepwise execution. In Chapter 5,
we introduced out-of-place debugging, which enables live online de-
bugging of remote applications in isolation by transferring the execu-
tion state of an application to a different process for debugging. This
avoids replaying the execution while supporting halting the execu-
tion through breakpoints. It also offers the inspection and stepwise
execution capabilities of an online in-place debugger.
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Scalability to Big Data. In Chapter 5, we revisited the architecture

of out-of-place for debugging the Master/Worker execution model
which lies at the basis of Big Data frameworks such as Map/Reduce
and Spark. To make debugging scalable, we centralize the debug-
ging of many parallel exceptions so to limit the communication be-
tween the workers and the developer’s machine used for debugging.
Throughout Chapters 6 and 7, we further introduce optimizations
for reducing the size of debugging sessions through cutting the stack,
partition windowing, and using delta stacks in composite debugging
events. As shown in Chapter 8, thanks to these optimizations the
overall model scales to the amount of data and number of parallel
exceptions.

Domain-specific operations. In Chapter 6, we describe three different

Live

debugging modes to debug a Map/Reduce execution with different
data in virtual partitions. This allows developers to debug a compos-
ite debugging event on data partitions composed by e.g., all failure-
inducing records. In Chapter 7, we defined different domain-specific
stepping operations that enable stepping through the concepts of a
Spark-like execution, such as step to next transformation, step to
next iteration, and step to action result.

code updating. Out-of-place debugging introduces live code up-
dating capabilities, that were applied in Chapter 6 to the Mas-
ter/Worker execution model, particularly for Map/Reduce. We use
the same live code updating support in our approach for debugging
Spark-like applications.

Support for ignoring errors. In Chapter 7, we introduced a relaxed

computational model inspired by the concepts of acceptability ori-
ented computing to add support for ignoring exceptions in the Spark-
like model. Particularly, developers can decide to systematically ig-
nore errors up to a predefined threshold in terms of the size of the
input data.

This dissertation presented two concrete prototypes of our live debug-
ging approach. In particular, we described IDRAyRr and SpaDebug, two
debuggers for the Map/Reduce and Spark-like model, respectively. To
implement these debuggers, we used different stack-tailoring operations
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described in Chapter 4. We applied our debuggers to debug applications
for two Big Data frameworks in Pharo Smalltalk, namely Port and Spa,
introduced in Chapter 3.

We validated our debugging solution in Chapter 8 through several
performance benchmarks and a user study. With the benchmarks, we as-
sessed the overhead and scalability of our approach. With the user study,
we compared our debugging solution to a reimplementation of BigDe-
bug. We adopted a mixed-method experimental design, using two within-
participants groups. The 17 participants debugged two debugging scenar-
ios using both debuggers.

Overall, the debugging approach and experiments presented in this
dissertation validate our initial research statement that an interactive on-
line debugging solution can improve the debugging experience of Big Data
applications by not replaying the execution and offering a full online de-
bugging solution, scalable to Big Data. First, through the performance
benchmarks (cf. Section 8.1) we show that (i) our approach scales to the
amount of data and parallel exceptions, (ii) the optimizations of dynamic
local checkpoints are effective in decreasing the network overhead of our
debugger, (iii) our debugger saves time in comparison to replay debug-
ging techniques, (iv) the relaxed computational model introduces a low
overhead when no failures are present, and that (v) it scales linearly to
ignoring an increasing amount of exceptions. Furthermore, the user study
(cf. Section 8.2) results show that when using our debugger (i) partici-
pants took less time to find the first bug, (ii) evaluated their debugging
experience as better when compared to the other solution, (iii) had to
re-deploy fewer times thanks to the live code updating capabilities, and
(iv) positively evaluated all of the features of our debugger. Finally, we
show that applying a relaxed computational model is possible and works
correctly to ignore data cleaning errors in our use cases.

