
Towards Scalable Blockchain Analysis
Santiago Bragagnolo

Inria Lille-Nord Europe
Lille, France

santiago.bragagnolo@inria.fr

Matteo Marra
Vrije Universiteit Brussel

Brussels, Belgium
mmarra@vub.be

Guillermo Polito
Univ. Lille, CNRS, Centrale Lille

Inria, UMR 9189, CRIStAL
Lille, France

guillermopolito@gmail.com

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

Abstract—Analysing the blockchain is becoming more and
more relevant for detecting attacks and frauds on cryptocurrency
exchanges and smart contract activations. However, this is a
challenging task due to the continuous growth of the blockchain.
For example, in early 2017 Ethereum was estimated to contain
approximately 300GB of data [1], a number that keeps growing
day after day. In order to analyse such ever-growing amount of
data, this paper argues that blockchain analysis should be treated
as a novel type of application for Big Data platforms.

In this paper we explore the application of parallelization
techniques from the Big Data domain, in particular Map/Reduce,
to extract and analyse information from the blockchain. We show
that our approach significantly improves the index generation by
7.77 times, with a setup of 20 worker nodes, 1 Ethereum node and
1 Database node. We also share our findings of our massively
parallel setup for querying Ethereum in terms of architecture
and the bottlenecks. This should help researchers setup similar
infrastructures for analysing the blockchain in the future.

Keywords-Blockchain, Smart Contracts, Big Data, Map/Reduce

I. INTRODUCTION

Many existing work on blockchain analysis (on the domains
of fraud, security, statistic analysis, etc.), base their algorithms
and analysis strategies on analysing transactions [2]–[4]. For
gathering transaction information and running their algorithms,
they gather data by sequentially selecting and filtering in-
formation from different blockchain networks. This kind of
usage is becoming outdated nowadays. Ethereum and other
blockchain platforms store a massive amount of heterogeneous
data: transactions, accounts, smart contracts, etc. In early 2017,
Ethereum was estimated to have approximately 300GB of
data [1], and it keeps growing at a high rate. Extracting
information from this massive amount of data is not an easy
task. Currently, there are two options to search for specific
information stored in a block (e.g., account’s data): either
the unique identifier of the block (or block hash) containing
such information is known, or a sequential search in the
blockchain is required starting from a block (e.g. the most
recent one) and searching for every parent block for any related
information. Hashes of the blocks are typically unknown
(unless a secondary database is used to store all hashes of
blocks deployed on the blockchain). As a result, a full scan
of the blockchain may be required to be able to locate and
analyse data.

In addition, Ethereum stores information (e.g. contracts,
transactions) with a generic representation which does not

include meta-data describing the stored information. While
this reduces the data size improving performance, it compli-
cates the research of information once it is deployed in the
blockchain.

The goal of our work is to ease the extraction and analysis
of data from blockchain platforms like Ethereum. This is
crucial to assist the process of debugging and fixing bugs in
blockchain applications, particularly in smart contract appli-
cations. In prior work, we have proposed a SQL-like query
language for Ethereum to ease the task of querying data in
the blockchain [5]. Such a query language allows developers
to quickly scan the blockchain to access individual elements
and aggregate arbitrary values. To perform fast searches by
semantic attributes, the usage of indexes is crucial. However,
the setup and maintenance of indexes on the data stored in
Ethereum is a highly consuming task. Some work has explored
the performance problems of blockchain analytics [1], [6] but
they either work on early stages of the main cryptocurrency
networks (when the amount of data was still bearable) [1], or
on smaller blockchains than Ethereum [6].

In this paper, we explore the usage of parallelization tech-
niques present in Big Data platforms, in particular Map/Re-
duce, to extract and analyse information from the blockchain.
We focus on applying the Map/Reduce model to build indexes
of blocks, transactions and contracts. We show that using our
approach significantly improves the index generation time by
7.77x with a setup of 20 worker nodes running on a cluster
of 10 Intel Xeon CPU E3-1240 @ 3.50GHz machines. These
good results have been achieved with just a single blockchain
data node running in the cluster.

In summary, our contributions are:

• To the best of our knowledge, we are the first using Big
Data techniques to enable blockchain analytics.

