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Abstract

Many frameworks exist for programmers to develop and deploy Big Data appli-
cations such as Hadoop Map/Reduce and Apache Spark. However, very little
debugging support is currently provided in those frameworks. When an error
occurs, developers are lost in trying to understand what has happened from the
information provided in log files. Recently, new solutions allow developers to
record & replay the application execution, but replaying is not always affordable
when hours of computation need to be re-executed. In this paper, we present
an online approach that allows developers to debug Big Data applications in
isolation by moving the debugging session to an external process when a halt-
ing point is reached. We introduce IDRAyg, our prototype implementation
in Pharo. IDRA g centralizes the debugging of parallel applications by intro-
ducing novel debugging concepts, such as composite debugging events, and the
ability to dynamically update both the code of the debugged application and
the same configuration of the running framework. We validate our approach by
debugging both application and configuration failures for two driving scenar-
ios. The scenarios are implemented and executed using Port, our Map/Reduce
framework for Pharo, also introduced in this paper.
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1. Introduction

Hardware advances in storage capacity and CPU processing have given rise
to the field of Big Data. This field is characterized by the so-called 3 Vs: Vol-
ume, Velocity, and Variety [28]. Big Data applications analyze a constantly
increasing Volume of data, coming at an increasing Velocity and from a day
by day bigger Variety of sources. As a result, novel software platforms have
emerged to analyze and store such large data sets in a scalable way. The two
most prominent programming models for Big Data are Hadoop Map/Reduce [6]
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and Apache Spark [2], which typically embrace batch-oriented data processing
to achieve a high parallelization of data analysis. Current trends indicate that
the volume, velocity and variety of data are increasing quickly due to an ex-
plosion on diversity and number of sources of information (as a result of the
digitalization of data, e.g. smart objects and sensors, the interconnectivity of
data and popularity of social media data [19]). This poses challenges for Big
Data frameworks to be able to meet the requirements of the emerging real-time
streaming data processing applications. For example, the 2017 Hadoop perspec-
tive annual report by Syncsort [27], a leading company in (Big) data integration,
estimates the need for new tools to simplify the interaction of the programmers
with different evolving frameworks and datasets.

Recent work has shown that Big Data platforms provide little or no support
for debugging software failures [12]. Developers mostly rely on log files, that
can easily grow to the order of terabytes of data. KEven though specialized
tools to visualize and analyze logs for Big Data platforms exist [22], it’s often
extremely difficult to understand production failures from such log files [24]. As
a result, such post-mortem debugging techniques may require many hours of
analysis just to spot a simple problem, such as a minor bug in the application
or a configuration error [9].

To overcome the use of log files, recent work has proposed replay debuggers
([5, 26, 21]), which allow developers to repeat a recorded execution. Once a
program execution failed, if it was recorded, it can be replayed. Replay times
can, however, increase exponentially in such systems, and it might take hours
and multiple replays to spot a particular bug [12]. Online debuggers, on the
other hand, can potentially shorten the time to find a bug by avoiding replay
steps. They control a program’s execution by placing breakpoints in specific
points of interest during the execution and stepping until the bug is hit. How-
ever, typically traditional debuggers (like GDB [10] and the Java debugger [23])
pause the entire execution while debugging. This solution is not always feasible
for long-running applications such as Big Data applications.

In this paper, we propose a novel online debugging solution targeted to Big
Data applications. In prior work, we proposed out-of-place debugging[18], an
online debugging architecture which transfers the debugging session to an exter-
nal process, in which the developer can debug in an isolated way. Based on this,
we augment out-of-place debugging with dedicated features to allow debugging
of Map/Reduce applications. With our solution, developers can debug within
the same integrated development environment (IDE) both application failures
and the so-called configuration failures present in Map/Reduce applications.
We also present novel debugging features to combine and relate errors that hap-
pen across the parallel execution of Map/Reduce applications. In particular,
using our solution developers are able to debug only the failed parts of the
computation, with a clear knowledge of which data caused a certain exception.
Furthermore, they are also able to propagate code changes to the execution
environment without needing to re-deploy or restart.

We prototype our solution in Pharo. For the development of applications,
we rely on Port, a Map/Reduce programming model in Pharo introduced in



prior work [17] which we augmented with a framework for dynamically deploying
Pharo on state-of-the-art Hadoop clusters. We prototype our debugging solution
for Map/Reduce applications in IDRAyR, an out-of-place debugger for Pharo
applications. We validate our solution by describing three different debugging
experiments through two inspiring scenarios, showing how IDRAyg can help to
debug both application and configuration level bugs in prototypical Big Data
applications.

This paper complements our previous paper [17] by deploying out-of-place
debugging on a Map/Reduce distributed architecture, and by defining new de-
bugging abstractions, such as composite exceptions and debugging of virtual
partitions. More concretely, the main contributions of this paper are:

1. We introduce the concept of composite debugging events, which aggregate
occurrences of a single exception or breakpoint in different workers on a
same parallel execution.

2. We introduce debugging operations on virtual partitions, to debug locally
a failed parallel execution.

3. We validate our approach by applying it on two real-case analysis: a polls
analysis application and blockchain analysis application.

As a technical contribution, we provide Port !, a Smalltalk implementation
of the Map/Reduce programming and execution model, and IDRAyR, a de-
bugger for Port applications based on the concept of Out-Of-Place debugging
[18]. Furthermore, we introduce Pharo on Yarn, a library to dynamically deploy
Pharo images on different nodes of a cluster using Hadoop Yarn [3].

2. Motivation

To show the different problems that can arise when debugging Big Data
applications, we present here two concrete scenarios of applications featuring a
failure. In particular, we illustrate the debugging of the two most representative
types of failures in Map/Reduce applications: application-level failures[15], also
known as application bugs, and configuration and installation bugs which are
reported to cause more than half of the bugs in Hadoop clusters [25].

Note that code samples in this paper use Smalltalk. We will explain the
necessary features of the language to understand the contributions of this work
along with the explanation of code samples using footnotes.

2.1. Application Bugs by Example: Poll Analysis Application

A classic example of a Big Data application is an election polls analyzer,
akin to the one presented by Gulzar et al. [12]. This application analyzes a
dataset containing the results of the election polls and computes, for one region,
the number of votes received by each of the candidates. This application actu-
ally boils down to a word-count computation, which lies at the core of many

1Soon available at https://github.com/Marmat21/Port
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other applications in Map/Reduce [6]. We implemented again the application
as described by Gulzar et al. [12], in which the data is formatted as file entries
with the following fields:

{Region Name Timestamp}

We also introduced in our application the same bug as in BigDebug [12]:
when the application is executed on a Hadoop cluster, a single worker fails.
Since the application is deployed remotely without a user interface, this failure
produces a log. The stack-trace provided in the crash-report shows that there
was a parsing error (a number between 0 and 9 was expected), providing the
stack trace shown in Listing 1, but not providing any information on the data
causing the exception.

2019—-04—16T16:51:56.532637+02:00

NumberParser(Object)>>error:

NumberParser>>expected:

NumberParser>>nextUnsignedIntegerBase:

NumberParser>>nextIntegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:

VoteCountingMR Application>>map:

[ :el | self map: el | in VoteCountingMRApplication(MapReduceApplication)

>>applyMapTo: in Block: [ :el | self map: el |

Array(SequenceableCollection)>>collect:

VoteCountingMR Application(MapReduceApplication)>>applyMapTo:
Listing 1: Stacktrace in the log file of the failing polls analysis application.