9.2 Restating the Contributions

In this section, we restate and summarize our contributions:

Out-of-Place debugging. A debugging model for the online debugging
of remote executions, based on the transferring of the execution state
from the process of the application to an external process. This en-
ables replay-free debugging in isolation and is complemented with
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Live

Live

live code updating capabilities for recording changes during debug-
ging and updating the remote application. We showed that out-
of-place debugging is a scalable approach for debugging Big Data
applications and that it can be applied not only to Smalltalk run-
times but also to runtimes that do not offer reflective capabilities,
such as WebAssembly. The out-of-place debugging model lies at the
core of our debugging support for Big Data applications and has
been explored for two programming models in a Big Data context:
the Map/Reduce and Spark-like models.

debugging of Map/Reduce applications. A live debugging ap-
proach based on out-of-place debugging through the introduction of
composite debugging events, domain-specific debugging modes, and
live code updating. Through these features the approach is espe-
cially designed for to the parallel execution model of Map/Reduce.
We prototyped our solution in IDRAyR, our debugger for Port ap-
plications that implements all of the described concepts by using
some of the operations of Sarto. We showed the different Uls of the
debugger and we provided an evaluation showing how the debugger
can practically be used to debug a Port application in the domain
of blockchain analysis.

debugging of Spark-like application. A debugging approach for
Spark-like applications, that enables both debugging and ignoring
of errors. Our debugging approach extends out-of-place debugging
to centralize debugging sessions with dynamic local checkpoints. It
improves the debugging experience with more domain-specific de-
bugging operations (i.e., step to next iteration, transformation, or
to the action result) and is complemented with a relaxed computa-
tional model for the systematic ignoring of errors. We validated our
overall approach through performance benchmarks and through a
user study that showed that our debugger helped the participants
to find the bug and revealed the live debugging features were appre-
ciated by the participants.

A stack-tailoring instrumentation layer. An instrumentation layer to

tailor call-stacks for debugging framework executions through a set
of six operations. We prototyped our solution in Sarto and vali-
dated it by assessing the impact of the different operations on the
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execution in the context of debugging three execution frameworks.
Furthermore, we employed the concepts of Sarto to implement our
debugging solution for both Map/Reduce and Spark-like programs,
showing in our validation that the stack-tailoring operations helped
optimizing the size of debugging sessions, making our approach more
scalable.

9.3 Discussion

In this section, we discuss some limitations of our approach. We do not
discuss here the threats to the validity of the user study, as they were
already discussed in Section 8.2.4.

Performance of the relaxed computational model. Asshown in the
validation (cf. Sections 8.1.6 and 8.1.7), the relaxed computational
model adds minimal overhead to the computation when enabled,
which decreases as the duration of the application increases. As al-
ready mentioned, we believe that this is caused by the initialization
of a replicated counter which is built using an unoptimized ad-hoc so-
lution. Similarly, the overhead of ignoring exceptions is linear to the
amount of ignored exceptions, which decreases when we disable the
updates of the counter. Thus, the lack of optimizations when ignor-
ing exceptions limits the performance of the relaxed computational
model. While sampling the counter updates helps mitigate the over-
head, a more performant implementation of a replicated counter or a
redesign of the ignoring exception mechanism may positively impact
the performance of the relaxed computational model.

Performance of Port and Spa. The two prototypes for Map/Reduce
and Spark-like frameworks (i.e., Port and Spa) allowed us to easily
experiment with our debugging solution, but they do not feature
many optimizations included in production systems such as Apache
Spark. For example, in Spa the implementation of pipelining is very
limited and the shuffling of DDDs is not optimized and thus is more
time-consuming than in Spark. This is because Port and Spa are
research prototypes and the access to their code so far has been lim-
ited to very few developers. However, we have already tested and
improved our implementation of the two frameworks with different
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researchers, e.g., to develop the blockchain analysis application de-
scribed in Section 6.4. The frameworks’ scalability could improve
provided we had more engineering resources or manpower.

Debugging optimized code. As mentioned above, popular Big Data
frameworks perform several optimizations to execute the code in
the fastest way possible. This often entails changing the order and
the way operations are executed or merging some operations into
one, which leads to differences between the actual code that is ex-
ecuted and the one the developer expects to see in the debugger.
As Port and Spa do not include such optimizations, our debuggers
do not deal with debugging highly optimized executions. Applying
our approach to frameworks that do have that optimization may
require more engineering work to deoptimize the execution before
debugging. As this happens already in many environments, includ-
ing Pharo and Self in which the virtual machine deoptimizes the
call-stack before reifying it for debugging [IMBGB20, HCU92|, we
are confident that this limitation can be easily overcome with more
engineering work.