• We present a Map/Reduce architecture that can effectively
and efficiently query the blockchain.

• We identify the bottlenecks of such architecture and
propose possible solutions for it.

We believe that this is a good starting point to enable faster
and more scalable analyses on the blockchain, enriching the
spectrum of tools that the software engineering community
can apply to blockchain.

II. STATE OF THE ART AND MOTIVATION

Prior work has identified the need of blockchain analysis for
several use-cases such as the detection of attacks and security
vulnerabilities [2], [3], [7]–[11], financial frauds [3], [12], [13]
or just retrieving statistics or economic indicators [4], [14].
Most of these works create their custom representation of the
blockchain with all the data required for the desired analysis.

To cope with blockchain analysis in a more general way,
several platforms and frameworks have been proposed in
literature [1], [5], [6]. Kalodner et al. [6] propose BlockSci,
a BlockChain analysis platform to analyze crypto cur-
rency based Blockchains like Bitcoin, Litecoin and others.
BlockSci’s main trait is its architecture: it imports the entire
BlockChain data into memory, where queries can be executed
fast. This makes BlockSci outperform other tools by 15x-600x,
and spends only around 60 seconds to setup their memory
database because they access directly the blockchain data of
big blockchains by directly accessing the raw data in disk
instead of using the APIs designed for it. BlockSci, however,
suffers two main drawbacks. First, BlockSci was not designed
to work on smart contracts. The disregard for the smart con-
tracts takes out their possibilities the contract based analysis.
Many of the emerging blockchain technologies provide smart
contract support (Ethereum1, Hyperledger Fabric 2, NEM 3,
Waves 4, etc). Second, it was not designed to work over a large
amount of transactions. At the moment of writing (August
2017), the largest blockchain they had analysed was Bitcoin.
Bitcoin was at the time 478,559 blocks large representing
130GB of storage, but their analysis were scoped only to the
22GB of transactions. Ethereum contains, at the moment of
writing this paper (29/01/2019), more than 7 million blocks
representing 266GB of storage. It is not clear for us how
Ethereum’s constraints and its smart-contracts can easily fit
in such a memory strategy.

Bartoletti et al. [1] propose a general framework to access
blockchain data previously stored in a database. In their
approach, they export all blockchain data (around 500k blocks,
300GB of Bitcoin) into a NoSQL (mongoDB) and a rela-
tional (MySQL) database. Such imports take around 9 hours
in each implementation, and querying them takes between 50
minutes and 3.5 hours, respectively. While in the paper they
claim support for smart contracts and Ethereum, they did not
report any benchmarks on it.

In prior work, we have also proposed the creation of a
SQL-like query language to extract arbitrary data and anal-
yse changes in user-defined smart contracts [5]. Like other
researchers [15], we have identified how the performance
problems of analysing the blockchain gets worse day after day.
To perform fast searches by semantic attributes in such a query
language, we focus on the usage of indexes. These indexes
must be built by doing a full scan of all blocks, transactions,

1https://www.ethereum.org/
2https://www.hyperledger.org/projects/fabric
3https://nem.io/
4https://wavesplatform.com/

accounts and smart contracts in the blockchain, and building
from them a smart data structure that can be quickly accessed.
For instance, if we want to be able to access to all blocks that
were created between two dates, an index data structure could
be created to quickly discard all blocks that are outside the
desired range. This kind of index data structure can be used
for this and many other analyses, for example to access all the
transactions that modified a given contract, or all the blocks
where a given user/account received money. To build such
indexes, however, a fast scanning infrastructure needs to be
setup. Furthermore, such infrastructure needs to be kept up-
to-date with the status of the blockchain. In our previous work
we lacked such support.

III. BACKGROUND

Hardware advances in storage capacity and CPU processing
have given rise to the concept of Big Data, characterized
by the so-called 3 Vs (Volume, Velocity and Variety). As a
result, novel software platforms have emerged to analyze and
store such large data sets in a scalable way. The two most
prominent programming models are Hadoop Map/Reduce [16]
and Apache Spark [17], which typically embrace a batch-
oriented data processing to achieve a high parallelisation of
data analysis.