This particular bug is caused by the record {Bianchi Toscana 02-03-2018}.
Indeed, the program was expecting a numeric UNIX timestamp while the record
presented a String-based timestamp. Our poll analyzer code was parsing the
timestamp using asInteger, which returns nil with the non-numeric record,
causing an unexpected exception.

In this concrete example, finding the error would be trivial if the developer
was provided with the contextual information about the state of the application,
i.e., which record caused the exception.

Since the bug did not manifest in the test-set of the developer, she could
try to add insightful log statements to, for instance, print the runtime values
of the arguments to detect which one causes the error. This, however, would
require to re-deploy and restart several times the execution to find the bug.
Moreover, printing runtime values of arguments may fill the log with extra in-
formation which will not help the developer to find the bug (e.g., information
about not faulty execution). Alternatively, the developer could use more ad-
vanced techniques, such as data provenance [11], to detect which of the records
caused the error. However, such a technique also requires various replays of the
execution untill debugging can happen. In short, using post-mortem debugging
to reproduce the bug requires, after an initial analysis of a log file, different
re-executions, losing hours of processing as the analyzed data set grows.



2.2. Configuration Bugs by Example: Blockchain Analysis Application

A second representative example of a Big Data application is a Map/Reduce
application that analyzes an existing Blockchain platform (i.e., Ethereum) and
indexes each of its blocks, storing an association (index = hash of the block)
in a relational database. When done sequentially, such an analysis takes days
of computation. As a result, many times Blockchain analysis techniques are
limited. For instance, BlockSci [14] scoped their bitcoin analysis to only 22GB
of transactions. We implemented this analysis as a Map/Reduce application in
a Hadoop cluster, taking 7 hours to process 266GB of transactions [4].

Listing 2 illustrates the pseudocode of such an application. The map function
queries the blockchain to obtain the data related to a block index. The reduce
function takes the result of the map on several indexes (i.e., a partition of
indexes), and stores them all in a centralized database with a bulk insert. Both
the blockchain and the database are accessible at known network addresses
through drivers loaded in the runtime environment.

map(blockindex) {
return blockIndex—>hash(blockchain.at(blockIndex))
}

reduce(pair){
storelnDatabase(pair)
}

Listing 2: Pseudocode of the blockchain indexer.

While developing and executing this application, we faced different config-
uration bugs that invalidated the results generated by minutes (or hours) of
computation. For example, one bug made the application fail when attempting
to store the associations in the relational database. After analyzing the logs
of the failed application (included in Appendix C) we realized that the appli-
cation developer forgot to drop the existent tables in the database, making all
the stores fail because there was already data with the same primary key from
previous executions. Such a bug is representative of the case of a production
environment that is not fully ready to execute the application. Similar bugs
can also happen when a library is missing or mis-deployed in the execution
environment.

Fixing this kind of configuration bug is relatively easy as it does not re-
quire extra coding but only the re-deployment of the right configuration files
or libraries, or the restart of a service like a database, or, in this specific case,
executing a script to drop existent tables in the database. Identifying that we
are facing a configuration bug is, however, much more difficult because the root
cause of the failure is not in the application. This means developers need to
analyze logs that contain information about other components of the framework
they are using to implement their applications, requiring them to understand
implementation details of the framework to figure out what it is being reported
as a failure.



2.3. Problem Statement

Debugging Big Data applications is difficult because of different factors.
On the one hand, their distributed nature and the size of the systems and
data that they analyze complicates the process of identifying a root cause of a
failure. On the other hand, not only do programs fail because of application-
level errors accidentally introduced by developers, but they also fail because of
mis-configuration (of both the application and the execution environment) and
initialization errors [25]. These problems, qualified by Zeller [29] as minor and
trivial problems, can be easily solvable in local applications using interactive
debugging tools. However, when present in Big Data programs, solving them
with the current state of the art debugging tools becomes a time-consuming
task even though the fix may be trivial. As Fischer et al. state in their 2012
article [9]:

It is frustrating to wait for hours only to realize you need a slight
tweak to your feature set.

In particular, replay debuggers for Big Data applications would restart the
full execution even when the fix only affects a part of the failed execution,
possibly replaying the execution for hours. A checkpointed-based debugger like
BigDebug [12] can alleviate that issue since it allows one to replay only a part
of the application process from the lastest checkpoint [12]. However, what both
of the presented debugging scenarios have in common, is that the bug becomes
apparent when the developer can control the execution of the application and
have access to its state when it fails. Moreover, none of the current debugging
approaches for Big Data applications feature support to expose both types of
failures and deploy fixes for them without restarting the system.

We believe that these shortcomings of the state of the art motivate the
need of a novel debugging approach that allows developers to (1) expose both
application-level and configuration failures in their Map/Reduce programs exe-
cuting remotely in one environment (to avoid searching for the root cause in logs
in different software technologies involved), and (2) provide primitives to deploy
code fixes without restarting the whole system, including deploying library code
and changing the configuration of the framework itself.

2.4. Online Debugging of Big Data applications

In this work, we propose an online debugging technique for Big Data appli-
cations. In particular, we apply previous research on out-of-place debugging [18]
and augment it with novel features to tackle the aforementioned shortcomings
for Map/Reduce applications.

Out-of-place debugging is an online debugging technique in which debugging
happens by transferring the execution state of the remotely debugged applica-
tion to another machine. The developer proceeds then to debug as if the applica-
tion was originally a local application. In previous work, we successfully applied
this approach to debugging long-running applications and cyber-physical sys-
tems [18, 16]. Such a debugging technique suits Big Data applications since it



allows production code running on a cluster to continue processing tasks while
the failing tasks can be debugged in an external machine. Once the failing tasks
are fixed, developers can commit the code changes and restart the now fixed
tasks in the production environment.

In this work, we extend out-of-place debugging by customizing its deploy-
ment to a Master/Worker architecture which supports a Map/Reduce program-
ming environment, and introduce different abstractions to compose and de-
bug exceptions happening across the parallel execution. Figure 1 provides an
overview of the debugging architecture for Map/Reduce applications.

MapReduce Master

-— | L. MapReduce Worker
/ Developer's Machine® | /
‘ Debugger API
\

MapReduce Ul
Debugger API

MapReduce Worker

Debugger Ul

Debugger API

] Runtime ] Monitoring + Debugging

Figure 1: Overview of an out-of-place debugging architecture for Map/Reduce applications

The architecture includes, on the left side, the developer’s machine, so the
machine used by the developer for remote monitoring and debugging of the pro-
gram execution. The developer’s machine thus has an IDE with the MapReduce
UI, to monitor the state of the workers, and the Debugger UI. The developer’s
machine is connected over the network to a cluster running the application.
In particular, the cluster runs different processes containing the Map/Reduce
Master and different Map/Reduce Workers, that will manage the application
execution as explained in the following section. We assume that the different
nodes (i.e. master and workers) do not share memory, but that all of the nodes
have access to a shared distributed file system (e.g., HDFS in Hadoop clusters).
Finally, all of the nodes have a debugger API, detailed later in Section 4 which
is used to control and steer execution during debugging. Section 4 will detail
this architecture in the context of our prototype implementation in Pharo.