Debugging speculative executions. Popular Map/Reduce implemen-
tations such as Hadoop Map/Reduce apply concepts of speculative
execution such as backup tasks to help and deal with stragglers, as
already described in Section 2.2. This can lead to reduce tasks being
scheduled before all of the map tasks are finished. Consider an error
appearing during one of those speculatively scheduled reduce tasks.
The debugger needs to choose whether to report the error directly,
or to first wait for all the map tasks to complete before reporting
it. The debugger should also consider that if another error happens
during a map task concurrent to a speculative reduce task, the re-
duce task should have never been executed. Since Port does not
support speculative execution of tasks, we do not present an explicit
solution to this problem. In the current implementation, IDRAyR
will report all of the errors that appear, possibly misleading the de-
veloper by showing both an error in the map and in the reduce of
the same execution. IDRA\R, however, could be easily modified to
consider the execution of speculative tasks and thus wait that all
map tasks are finished before showing an error in a speculatively
executed reduce task.
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9.4 Future Work

In this section, we discuss different research contexts in which our work
can be applied and further extended.

9.4.1 Application to Other Big Data Environments

The out-of-place debugging model presented in this thesis and used to
build our debugging solution uses the concepts of stack reification in its
implementation to transfer the debugging session. Applying out-of-place
debugging and thus our debugging solution to other runtime environments
may entail changes in the runtime, which are more impacting than an
implementation based on metaprogramming like ours. This was already
shown in Section 5.2 when discussing the differences between IDRA, our
out-of-place debugger, and WOOD, an out-of-things debugger based on
out-of-place debugging targeting IoT Webassembly applications.

To apply our debugging approach to other environments, more re-
search is needed to identify the specific choices that need to be taken de-
pending on the runtime and on the execution model. In what follows, we
discuss how our approach could be applied to Apache Spark and streaming
frameworks.

9.4.1.1 Debugging Apache Spark

As our debugging solution described in Chapter 7 directly targets a Spark-
like model, we believe that with the correct adaptations our approach
can be implemented also in Apache Spark. This will entail interacting
with the runtime, i.e., the JVM (Java Virtual Machine), to make sure
that the correct debugging information is made available to the developer.
As the JVM already offers support for instrumentation and debugging,
we believe that capturing and transferring the debugging session should
be feasible. Furthermore, dynamic software updating has already been
explored on the JVM [GSJ09, PVH14] and thus it should be possible to
update Spark application on a larger scale than what BigDebug already
provides. Finally, as already described in the discussion on limitations, the
approach should be adapted to allow the debugging of Spark’s optimized
executions.
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9.4.1.2 Debugging Streaming Frameworks

In the latest years streaming frameworks became very popular. While
Map/Reduce and Spark are born to analyze files, i.e., data in batch, those
frameworks analyze data streams instead of files. Example of popular
streaming frameworks are Apache Flink [CKET15], Storm [Apae], and
Kafka [Apab]. Several stream processing frameworks are offered as a ser-
vice through popular data processing services such as AWS Kinesis [Amal,
Google Cloud’s Dataflow [Goob], and Microsoft Azure Stream Analytics
[Mica]. Streaming frameworks enable the incremental analysis of data as
soon as it is available in the stream, thus powering faster decision-making.
We believe that our approach can already be applied to those streaming
frameworks that use micro-batching to enable the analysis of data streams,
i.e., collecting data from a stream for a fixed period of time to then an-
alyze it as a batch file. This is, for instance, the approach supported by
Apache Spark through its Spark Streaming library. Other approaches, on
the other hand, rely on dataflow analysis to model their execution. Thus,
it would be interesting to explore how the concepts of dynamic local check-
points and, more in general, out-of-place debugging can be extended and
adapted to such environments.

9.4.2 Application to Other Execution Models

Overall, our debugging approach is built on the concept of debugging a
parallel execution in a centralized way, particularly applied to Master/-
Worker models. This means that several concepts of our work such as out-
of-place debugging in a distributed setting, composite debugging events,
and coordination of live code updates could directly be applied to other
distributed and parallel models besides Big Data processing.

For instance, we could consider using our debugger in the context of
a client-server architecture, possibly including multiple servers. Out-of-
place debugging enables the debugging of the different servers in a cen-
tralized way, and the optimizations introduced through Sarto, such as
stack cutting, can also be used in this context as shown earlier in Chap-
ter 4. Exceptions that happen in parallel could be captured, composed,
and debugged through a similar view as the one we offer in IDRAyg and
SpaDebug.

182



9.4. FUTURE WORK

With respect to parallel applications, our approach could be applied to
debugging parallelized programs through the popular fork/join execution
model. This model parallelizes the execution of a certain function/task
by forking it in different processes and through a certain degree of par-
allelization. Errors in the parallel execution could be treated using com-
posite debugging events even deploying a single debugger monitor if all of
the forked tasks run on the same virtual machine. Domain-specific oper-
ations such as step to the next element could also be used in this context,
especially if the forked operations are map-like, and new domain-specific
stepping operations could be devised for this and other models.

9.4.3 Offline Out-of-place Debugging

Although out-of-place debugging is designed to provide an online debug-
ging experience for remote applications in isolation, the fact that we ex-
tract the execution state and store it in the debugging session could also
potentially enable offline debugging. For instance, the same debugging
session that is transferred over the network for debugging could be stored
in a file or in an image (in image-based environments such as Smalltalk).

Storing debugging sessions enables offline debugging meaning that a
developer could decide to debug certain executions post-mortem. How-
ever, since the debugged application may not be still running when de-
bugging it offline, we cannot ensure some functionalities of out-of-place
debugging, e.g., accessing non-transferrable resources and performing live
code updates.

9.4.4 Live Code Updating

Regarding code updating, we have only scratched the surface of the field of
dynamic software updates for Big Data applications. More research could
be focused on improving the coordination of live code updates in Big Data
frameworks, especially in the case of streaming frameworks that continu-
ously analyze data. For example, update modes could be made available
to developers to indicate how the application should be updated, what
happens to currently running operations, etc. Live code updates could
also be further integrated with existing approaches for atomic dynamic
software updates such as gDSU [TPB*18]. This would ensure updating
the remote applications in safe points, possibly requiring less coordination
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by the master and thus a smoother update of running applications. Fur-
thermore, the coordination of live code updates is a more general problem
of updating distributed systems, and we could further explore applying
our solution to other Master/Worker models, as well as other distributed
execution models such as actor-based applications.

9.4.5 Advanced Ignoring of Exceptions

Our application of acceptability oriented computing to Big Data could
further be explored to both improve the parameters for ignoring errors
and further assess the applicability of the approach. For example, we use
a percentage of the input data as ignoring threshold, but this could be
defined more dynamically through user-defined functions that have access
to application results and global parameters. Furthermore, future work
should study both formal and empirical approaches to further assess the
impact of ignoring exceptions in more data science applications, possibly
enabling a larger use of the relaxed computational model presented in this
dissertation. For example, the domain of approximate computing gives
already an idea of some applications that allow some degree of accuracy
loss [CCRR13], as is the case for the K-Means application that we used
to validate our approach.

9.5 Closing Remarks

In this dissertation, we presented an online and live debugging approach
for debugging Big Data applications, particularly for the Map/Reduce
and Spark-like programming models. The debugger enables full online
debugging capabilities (i.e., breakpoints, full state inspection, and step-
wise execution) while avoiding replaying the execution for debugging. It
also offers live code updating capabilities and domain-specific debugging
modes and operations which can reduce the debugging time of an ex-
ecution. Finally, we augmented our debugging solution with a relaxed
computational model which enables the systematical ignoring of errors.
This avoids invalidating long executions because of a few records in those
applications that allow for some degree of accuracy loss.

Most of the focus of the dissertation was on describing novel debug-
ging models and functionalities to debug the parallel execution of a Big
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9.5. CLOSING REMARKS

Data framework in a centralized and live way. Through the presented op-
timizations we made our approach scalable, and we believe that it could
be applied in different execution models and environments for Big Data
only with minor modifications.

To conclude, based on the positive results of our user study, especially
regarding the features of SpaDebug, we believe that our live debugging
approach for Big Data could lead to a more interactive development and
debugging experience of Big Data frameworks.
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Appendix A

The Twitter K-Means
Application Assignment

The first experiment consists of fixing two bugs on an application which
analyzes the impact of hashtags on the number of likes of different Tweets
employing a k-means clustering algorithm. The goal of this algorithm is
to find groups in a dataset, with the number of groups represented by the
variable “k”. It works iteratively to assign each data entry to one of the
“k” groups based on feature similarity.