3. Port: A Big Data Framework for Pharo

Before delving into our online debugging approach for Big Data applications,
we introduce Port: the programming environment which we employ in this work
to write Big Data applications using the Map/Reduce computational model. We



also provide the necessary background information on both Master/Worker and
Map/Reduce models.

3.1. The Master/Worker Model and Map/Reduce

Port models Big Data applications using a Master/Worker model, akin to the
one used in Apache Spark [2]. The Master/Worker model consists of one master
process which acts as coordinator, and many worker processes performing tasks.
The master is responsible for assigning work to the workers and coordinating
results. The workers execute tasks instructed by the master and returns to it
the result of the computation. The Master/Worker framework is suitable for
modeling the execution but does not provide high-level abstractions to actu-
ally program applications. Hence, we introduced a Map/Reduce programming
model [6] on top of it.

A Map/Reduce application is mainly composed of two functions: a map
function, that is mapped to all the elements of the input collection, and a reduce
function, executed after the map, that can reduce all the intermediate results
to a final one. Our Master/Worker framework creates a Map/Reduce Master
process which is responsible for scheduling map or reduce tasks on different
Map/Reduce Worker processes and handling their results.

3.2. Map/Reduce by example

A Map/Reduce application in Port is defined as a Pharo class implementing
the methods map: and reduce:. Listing 3 shows the core code of our election
polls analyzing application?. The map: method first filters the interviews for a
region (in this case, Abruzzo). It then checks if the timestamp of the interview
is valid, reading it from the string as a UNIX timestamp and checks if the date
is greater than yesterday.

The reduce: method reduces all the valid entries into an unique dictionary,
which will include the information on the preference for each candidate.

PollsAnalyzer >> map: aLine
| splitted |
splitted := aline substrings: ' ',
(splitted at: 1 includesSubstring: 'Abruzzo’) ifTrue: [
((DateAndTime fromUnixTime: (Integer readFrom: (splitted at: 3) )) >
DateAndTime yesterday) ifTrue: [
1 (splitted at: 2) —> 1.

]

2 In this code example, you can find syntax that is specific to Smalltalk. PoolsAnalyzer >>
map: indicates that this is the implementation of the method map: in the class PoolsAnalyzer.
Please note that Smalltalk methods make use of keywords: line substrings:’ ’ (cfr. line
3) is equivalent to calling line.substrings(" ") in canonical syntax. Methods with multi-
ple parameters (cfr. line 4) are called using a composition of keywords. splitted at: 1
includesSubstring: ...’ is equivalent to splitted.includesSubstringAt(1, "...") in
canonical syntax.



10

11

12

13

14

16

17

18

19

20

21

22

]

1 nil —> nil.

PollsAnalyzer >> reduce: aSetOfVotes
| dict |
dict := Dictionary new.
aSetOfVotes
do: [ :vote |
vote key
ifNotNil: [ dict
at: vote key
ifPresent: [ :val | dict at: vote key put: val + 1]
ifAbsentPut: 1] ].
Tdict.

Listing 3: The core code of the election poll analysis application.

When the application is run, each entry in the input log files is first mapped
by the map: method and the results of each map: invocation is passed as an ar-
gument to reduce:. Eventually, the poll application returns a set of dictionaries
with the number of votes of each candidate.

3.8. Handling input data

A Map/Reduce application accepts different data sources: i.e., (i) an arbi-
trary collection in memory, (ii) a file on the local file system, and (iii) a file on
the distributed file system (e.g., HDFS).

To provide parallel execution of the map and the reduce methods, Port splits
the original data into different partitions, that it then assigns to the different
workers. In the case of an arbitrary collection, such collection is split equally
between the workers and serialized over the network. Instead, when executing
on a file (either in the local or distributed file system), the master will instruct
the single workers to read each a part of the file, and then to execute the analysis.

Note that in classic Map/Reduce frameworks, the result of the map should
always return data in the form of key/value pairs. In Port, map methods are
not constrained to return key-value pairs. However, returning key-value pairs
becomes mandatory when using reduce by key instead of reduce.

3.4. Handling intermediate results

Once the map is finished, the partial results of the maps executed in different
workers need to be reduced. The developer configures the application to either
send the partial results back to the master, store them on an intermediate file
on the distributed file system (approach akin to classical Map/Reduce), or keep
them in the memory of the workers (approach akin to Apache Spark’s workflow).



Before scheduling reduce tasks, a shuffling step 3 might be needed to correctly
reduce by key. As other Map/Reduce frameworks, Port handles the eventual
shuffling of the data in a transparent way for the developers.

4. Debugging Port Applications with Out-of-Place Debugging

The Port framework described in Section 3 deploys Map/Reduce Pharo ap-
plications such as the election polls analyzing application. To debug such ap-
plications, in this paper we propose an online debugging technique based on
out-of-place debugging [18]. In this section, we first introduce the necessary
concepts of out-of-place debugging, then we explain how we applied it to a Big
Data context, and finally, we describe the new kind of debugging events devised
to debug Map/Reduce applications.

4.1. Out-of-place debugging in a nutshell

Figure 2 depicts the out-of-place debugging architecture. An application
runs on a process monitored by the debugger, and an external debugger process
hosted in the developer’s machine presents the front-end of the debugger. When
the application monitored by a debugger monitor stops due to a breakpoint or
an exception (step 1), the debugger monitor serializes the program execution
state (step 2) and transfers it to the developer’s machine (step 3), where the
debugger manager reconstructs the debugging session? (step 4). The developer
then proceeds to debug locally an exact copy of the original program at the
moment of the exception (step 5). When the developer discovers the cause of
the bug, she modifies the application’s code locally to create a bugfix (step
6). Finally, the developer sends all the changes of a bugfix in a single commit
step to the debugged application (step 7). The explicit commit operation gives
the developer control to deploy only code that she is confident about. These
changes are deployed in the remote application (step 8) and it is finally possible
to resume the execution of the suspended point of the application (step 9).

The out-of-place debugging architecture is naturally distributed: a single
debugger manager can connect to multiple debugger monitors at the same time,
making it possible to debug different connected applications from a single point.
When the debugger manager receives a halted execution from one of the con-
nected debugger monitors, it queues a new debugging session instead of blocking
the debugger process by opening multiple sessions. The developers then choose
which debug session to open (if more than one is available). Eventually, the de-
veloper resumes the execution or cancels the original application process, with
the possibility of applying the same operation to all similar debug sessions. This

3 After a map computation, the resulting key/value pairs are physically at the worker that
performed the map. In order to easily reduce by key, key/value pairs that have the same key
should be moved to the same worker.

4By debugging session we mean a practical Pharo debugging session, with a copy of the
call-stack and variables as the original debugging session created by the normal execution.
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Figure 2: Representation of out-of-place debugging instances, manager and monitor and
changes handler, in a distributed system of two machines.

interactive workflow allows developers to inspect and modify a debug session to
find and correct bugs in a live way. Code changes produced in the debugger
process can be propagated to the application nodes when the developer does
a commit operation. Such code changes include adding/modifying/removing
of both methods and classes. Similar to the debugger manager, the changes
handler supports connections to multiple updaters at the same time.