A.1 The Application

The purpose of this application is to understand which hashtags are more
popular based on the likes tweets receive. The analyzed tweets are taken
through the Twitter Streaming API, and are a set of random tweets gener-
ated during the specific time of the recording from the stream (sometime in
2017). Tweets are stored in a JSON format. The main method of the ap-
plication is runWithData: at the KMeansClusteringTweetsExperiment
class, presented below.

KMeansClustering TweetsExperiment>>runWithData: data
parsed := self parse: data.
pairDDD := self makePair: (parsed filter: [:e | e isNotNil]).
scores := pairDDD reduceByKey: [ :vl :v2 | vl 4+ v2 ].
trending := scores
top: nTags
withBlock: [ :vl :v2 | v1 value > v2 value ].

~ (=2} ot = w [ -
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APPENDIX A. THE TWITTER K-MEANS APPLICATION
ASSIGNMENT

8 likes := (trending asDictionary keys

9 collect:

10 [ :hashtag | hashtag —> ((pairDDD filter: [ :kv | kv key = hashtag
) map: #value) ])

11 asDictionary.

12 results := Dictionary new.

13 trending

14 doWithIndex: [ :t :idx |

15 rdd := (likes at: t key) execute.

16 centroids := rdd takeSample: nClusters.

17 kmeansResult := KMeans

18 runKMeansOn: centroids

19 withData: rdd

20 maxlIterations: maxlterations

21 treshold: treshold.

22 rdd deallocate.

23 results at: t put: kmeansResult.].

24 " results

First, line 2 parses the tweets, and line 3 makes pairs for all the tweets
by associating each of the hashtags of a tweet with the number of likes
the tweet received. Line 4 a reduceByKey: is applied to sum, for each
hashtag, the number of likes it got. Lines 5,6, and 7 send the message
top:withBlock: which extracts the trending N hashtags, i.e. the N hash-
tags with the most total likes. For each hashtag, line 8 and 9 filters the
pairDDD data structure to get only the values that have that particular
hashtag. This is returned as a Dictionary. Lines 11 to 21 correspond to
the iterative part of the k-means algorithm called on each of the trending
hashtags (and the subset of tweets that include that hashtag). In a nut-
shell, the k-means algorithm takes care of running different iterations to
find the optimal clusters, finally returning a result for each of the hashtags.

A.2 The Bugs

Bugl The application fails while parsing the tweets.

Bug?2 The final result presents hashtags that cannot be displayed cor-
rectly because they are non-ASCII characters. Make sure those
hashtags are not considered at all in the analysis.
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A.3. CODE OF THE TWITTER KMEANS APPLICATION

Please note that the bugs do not reside in the iterative part of the
k-means algorithm, i.e. you can consider the calls after line 12 of the
runWithData: method to be correct.

About the output When it does not fail, the output of this application
is a Dictionary, with hashtags as key, and clusters as values.

The full implementation is presented in Appendix A.3 for completeness.

A.3 Code of the Twitter KMeans Application

1 | KMeansClustering TweetsExperiment>>parse: data
"~ data
map: | :e |
TwitterParser createTweet: (NeoJSONReader fromString: e) |.

N

KMeansClustering TweetsExperiment>>makePair: parsed
" (parsed
flatMap: [ :tweet | tweet hashtags collect: [ :tag | tag —> tweet likes ]

)

9 execute.

oo ~ (=2} ot - w

1 | TwitterParser>>createTweet: aTweet

2 | text hashtags retweeted Tweet likes user id ret |

3 text := aTweet at: "text’.

4 id := aTweet at: 'id".

5 | hashtags := ((aTweet at: 'entities’) at: 'hashtags’) collect: [ :dic | dic at:
text' |.

6 | retweetedTweet := aTweet at: 'retweeted_status' ifAbsent: [ nil ].

7| likes := retweeted Tweet ifNotNil: |

8 retweeted Tweet at: 'favorite_count’.

9 ] ifNil: |

10 user := aTweet at: 'user’.

1 ((user at: 'favourites_count’) / (user at: 'statuses_count’)) asInteger.

12 ].
13 " Tweet new id: id ; text: text ; hashtags: hashtags ; likes: likes ; yourself.

1 | KMeans class>>runKMeansOn: means withData: aPipelineDDD
maxlIterations: maxlIters treshold: treshold

2 | clusters averages converged tweetsPerCluster newMeans |

3 newMeans := means.

189



APPENDIX A. THE TWITTER K-MEANS APPLICATION
ASSIGNMENT

4 1 to: maxIters do: [ :it |

5 clusters := (((aPipelineDDD

6 map: | :likes | (self nearestCluster: newMeans forValue: likes) —>
likes ])

7 reduceByKey: [ :sum :current |

8 sum incrementCount.

9 sum addToTotal: current |

10 injecting: TagStats new)

11 map: [ kv |

12 kv key

13 —>

14 (Taglnfo new

15 count: kv value count;

16 mean: (kv value total / kv value count) asFloat;

17 yourself) ]) execute.

18 averages := (clusters map: [ :e | e value mean |) getCollection.

19 converged := (averages

20 collectWithIndex: [ :avg :idx |

21 {avg.

22 (newMeans at: idx)} ])

23 allSatisfy:

24 [ :twoAverages | (twoAverages first — twoAverages second) abs <
treshold .

25 converged

26 ifTrue: [ "we stop”

27 tweetsPerCluster := (clusters map: [ :ti | ti value count ])
getCollection.

28 " averages

29 collectWithIndex: [ :val :idx | val —> (tweetsPerCluster at: idx)
1]

30 newMeans := averages |.

31 | tweetsPerCluster := clusters collect: [ :ti | ti value count ].

32 " averages

33 collectWithIndex: [ :val :idx | val —> (tweetsPerCluster at: idx) ]
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Appendix B

The Amazon 1ID3
Assignment

This experiment consists of fixing again two bugs, this time on an appli-
cation which processes Amazon’s reviews employing a machine learning
algorithm called ID3 (Iterative Dichotomiser 3)!. In a nutshell ID3 con-
structs a decision tree from a dataset. The algorithm begins with finding
the attribute with highest information gain. On each iteration of the al-
gorithm, it iterates through every unused attribute of the dataset and
calculates the entropy or the information gain of that attribute. It then
selects the attribute which has the smallest entropy (or largest information
gain) value. It then creates a decision tree node containing that attribute,
and recurse on subsets of the dataset using the remaining attributes.

B.1 The Application

The purpose of this application is to analyze Amazon reviews to see which
characteristic of the review (text length, stars, etc.) makes it the most use-
ful (i.e. voted as useful by other users). The analyzed reviews are retrieved
from Amazon’s open access servers, and represent reviews for a particular
category of products (e.g office supplies or software). The main method
of the application is runWithData: at the AmazonDecisionTreeLearning
class which implements the main steps of ID3 as shown below:

1 | AmazonDecisionTreeLearning>>runWithData: data

"https://en.wikipedia.org/wiki/ID3_algorithm
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APPENDIX B. THE AMAZON ID3 ASSIGNMENT

| parsed max sample res |
parsed := (self parse: data) execute.
max := self maxIndexOf: (self calculatelgOnFeatures: parsed).
sample := (parsed take: 1) first.
res := self
id3WithData: parsed
target: max
attributes: (sample collectWithIndex: [ :s :idx | idx —> s asArray ])
asDictionary.

© o N O U ks W N

~

10 res.

First, the dataset is parsed (line 3). The reviews are stored in a tab
separated value format (tsv). This is similar to a csv format but with “/t”
instead of commas as separator.

Line 4 finds the attribute with the highest information gain and stores
it in the max variable. This happens by calculating the entropy for each
feature through calculateIgOnFeatures: and then selecting the one
with the maximum information gain through maxIndexOf:.

Line 5 extract a sample from the parsed dataset, and, lines 6 to 9
correspond to performing the iterative part of the algorithm to construct
the decision tree as explained before. id3WithData:target:attributes:
thus returns the constructed decision tree representing the results. Finally,
the tree is converted into a dictionary and returned as the result of the
runWithData: method.

It is important to know that during parsing some of the data is nor-
malised (in the extractFeatures method of the class AmazonReview), to
extract discrete values from otherwise continue ones.

B.2 The bugs
Bugl The application fails while parsing the reviews.

Bug2 The final result is not correct: one of the features is not correctly
normalised, and this produces the wrong final decision tree.