4.2. Out-of-place debugging on Port

In this section, we describe how we adapt the debugging infrastructure
(shown in Figure 2) to be deployed on our Map/Reduce runtime (cfr. Sec-
tion 3). To this end, we build our Big Data debugger, called IDRAyR, by
extending the existing implementation of an out-of-place debugger for Pharo
Smalltalk applications.

rCluster \‘
Iﬂea)ers naciine pdater
/ Devel h \‘ \ Updat
| | Updater
MapReduce Worker |
} Changes Handler | | | IDRAIMorTor / ‘
| IDRA Manager | | | MapReduce Master \ Updater }
\_ /} } MapReduce Worker |
________________________________________________________________________ |
[ port Runtime |
— \
[ IDRAM: \ ] Mistributed fle System . 7W |
\ )

Figure 3: Architecture of Port and IDRAyr deployed on a cluster
Figure 3 shows the overall architecture of Port when deployed with IDRA yg-

Concretely, the different Debugger API instances shown in Figure 1 repre-
sent the different instances of IDRA Manager, IDRA Monitor, and Updaters.
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The node running the Map/Reduce Master also runs an instance of the IDRA
Monitor. Moreover, the Map/Reduce Master node and all the Map/Reduce
Worker nodes also run an updater, enabling code updates from an out-of-place
debugging session.

External to the cluster, the developer’s machine runs an IDRA Manager
instance and a Pharo IDE. The IDRA Monitor propagates the exceptions oc-
curring in the cluster to the IDRA Manager instance. The IDRA Manager Ul
governs the IDRA Manager instance and uses the Port API to communicate
with the instances running on the cluster. It presents dedicated Uls to dis-
play new debugging features for Big Data applications, which we detail in the
remainder of this section.

4.8. Debugging FEvents and Halting Points

During the execution, the application may reach different halting points. A
halting point is a point of the execution in which the execution stops either
because of a breakpoint inserted by the developer, or because of an unhandled
exception. When a halting point is reached in a Map/Reduce worker, the worker
notifies the master. The Map/Reduce master then extracts all of the informa-
tion needed for debugging from the worker and notifies the IDRA Monitor of a
new debugging event. A debugging event contains all the contextual informa-
tion about the halting point. More precisely, it holds an identifier, a copy of
the call stack at the halting point, the configuration of the application (e.g.,
partitioning information), and the data partition that was being analyzed when
the event happened. Since the Map/Reduce Master has complete knowledge of
the distributed program execution and state, not only of the failed worker(s)
but also of the rest of the running tasks of the application, it has access to all
the information necessary to construct such debugging event.

As different Map/Reduce Workers are performing parallel map and reduce
tasks, the same bug may raise multiple exceptions while analyzing different por-
tions of data in different workers. For example, in the case of the polls analyzer
application, if more than one record has the wrong format in the dataset, then
the same failure will occur many times during the parallel execution. This will
generate many individual debugging events sent to the IDRA Monitor at the
Map/Reduce Master process. All these events, however, conceptually belong to
a single failure which manifested in different portions of data.

To ease the debugging of such failures, the IDRA Monitor aggregates all
concurrently raised debugging events related to the same failure into a unique
composite debugging event. This composite event is then sent to the IDRA Man-
ager at the developer’s machine for debugging as if it was one single debugging
event. Two or more individual debugging events are aggregated if their call
stacks are structurally the same, i.e., the halting point is the same and the
call stack frames preceding the halting are called in the same sequence. The
composite debugging event will then construct a single call stack which can be
further debugged as if it was one failure.

12



4.4. Composing Events by Example

We now detail how composite events work in the context of debugging the
poll analysis application described in Section 2.1. Recall that a composite event
is generated when the master receives from the worker(s) the same exception
more than once. Figure 4 shows a simplified version of the stack associated with
the error in the poll analysis application.

NumberParser >> error:

VoteCountingMrApplication >> map:

Array >> collect:

MapReduceWorker >> schedule:

Figure 4: The simplified stack of the exception. Depicted in red the framework frames.
Depicted in white the application frames.

When the worker handles the NumberParser exception, it first removes the
stack frames related to the framework methods to avoid noise and concentrate
on the specific application debugging information (i.e. all frames from map:
and up). The removed frames are depicted in red in Figure 4. The worker then
extracts the meta-data that identifies both the faulty record and its partition
and sends it together with the stack in a unique debugging event to the master.
The master, in turn, forwards it to the IDRA Monitor.

When a debugging event arrives at the IDRA Monitor, it checks if there are
other events related to the same execution. The first time that the IDRA Mon-
itor finds two events to be structurally equivalent, it will generate a composite
debugging event for them with a unique id carrying a unique call stack.

NumberParser >> error: (PC: 14) (PC: 14) NumberParser >> error:

VoteCountingMrApplication >> map: (PC: 32) (PC:32) VoteCountingMrApplication >> map:

Figure 5: Two structurally equivalent stacks related to the same exception.

Figure 5 shows a simplified representation of the stacks of two structurally
equivalent events. We consider two events to be structurally equivalent when
(i) they are generated by the same operation ( e.g. map: in this case) and (ii)
each of the stack frames, in order top to bottom, has the same method selector
and points to the same program counter (PC). At this point, only one copy of
the first stack is stored in the composite event, together with the meta-data of

13



x -0 IDRA Manager Overview -
CompositeExceptior CodeManager -
Composite Exceptions 9 stackof the selected Composite Exception

[3] Error: Reading a number failed: a digit pected Map in VoteC

NumberParser>>expected:
NumberParser>>nextUnsignedintegerBase:
NumberParser>>nextintegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:
VoteCountingMRApplication>>map:
MRWorkerDebugger>>simulatedRMapOn

Data that caused the exception e
Abruzzo Matteo April182019

Abruzzo Dario April182019

Abruzzo Matteo April182019

Debug Selected

Debug All Failed Debug On Merged Collection

Figure 6: A screenshot of the IDRA Manager Ul when handling a composite event. Figures
8 and 9 show, in more detail, the left and the right part of this figure

each of the events. Using such meta-data IDRAyg is then able to reconstruct
the exception for each record that caused it.

When successive structurally equivalent debugging events arrive at the IDRA
Monitor, only the first one contains stack information. All the rest contain their
unique meta-data and share the identifier of the composite event they belong to.
The IDRA Manager will then identify it as a part of a single composite event.

Composite events do not only provide developers with a higher debugging
abstraction tailored for the parallelism exhibited by Map/Reduce applications,
but they also reduce the amount of memory and network used by IDRAyR.
More specifically, the IDRA Monitor hooks into the exception handling of Port,
extracting the necessary data from the stack associated with each individual
debugging event, to then verify if the stacks are structurally equivalent.

4.5. The Debugging Cycle

A debugging cycle in out-of-place debugging denotes the stages from the
point in which the developer’s machine is notified of a halting point (due to
an exception or breakpoint) in a Map or Reduce task of an application until
the execution of the halted task is resumed. In this section, we describe the
debugging cycle of an application error that manifested in an exception during
the execution of the poll analyzer application described in Section 2.1. For a
screencast of such debugging cycle, we refer the reader to https://tinyurl.
com/SCPDemo02019.

Figure 6 shows a screenshot of IDRA Manager UI at the point the developer
is signaled of an exception occurring in a map:. On the left side, we see the
list of distinct exceptions that happened: only one in this case. The number 3
between square brackets denotes that the exception was actually raised three
times, meaning this a composite debugging event for the three exceptions.

On the right side, the developers see the stack and the three different records
that caused the exception.
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Recall from Section 3.3 that the data is split into different partitions, hence
when an error happens because of a specific record, such record is part of an as-
sociated partition. Through the buttons in the bottom right side of the window,
developers can then perform three different debugging operations:

Debug a single halted record. Developers start debugging the map on one
of the records for which the execution was halted (denoted those as halted
records). Once the map on the associated record returns, the developers
continue debugging on the rest of records in the same partition.