Similar to the first experiment, please note that the bugs do not reside
in the iterative part of the ID3 algorithm, i.e., you can consider the calls
after line 5 of the runWithData: method to be correct.
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B.3. CODE OF THE AMAZON ID3 APPLICATION

About the output The output of the application, when it does not
fail, is a DecisionTree. A DecisionTree stores the index of one attribute
that it refers to, and a set of subtrees, one for each possible discrete value
of that attribute.

The full implementation is presented in Appendix B.3 for completeness.

B.3 Code of the Amazon ID3 Application

1 | AmazonDecisionTreeLearning>>parse: attributesDDD

2 | parsed |

3| 7 self extractAttributes: ((attributesDDD filter: [ :1 | (1 beginsWith: ’
marketplace’) not |) map: [:line | self parseLine: line]) .

>

5 | AmazonDecisionTreeLearning>>parselLine: aliine

6 | splitted |

7| splitted := aLine substrings: (Character tab asString).

8 " AmazonReview new name: (splitted at: 6) ; marketplace: (splitted at: 1)

; category: (splitted at: 7); stars: (splitted at: 8) ; helpfulVotes: (
splitted at: 9); verified: (splitted at: 12) ; reviewSize: (splitted at: 14)
size.

10 | AmazonDecisionTreeLearning>>extract Attributes: reviewsDDD
11 " reviewsDDD map: [:review | review extractFeatures |

1 | AmazonReview>>extractFeatures
2 extractFeatures

3| | featuresArray hv ss rs v |

4 featuresArray := Array new: 3.
5 hv := self discreteHelpful Votes.
6 ss := self discreteStars.

7 rs := self discreteReviewSize.

8 featuresArray at: 1 put: hv.

9 featuresArray at: 2 put: ss.

10 featuresArray at: 3 put: rs.

11 "~ featuresArray.

12
13 | AmazonReview>>discreteHelpful Votes

14 | features hv lower higher |
15 | features := AmazonFeatures new addAll: { 0.5 .10.25.50. 100 } ;
yourself.
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16

17

18

19
20
21
22
23
24
25
26
27
28
29
30

31

32
33

34

35

36
37

10

11

hv := helpfulVotes asInteger.

lower := ((features select: [:e | e < hv ]) ifEmpty: [ { features first } | )
last .

higher := ((features select: [:e | ¢ >= hv |) ifEmpty: | { features last } ])
first.

features measure: (((hv — lower) >( higher — hv)) ifTrue: [higher
| ifFalse: [ lower ]).

" features

AmazonReview>>discreteStars
| features |
features := AmazonFeatures new addAll: { 1.2 .3 .4 .5 } ; yourself.
features measure: stars aslnteger.
"~ features

AmazonReview>>discreteReviewSize

| features rs lower higher |

features := AmazonFeatures new addAll: { 0 .100 . 250 . 500 . 1000 } ;
yourself.

rs := helpfulVotes asInteger.

lower := ((features select: [:e | e < rs]) ifEmpty: [ { features first } | )
last .

higher := ((features select: [:e | e >= rs |) ifEmpty: [ { features last } ])
first.

features measure: (((rs — lower) >( higher — rs)) ifTrue: [higher
| ifFalse: [ lower ]).

" features

AmazonDecisionTreeLearning>>id3WithData: data target: target attributes:

aCollection

| igs maxAttribute tree possibleValues filtered subtree |

(((data count < threshold) or: [ (self calculateHSample: (data take: 1)
first idx: target data: data ) = 0] ) or: [aCollection isEmpty] )ifTrue: |
" DecisionTreeLeaf new leafValue: (self mostCommonValueForData:
data attribute: target)
]

igs := self calculatelgOnFeatures: data.

((1 to: igs size) select: [:e |( aCollection keys includes: e ) not]) do: [:ee |
igs at: ee put: 0 ].

maxAttribute := self maxIndexOf: igs.

tree := DecisionTree new attribute: maxAttribute.

possibleValues := aCollection at: maxAttribute.

possibleValues do: [:value |
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12

13

14

15

16

filtered := (data filter: [:d | (d at: maxAttribute ) measure = value ])

execute.

subtree := self id3WithData: filtered target: maxAttribute attributes:
(aCollection copy removeKey: maxAttribute ; yourself) value: value.

tree addSubTree: subtree value: value.

].

"~ tree.
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Appendix C

Running the Experiments

. After unzipping the BigDataUserStudy.zip file, run Pharo by open-
ing a Terminal in the extracted folder, and executing ./pharo-ui
Pharo.image.

. You will see a playground containing lines for running the assign-
ments. Select the line for this assignment and right click and select
“Do It” (or ctrl/cmd-+d).

. You will see a Spa Ul open as well as a Transcript which shows the
progress of Spa). Once the transcript shows “Connected to master!”
you are ready to start.

. Execute (ctrl/cmd+d) or inspect (ctrl/cmd—+i) the two lines that you
find in the Spa Evaluator playground. This will start the experiment.

C.1 Expected Results

After the first run of the experiment, you should see an error dialog that
looks like this:

Experiment Result

1. The execution failed, check the debugger tab!

OK
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This means that the application thew an exception. At this point you
should open the debugger tab, and debug the exception.

To fix the first bug, you may have a look at the corresponding cheat
sheet for information on the operations and code updating functionalities
of the debugger. When you fix the first bug, the following dialog will
appear:

Experiment Result

1. Sorry, your implementation is not correct! Retry!
OK

This means that there was no exception, but the final result was not
the expected one (because you still did not solve bug 2). You can now
inspect the result variable to check this.

When you fix bug 2, the experiment is succeeded and the following
dialog will appear:

Experiment Result

Congratulation! Your implementation is correct!
! If this is the first experiment, now you can go ahead and start filling in the questionaire.
If this is the second experiment, now you can continue filling in the questionaire.

QK

As the dialog suggests, please fill in the questionnaire.
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Appendix D

User Study Cheatsheets

In this appendix we show the two cheatsheets (one for Debugger A, SpaDe-
bug, and one for Debugger B, BigDebug) that were given to the partici-
pants of our user study.
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Appendix E

User Study Questionnaire

After completing each of the assignments, the participants were instructed
to complete a questionnaire. Since the study included groups that partic-
ipated in presence and groups that participated online, we administered
the questionnaire in the format of a google form. This allowed us to au-
tomatically collect the data for both kinds of groups. Below we list the
different questions with the possible answers. Some questions were open,
thus are indicated as open questions.

The first part of the questionnaire asks questions about the participant.
The second part includes general questions asked after completing each
assignment. The two debugging sections (debugging with debugger A
and debugging with debugger B) were shown after completing the general
questions about the assignment and depending on which debugger they
have used during the assignment. Finally, the overall questions section
was always asked at the end, after they had experienced both experimental
conditions.
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About you

What’s your experience in developing parallel and /or dis-
tributed programs?

Which programming language do you have the most ex-
perience with?

Do you normally use a debugger while developing a pro-
gram

Which debugger (if any) do you use the most?

What debugging technique do you normally use?
Which group are you part of?

12345
Multiple Choice

12345

Open question
Multiple choice
XY

General questions (for each assignment)

times
Which of the features did you find useful?

Debugging this application was difficult 12345
I would have liked more time to complete the as-
) Yes No
signment
I found the first bug Yes No
I found the second bug Yes No
Debugging with Debugger A
Debugging the application was difficult 12345
The debugger helped me to identify the cause of the bugs | 12345
Fine grained stepping is useful to debug a parallel exe- 19345
cution
Coarse grained stepping is useful to debug a parallel ex- 12345
ecution
I have used the ignore functionality Yes No
The ignore functionality is useful to avoid data-cleaning
12345
bugs
I have used the live code updating functionality Yes No
The live code updating functionality is useful to avoid
. . 12345
replaying the application
I had to redeploy the program the following amount of 012345+

Multiple Choice
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Debugging with Debugger B

Debugging the application was difficult 12345
The debugger helped me to identify the cause of the bugs | 12345
Coarse grained stepping is useful to debug a parallel ex- 12345
ecution

I have used the substitute record functionality Yes No
The substitute record functionality is useful to avoid 12345

data-cleaning bugs
I have used the code patching functionality Yes No
The code patching functionality is useful to avoid replay-

ing the application 12345

I.had to redeploy the program the following amount of 012345+
times

Which of the features did you find useful? Multiple Choice

Overall experience (Open questions)

o Is there a feature of the other debugger that could have helped you to solve
Assignment 17

¢ Is there a feature of the other debugger that could have helped you to solve
Assignment 27

e Is there a feature or information that you felt was missing from both the
debugger approaches?

e Did you experience some technical issue that hampered the debugging ex-
perience?
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