Debug a virtual partition with all halted records. The developers debug
the map on a virtual partition containing only the halting records, regard-
less of their original partition. For instance, in our example this operation
will construct a virtual partition containing all records visible in the bot-
tom part of Figure 9 and let the developer debug the map on such virtual
partition.

Debug a virtual partition with all halting partitions. The developers de-
bug the map on a virtual partition which is the union of all of the partitions
that contain at least one halted record. This virtual partition will contain
all records in those partitions, including those that do not halt.

IDRAMR creates a debugging session by transferring the data required for
debugging the requested partition, including the data originally referenced by
the stack, the analyzed partition and the current index. Once created, develop-
ers use the IDRAyg Ul on the reconstructed debugging session. The IDRAyg
UI extends on Pharo’s default online debugger to add dedicated debugging op-
erations for Map/Reduce tasks. More concretely, it provides a new stepping
operation that jumps to the map of the next element of the partition, a new
operation to resume the execution of all of the remaining elements, and a new
operation to halt and inspect the intermediate state.

A debugger Ul is created when the application receives a debugging event.
Once the debugger Ul appears, a developer uses classical debugging operations
(step into, step over, resume execution) of the Pharo debugger to debug the
reconstructed failed execution on the local machine.

Let’s consider that during the debugging session, the developer found the
bug and applied a fix. In our concrete scenario, this means modifying the code
to manage also string-based timestamps. Those changes are tracked in the Code
Manager tab of IDRA, displayed in Figure 7. The right side of the code manager
shows all of the changes made by the developer while debugging, and the diff of
such code changes to the original versions. By clicking on the commit changes
button, the developer sends the bugfix to the local changes handler.

The bugfix is then immediately propagated by the Changes Handler to the
updater instance running alongside the Map/Reduce Master. The Master sched-
ules a task in itself to apply the updates and sends the code fix to the updater
instances running alongside each of the Map/Reduce Workers. Note that the
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Figure 7: A screenshot of the code manager tab of IDRA.

update propagation does not happen atomically in all workers at once since each
worker will apply the updates only when it finished executing the current task.

Once the code changes are deployed the debug session is finished with one
of the following operations:

1. Re-schedule all partitions that halted. This avoids the re-execution of
tasks that finished with success.

2. Re-schedule the application from the start on all the partitions. In case
the modified code requires an entire re-execution.

The first option is particularly useful when only a small part of the computation
failed due to few failure-inducing records. In this case, the developer preserves
most of the execution, avoiding tedious replay times, and restart only the failed
part of the computation.

4.6. Debugging a configuration error

While explaining the debugging cycle, we focused on application-level fail-
ures that are be fixed in the code of the application. However, to debug config-
uration errors, developers need different debugging operations. IDRAyr allows
developers to (i) load and change code of libraries locally, and propagate the
changes as a normal code-update and to (ii) execute arbitrary code directly on
the runtime environment of the master and workers. The former leverages on
the previously explained code-update capabilities of IDRA R, the latter makes
use of debugging hooks provided by the Port framework itself.

Port allows developers to execute arbitrary expressions in the context of the
master, a single worker or all workers. Configuration errors are fixed by exe-
cuting expressions that modify internal configuration of the nodes or affecting
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the global running environment. For example, this can be used to programmat-
ically re-start a database in the cluster. We will present more details on how
this functionality can be used in Section 5.4.

5. Validation

We validate our approach through three different experiments that highlight
the utility of the different debugging features presented in this paper. Through-
out the different experiments, we use the two scenarios described in Section 2:
the polls analyzer and the blockchain indexing application.

5.1. Experimental Setup

We execute the experiments with Port deployed using Yarn (cfr. Section 6.1)
on a 10-nodes cluster. The cluster is composed of one oot node and ten identical
slave nodes. Each slave node presents the following specifications:

- Processor: Intel Xeon CPU E3-1240 @ 3.50GHz (4 cores, 8 threads)
- Ram: 32 GB
- Storage: 200 GB SSD

The root node has the same specification as the slave nodes, but it has enhanced
storage. All the nodes are connected through a 1 Gigabit local network.

HDFS is running as namenode in the root node, and as datanode in the ten
slave nodes. For running the blockchain application, one of the ten slave nodes
is exclusively running Geth, a blockchain data node. In addition, the root node
is running an instance of the Postgres database.

5.2. Ezperiment 1: Debugging a Composite Exception

In the first experiment, we compare the debugging cycle for an exception that
happened multiple times using log files or using our approach which features
composite debugging events. Consider the application level failure of the polls
analyzer application described in Section 2.1. Analyzing the log file does not
allow developers to get enough information over the execution to know which
register or partition caused the failure. Furthermore, if the same exception
happened in parallel on more than one map tasks, the log file gets much more
complex, and partially replicated, and it still does not give developers enough
information. The reader can find such a complete log file in Appendix B. Even
if the developer would add explicit log statements to log the intermediate state
of a variable, retrieving such log would require multiple executions, and, in order
to spot the right record that caused the exception, the developer will need to
do a thorough read of the log to find the right statement.

When debugging using our approach, the IDRA monitor will immediately be
notified by the exception(s) happening in the different map tasks and will trans-
fer the debugging session, in the form of a composite debugging event, to the
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IDRA manager running on a different external machine, providing centralized
debugging and the different debugging operations as described in Section 4.5.
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Figure 8: A detail of the IDRA Manager Ul when handling a composite exception. Detail of
Figure 6

Figures 8 and 9 show in detail the IDRA Manager handling the exception
(cfr. Figure 6). Figure 8 shows the name of the exception, how many times it
happened (the number 3 between squared brackets) and where it happened (i.e.,
the map). Figure 9 shows the shared stack, and shows the different data samples
that caused the exception, three in this concrete case. With these visualizations,
we can already see that they share the timestamp in a string format, and not in
the numeric UNIX timestamp format. The developer can choose one and debug
it through the Debug Selected button (cfr. Figure 6), or debug a custom set of
the data as described in Section 4.5.

In this case, online debugging features such as accessing the state of the
application helps to immediately identify the problem. Moreover, the enhanced
online debugging features for Big Data applications of IDRApR, like fix and
resume only failed tasks, avoid re-executions of the application to reproduce
and fix the bug.

5.8. Ezperiment 2: Debugging a Configuration Error

In this second experiment, we describe how IDRAyR’s debugging cycle
avoids tedious times of re-deployment in case of configuration bugs. Config-
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uration bugs are a classic kind of bug when using big data frameworks, and
reported to raise many bugs in Map/Reduce [25]. In this experiment we con-
sider again the polls analyzing application. Consider that, after debugging the
application with IDRAyr and fixing the application level failure as described
in experiment 1, the framework correctly finishes executing the program. The
code for the application including the fix is shown in Appendix A. When the
application finishes, Port will store the final results to HDF'S, as indicated in
the code of the application (cfr. lines 10-16 in Appendix A).

Consider a configuration and installation error in our poll analysis in which
we forget to deploy our HDF'S library on the worker nodes at the cluster. This is
akin to not correctly packaging a library jar in Hadoop Map/Reduce or Apache
Spark. Our correct poll analyzer application will now fail after the reduce task
is completed, when the master is handling (and storing) the final result. The
program will fail because the class representing the HDFS File System access is
not loaded in the worker’s execution environment (i.e. The package is not loaded
in the image that is running the Map/Reduce Worker). While classic approaches
crash the application and require log analyses to find the problem, Port reports
to IDRAMR an exception, in the same way as a classic application exception.
The developer then proceeds to load locally the HDFS FileSystem library and
IDRANR will capture the associated code changes. Such code changes can be
committed in order to update the codebase of Port, and the execution of the
result store can be restarted. In this particular case, the developer will need
to restart the reduce phase to trigger again the result store. This is because,
otherwise, the master would need to keep in memory the result that triggered
the failure.

Debugging such configuration errors with IDRAyg and its code updating
capabilities avoids the restarting of the whole system. The support for library
code update avoids the hassle of packaging errors and related re-compiling and
re-deployment steps. This is particularly useful, especially when configuration
bugs appear only in a late stage of the computation, as in this example.

5.4. Experiment 3: Debugging cycles

Consider now the blockchain analysis application failing in the reduce phase
because of a misconfiguration error of the database as described in Section 2.2.
Listing 4 shows the code of the map: and reduce: methods of the application.

MRIndexingApp>>map:blocklndex
| ethereumBlock mappedProperty |
ethereumBlock := FogBlockChain at: blockIndex.
mappedProperty := ethereumBlock
get: #hash.
1 blocklndex —> mappedProperty

MRIndexingApp>>reduce:pairs

PostgresDatabase storelndexedValues: pairs.
Listing 4: Map and Reduce methods of the Blockchain indexing application.
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The Map/Reduce is initially called on a collection of indexes, meaning num-
bers from 1 to the maximum number of blocks in the blockchain. The map:
method executes on a single index, and uses FogBlockChain, a global reference
to the driver for the blockchain data node, to retrieve a particular block from
the blockchain. It then extracts the hash of the block and returns a key/value
pair with the index and the associated mapped property (i.e., the hash of the
block). In the reduce: method, the application takes a set of key-pairs, re-
turned by applying the map to a partition of the collection of indexes, and calls
the database, accessible globally, to do a bulk insert of the data.

Note that the reduce: method assumes that the database is empty, oth-
erwise a primary key clash error occurs. If the database is not correctly reset,
all the reduces fail, after the execution of the map completed without errors.
IDRAyR will receive it as a composite event, akin to experiment 1. However,
the error will be raised in the call to PostgresDatabase, making it clear to the
developer that such error is not directly related to the application code, since
the code of the reduce is correct, but it is due to a wrong initialization that in
turn caused a configuration error.

To solve this configuration error, developers can use Port’s remote code
execution infrastructure (cfr. Section 4.6) to submit a script performing the
database initialization to the node containing the database. They then test the
database to check its correct initialization and finally resume the execution.

Since all of the reduces failed because of this error, all reduces need to be
resumed. However, by using IDRAygR we avoid re-executing all of the maps.
This is crucial in the case of the blockchain indexing application where the
entire map execution time for analyzing 266GB of transactions takes more than
6 hours, accounting for 90% of the total execution time of the application [4].

Since out-of-place debugging does not block the whole application but allows
to debug and fix individual tasks in an isolated environment, developers can
correctly re-initialize the database with the procedure described above, and
reschedule the execution only of the reduce operation, saving 6 hours of replaying
the computation.

Also in this case, similar to experiment 2, debugging with the remote code
execution capabilities of Port and IDRAyr avoids a complete restart of the
system, saving precious computational time. The remote code execution also
allows developers to inspect intermediate state of the master and of the workers,
or change the configuration of Port while it is deployed.

5.5. Discussion

While applying out-of-place debugging on a Map/Reduce architecture pro-
vides advantages when debugging parallel applications, it also presents several
challenges that we discuss in what follows.

First, debugging a configuration error in a different environment can be
tricky, even using our approach. Consider the example of the database configu-
ration error of Section 2.2. While the debugger would show an error produced
by the database driver, if the developer restarts locally the execution on her
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machine, a different error will appear: the database is not available at the de-
veloper’s machine. This shows a more general problem of code mobility. In the
original paper on out-of-place debugging for long-running applications [18] , we
solved these particular situations by employing proxies. In particular, a proxy
can be added during serialization to objects that are known not to be movable
(e.g., a connection to the database, a file, a socket, ...). In this paper, due to
the nature of current Big Data applications, we believe that this is a minor
limitation to debugging such use cases, as shown in Section 5.4. In fact, such
applications often interact (in a stateless way) just with the source of data, hav-
ing a limited interaction, normally known to the developer, with other external
sources.

Second, the presented debugging approach has been devised to work with a
Master/Worker and Map/Reduce models. While the Master/Worker model is
widely used in frameworks that provide parallel execution, relying on a Map/Re-
duce programming model may limit the applicability of our approach to different
Big Data frameworks (e.g., Spark). For instance, the generation of composite
events and the handling of its meta-data, are really coupled, in their imple-
mentation, to debugging the map: and reduce: methods. Applying it to a
more extended programming model such as the one of Spark may require dif-
ferent kinds of abstractions. It is ongoing work to extend composite events to a
Spark-like programming model.

We discuss technical limitations related to our current prototype implemen-
tation in Section 6.4.

6. Implementation

In this section, we describe technical details of our approach, including the
deployment of Port and the libraries we rely on, as well as a complete architec-
ture when deploying Port on Hadoop Yarn with IDRAyR.

6.1. Deploying Port on Clusters
Port can be deployed in three ways:

1. Locally: with different processes (including master and workers) running
on the same machine.

2. Standalone: deploying manually the master and the different workers
across a distributed system, to then provide a specification to the master
to know where the workers are.

3. On Yarn: using Hadoop Yarn [3] and our library Pharo On Yarn to
deploy the different master and workers on a cluster.

While both local and standalone modes are good for small testing environments,
deploying Port on a cluster brings different challenges including how to handle
resources, monitor nodes, share data between the different nodes, etc. To this
end, we decided to rely on the popular resource manager Hadoop Yarn [3]. Yarn
handles the configuration and the deployment of the system. It is commonly
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used to deploy frameworks such as Map/Reduce and Spark, especially when
the size of the system increases since it can scale to thousands of nodes. Yarn
allows us to abstract over the properties of the underlying hardware like available
memory and CPU, availability of a node, etc.

Figure 10 shows an overview of Port deployed on a cluster using Yarn, in-
cluding the IDRAyR debugging infrastructure. As mentioned, resource man-
agement is leveraged on Hadoop technology (i.e., Yarn and HDFS), while the
execution environment layer we use our Port framework including the Map/Re-
duce Master and the different Map/Reduce Workers to execute a Map/Reduce
application.
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Figure 10: High level view of deploying Port on a cluster

Pharo on Yarn (PHOY). PHOY is a Yarn application used to dynamically
spawn different isolated execution environments so-called containers. In our
case, each container runs either a Port Map/Reduce Master or a Port Map/Re-
duce Worker. While Yarn takes care of where and when to allocate a new
container, PHOY introduces an API to instruct Yarn to deploy new containers
and to query information about existing containers. For instance, the Map/Re-
duce Master will be able to use PHOY to know if a particular Map/Reduce
worker is still running.

Supporting a Distributed File System. Typically, on a cluster, a distributed file
system allows easy sharing of data between nodes. Such a distributed file system
is used both by the developers to store data and result and by the Big Data
frameworks to store intermediate results or share data between the different
running components. To this end, we provide the Pharo-HDFS library which
enables Pharo developers and the Port framework itself to access the HDFS file
system, the popular Distributed File System of Hadoop. In particular, Port
uses Pharo-HDF'S to start the execution on a file stored on HDF'S and to store
intermediate information when needed.

6.2. Handling Composite Events
Composite events (described in Section 4.3) are generated in the IDRA Mon-
itor and sent to the IDRA Manager. Such events contain one copy of the gener-
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ated stack, as it would be using classic out-of-place debugging, and the metadata
of the single exceptions. In the current implementation, such metadata includes
the full partition that had the record causing the exception and the index of
the faulty record in the partition. This information is enough to reconstruct the
exception in the IDRA Manager every time the developer selects a particular
virtual partition to debug.

6.3. Communication and libraries

Both Port and IDRAyR leverage on Fuel [7], a common Pharo library for
the serialization of object graphs, to serialize debugging sessions, data, and
operations.

Epicea [8] is used in IDRAypg for the detection and application of code
changes. Epicea is a Pharo library for logging, un-doing and replaying code
changes made at runtime. It stores the single code changes in an external file.

All communications happen by using HTTP requests with Zinc [30], an
HTTP framework for Pharo that allows, among other things, to both manage
an HTTP Server and act as an HTTP client.

Thanks to the code-update capabilities of Smalltalk, the code base of differ-
ent connected nodes can be updated without stopping the application, reducing
debugging and deployment time.

6.4. Limitations of the prototype

Both the prototype of IDRAyg and of Port present different limitations
due to implementation choices. We now discuss the most important technical
limitations of our prototype in what follows.

When there is an exception, the IDRA Monitor sends to the IDRA Manager
the exception, and some meta-data. As explained in Section 6.2, such meta-data
includes the full partition that the worker was analyzing when the exception
happened. In the case this partition is particularly big, it may cause (i) delays,
(ii) the IDRA Monitor or the external IDRA Manager to run out of memory.
This can be solved by sending data on-demand.

For serialization, we heavily rely on the Fuel [7] library. While using Fuel
spared us much work (e.g., to define a serialization protocol), Fuel is sometimes
slow to serialize, and, in some corner cases, it will try to serialize some objects
that are not really needed in the debugging session. This introduces delays
during serialization and network communication, which could be avoided by
optimizing the serialization engine.

7. Related Work

In literature, we can find two well-known families of debuggers: online and
offline debuggers [20, 24]. Online debuggers manage the execution of an appli-
cation at the moment of failure. They allow developers to interact smoothly
with a running application, offering breakpoints, watchpoints and stepping op-
erations that give immediate feedback to the developer. Offline debuggers (or

23



post-mortem debuggers), on the other hand, try to help the developers under-
standing, or sometimes reconstructing, the context of a bug from a failed exe-
cution. Such solutions analyze or replay log files, code dumps and/or execution
traces to help the developer discover the source of the problem. Reproducing
a bug with these techniques can be tedious and time-consuming, especially be-
cause many debugging cycles are required before the error happens again as
argued in Section 2.

While this paper focuses on devising an online debugging solution, in what
follows we compare our approach to the closest related work in debugging ap-
proaches for Big Data applications, both for offline and online techniques.

Most of the debugging solutions for Big Data are the so-called event-based
debuggers [20] that record and store events of one execution for later inspection
and or replay. Among these debuggers, we can find Arthur [5], a debugger for
Apache Spark, where multiple replays are necessary to find the point of failure.
Another solution is Graft [26], a debugger for Apache Giraph [1]. When using
Graft, the developer needs to indicate beforehand which particular points of the
execution to record, to then be able to replay them afterward. More recently,
Daphne [13] and BigDebug [12] combine replay debugging with some interesting
online debugging capabilities. We detail below both approaches and how they
compare to our solution.

Daphne is a debugger for DryadLINQ [21] which provides a runtime view of
the running system and of the query nodes generated by a LINQ query. It allows
developers to add breakpoints to inspect the state and start and stop commands
through the Visual Studio remote debugger. Contrary to IDRA R, debugging is
done remotely directly where the breakpointed node is executing, while IDRA g
moves the debugging session to an external debugger process. Interestingly,
Daphne allows to debug also locally but still requiring a replaying step that
IDRA\R avoids by moving the debugging session as soon as a halting point is
reached. Furthermore, IDRA\r can handle both breakpoints and exceptions in
an online way, while Daphne requires a replaying step in case of an exception.

BigDebug is a checkpoint-based debugger for Apache Spark [2] which intro-
duces the concept of a simulated breakpoint that does not stop the execution
nor freezes the system waiting for the resolution of the breakpoint. Instead, it
stores the information necessary to replay the environment in a snapshot (i.e. a
checkpoint) and then continues the execution. After the simulated breakpoint,
the developer can proceed to debug in a sort of step-by-step execution on the
remote node.

When an exception is raised in the application, the execution stops and
the BigDebug debugger does not capture immediately the context of the bug,
letting the application crash. Crash analysis is then used to detect which part
of the execution failed, and then a replay step is required (in the best case
from a stored checkpoint). This is avoided by IDRAyRg, offering an online
debugging session to the developer reconstructing the application context when
the failure occurred. Although BigDebug provides some support for hot-fixing
the code, it is only limited to one particular execution (the replayed one), and
such code fix can only change a particular function (e.g. the lambda that is
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mapped). For instance, the developers cannot change the type returned by
the mapped lambda. This functionality aims to fix a particular crash inducing
record, instead of fixing the application. Major code changes that modify the
behaviour of the application need to be done offline and re-deployed on the
system. In comparison, IDRAyRr can propagate both minor and major code
updates in a live and transparent way.

8. Conclusion

In this paper, we presented an online debugging approach for Map/Reduce
applications, by the use of online debugging and of debugging abstractions such
as composite exceptions. Since our prototype is based on our Map/Reduce
implementation, we first described Port, a distributed framework for Pharo.
Port models the execution of parallel applications with a master/worker model
on top of which we build a Map/Reduce model. We then presented an online
debugger for Map/Reduce applications in Port based on the ideas of out-of-place
debugging called IDRAjr. The main characteristics of IDRApgR are:

1. It completely moves the debugging session from the worker nodes at the
cluster to an external process, allowing to debug map or reduce tasks in
an isolated environment.

2. It provides dynamic code updates facilities to propagate code changes back
to the workers, without requiring stopping the whole distributed system.

3. It centralizes the debugging session, allowing to debug a distributed par-
allel application from a unique debugger manager.

IDRA\R introduces also different dedicated online debugging features tar-
geted at Map/Reduce applications. First, IDRAyg provides composite debug-
ging events, as an abstraction of the same event (e.g., an exception or break-
point) that happened multiple times during the parallel execution of a task.
Second, IDRAy\r allows developers to choose three different strategies to de-
termine which kind of data a debugging session operates on (e.g., a virtual
partition with all the failing records).

We validate our approach by debugging two concrete cases, an election polls
analyzer, originally described in the work of Gulzar et al. [12], and a blockchain
analysis application. Through three different experiments, we show how our ap-
proach can help developers to (i) detect and react to bugs happening in parallel
during the execution (ii) discover and fix configuration bugs through remote
code execution and (iii) correctly resume the execution of the application with
updated code for both application and library code.

As future work, we are planning to generalize our debugging support and
operations to other Big Data execution models, such as Spark. We are also
planning to consider debugging the dependencies between different operations
and data, to improve the debugging experience.
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Appendix A. Code of the polls analyzer application

This appendix provides the code of the polls analyzer application described
in Section 2 which is used as running example along the paper. We use the
notation NameClass >> nameMethod as a convention in this appendix to denote
a method called nameMethod defined at a NameClass class.

MapReduceApplication subclass: #VoteCountingMRApplication
instanceVariableNames: "’
classVariableNames: "’
poolDictionaries: "
category: 'Port—Examples’

VoteCountingMRApplication >> parallelReduce
1 true.
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VoteCountingMRApplication >> handleResult: res

fs := FileSystem hdfsAtHost: hdfsConfiguration hdfsHost user:
hdfsConfiguration hdfsUser.

fileName := fs workingDirectory
/ ('results/result—', DateAndTime now asUnixTime asString , '—' , aResult
datald asString , '." , aResult partition asString).

fs store createFile: fileName.

aResult data do: [ :data | fileName writeStream appendAll: data asString ,
String cr ].

VoteCountingMRApplication >> remotePartitions
TPersistedRemotePartitions.

VoteCountingMRApplication >> map: line

| splitted |

splitted := line substrings: " ',

(splitted at: 1 includesSubstring: 'Abruzzo’) ifTrue: [
((DateAndTime fromUnixTime: (Integer readFrom: (splitted at: 3) )) >
DateAndTime yesterday) ifTrue: [

1 (splitted at: 2) —> 1.
J
].

1 nil —> nil.

VoteCountingMRApplication >> isResultKeyable: aCommand
1(aCommand beginsWith: "applyMap’)

VoteCountingMRApplication >> repartitionBeforeReduce
Ttrue.

VoteCountingMRApplication >> reduce: aSetOfVotes
| dict |
dict := Dictionary new.
aSetOfVotes
do: [ :vote |
vote key
ifNotNil: [ dict
at: vote key
ifPresent: [ :val | dict at: vote key put: val + 1]
ifAbsentPut: 1] ].
Tdict.

Appendix B. Log of the failing polls analyzer

This appendix provides the full log filed used in the running example of both
motivation (Section 2) and experiment 1 of the validation (Section 5).
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2019—04—30T13:43:27.4420414-02:00 FINISH SCHEDULING OF
applyMapTo:

HandleResult of applyMapTo:2019—04—30T13:43:27.442168+02:00 MAP
FINISHED

HandleResult of applyMapTo:2019—04—30T13:43:27.442445+02:00 MAP
FINISHED

HandleResult of applyMapTo:2019—04—30T13:43:27.442552+02:00 MAP
FINISHED

2019—04—30T13:43:27.442612+02:00 HANDLING ERROR

2019—-04—30T'13:43:27.445653+02:00

NumberParser(Object)>>error:

NumberParser>>expected:

NumberParser>>nextUnsignedIntegerBase:

NumberParser>>nextIntegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:

VoteCountingMR Application>>map:

[ :el | self map: el ] in VoteCountingMR Application(MapReduceApplication)
>>applyMapTo: in Block: | :el | self map: el |

Array(SequenceableCollection)>>collect:

VoteCountingMR Application(MapReduceApplication)>>applyMapTo:

2019—04—-30T13:43:27.445728+4-02:00 CRITICAL FAILURE

HandleResult of applyMapTo:2019—04—30T13:43:27.445787+02:00 MAP
FINISHED

HandleResult of applyMapTo:2019—04—30T13:43:27.445858+02:00 MAP
FINISHED

HandleResult of applyMapTo:2019—04—30T13:43:27.445882+02:00 MAP
FINISHED

2019—04—30T13:43:27.445909+-02:00 HANDLING ERROR

2019—04—30T13:43:27.446234+-02:00

NumberParser(Object)>>error:

NumberParser>>expected:

NumberParser>>nextUnsignedIntegerBase:

NumberParser>>nextIntegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:

VoteCountingMR Application>>map:

[ :el | self map: el | in VoteCountingMRApplication(MapReduceApplication)
>>applyMapTo: in Block: | :el | self map: el |
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Array(SequenceableCollection)>>collect:
VoteCountingMR Application(MapReduceApplication) > >applyMapTo:

2019—04—-30T13:43:27.446262+02:00 CRITICAL FAILURE

HandleResult of applyMapTo:2019—04—30T13:43:27.460139+02:00 MAP
FINISHED

2019—04—30T13:43:27.493406+02:00 HANDLING ERROR

2019—04—30T13:43:27.493644+4-02:00

NumberParser(Object)>>error:

NumberParser>>expected:

NumberParser>>nextUnsignedIntegerBase:

NumberParser>>nextIntegerBase:

Integer class>>readFrom:base:

Integer class>>readFrom:

VoteCountingMR Application>>map:

[ :el | self map: el | in VoteCountingMRApplication(MapReduceApplication)
>>applyMapTo: in Block: [ :el | self map: el |

Array(SequenceableCollection)>>collect:

VoteCountingMR Application(MapReduceApplication)>>applyMapTo:

2019—-04-30T13:43:27.493661+-02:00 CRITICAL FAILURE

Appendix C. Log of the failing blockchain analysis

In the following we present the log of the blockchain analysis failing during
the reduce because of the database initialization problem.

The presented log is only the printed stack, the rest of the log was omitted.
Please refer to Appendix B for an example of a complete log.

ERROR: duplicate key value violates unique constraint "blocks_hash_pkey"

GAError signal:
GAConnection>>executeAndCheckResult:
GAPostgresDriver>>execute:
UQLLUniquelndex(UQLLSQLIndex) >>privateSqlExecute:
UQLLUniquelndex>>register All:allongWithFullscanKeys:
UQLLIndexMapReduceApplication>>reduce:parameter:
MapReduceWorker>>scheduleCommand:
ScheduleCommand>>executeOn:

MessageSend>>value

TKTGenericTask>>value
TKTTaskExecution>>doExecuteTask
TKTReadyTaskState>>performTaskExecution:
TKTTaskExecution>>executeTask
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[ self executeTask | in TKTTaskExecution>>value in Block: [ self executeTask
]

[ activeProcess psValueAt: index put: anObject.

aBlock value ] in TKTConfiguration(DynamicVariable)>>value:during: in
Block: [ activeProcess psValueAt: index put: anObject....

BlockClosure>>ensure:

TKTConfiguration(DynamicVariable) > >value:during:

TKTConfiguration class(DynamicVariable class)>>value:during:

TKTConfiguration class>>optionAt:value:during:

TKTConfiguration class>>runner:during:

TKTTaskExecution>>value

[ self noteBusy.

aTaskExecution value.

self noteFree | in TKTWorkerProcess(TKTAbstractExecutor)>>executeTask:
in Block: [ self noteBusy....

BlockClosure>>on:do:

TKTWorkerProcess(TKTAbstractExecutor)>>executeTask:

TKTWorkerProcess>>executeTask:

[ self executeTask: taskQueue next | in TKTWorkerProcess>>workerLoop in
Block: [ self executeTask: taskQueue next ]

BlockClosure>>repeat

TKTWorkerProcess>>workerLoop

MessageSend > >value

MessageSend > >value

TKTProcess>>privateExecution

TKTProcess>>privateExecuteAndFinalizeProcess
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