Current trends indicate that the volume, velocity and variety
of data are increasing quickly due to an explosion on diversity
and number of sources of information (as a result of the
digitalization of data, e.g. smart objects and sensors, intercon-
nectivity of data and popularity of social media data [18]).
In this paper we identify blockchain technology as a new
type of sources of information in the Big Data revolution.
Blockchain platforms like Ethereum contain a high amount
of heterogeneous data growing at a high rate, presenting a
clear example of the three Vs of BigData: Volume, Variety,
Velocity. We explore the usage of Big Data technology to
enable blockchain analysis. A recent publication on research
directions in blockchain analytics has also suggested the use
of Big Data technology but, to the best of our knowledge, this
is the first approach in realising such a vision [15]. In this
section, we provide some details on the programming model
we employed in this work, namely the Map/Reduce model
[16], and the programming platform in which we conducted
this research.

A. The Map/Reduce Model

The Map/Reduce model can be used in a variety of different
data analysis, and offers a simple API to developers. In this
model, the developer structures her program in two functions:
a map and a reduce. The map function transforms an initial
set of values to an intermediate result, encoded in key/value
pairs. The reduce function aggregates data to compute a
final result. In particular, reduce transforms the intermediate
results generated by map, grouped by their key, into to a
final result for each of the keys. A Map/Reduce platform will
take as input some collection of data, partition it and run

the developer’s map and reduce functions on each partition
in different machines or processes.

As a concrete example, consider a grep which searches the
lines containing a pattern in a file. The code snippet in Listing
1 implements such an operation on the Map/Reduce model.
The map function checks if a particular line includes a pattern,
and returns the line if the pattern is present, or NIL otherwise.
The reduce function filters the mapped lines to remove the
values that are NIL, returning all of the lines that contain the
pattern.

Listing 1. Pseudocode of a grep in Map/Reduce.
1 map (fileLine , pattern) {
2 if (fileLine . contains (pattern))
3 then return fileLine
4 else return NIL}
5 reduce (mappedLines){
6 return mappedLines . filter (line => line != NIL)}

In this paper, we employed a Map/Reduce framework for
Pharo Smalltalk called Port [19]. Port defines a Smalltalk API
to define and execute Map/Reduce programs deployed on top
of the Apache Hadoop platform. In particular, developers need
to write the map and reduce function in Smalltalk and then
Port manages the execution of such a Map/Reduce application
using master and worker nodes deployed on Hadoop Yarn [20],
and implements all communication details between them.

IV. APPLYING BIG DATA TECHNOLOGY TO BLOCKCHAIN
ANALYSIS

Master

Worker
#1

Worker
#2

Worker
#3

Worker
#4

Worker
#n…

Ethereum SQL
Database

Map/Reduce

Fig. 1. A Map/Reduce Architecture for Blockchain Analysis

In this section we describe how a blockchain analysis ap-
plication can be created using the Map/Reduce model. Figure
1 illustrates our Map/Reduce architecture which has been
adapted to work with the Ethereum platform. The Map/Reduce
framework provides a master node that splits the data and
assigns map and reduce jobs to different worker nodes. We also
setup a single database instance and a single Ethereum client,
accessible by all these nodes in the same network. Each map
worker queries the Ethereum platform to access blockchain
data and sends it back to the master node. Then, each reduce
worker receives many map results together, and performs a

Block hash Timestamp ParentBlock
ca896d6 28/01/2019 ... da6b261
da6b261 27/01/2019 ... 7aa96ae
7aa96ae 26/01/2019 ... d6d3614
d6d3614 25/01/2019 ... 402d518

Fig. 2. Example of a Block index table. Timestamp and ParentBlock columns
are indexed.

bulk insert in the SQL database. Once the data is stored in the
database, we can use the information that was indexed (e.g.,
the hash of the block, or a particular property of the block or
contract, ...) to query the blockchain and gather the requested
information.

We will now illustrate the different parts of our Map/Reduce
architecture to implement an indexing algorithm that scans the
entire blockchain and stores a block index into the centralized
SQL database.

A. An Indexing Algorithm

We have developed an indexing algorithm that uses a
relational database to store indexed data. This choice was
based on two reasons: to benefit from an existing and ma-
ture index implementation, and to focus on the problems of
parallelism and high load. However, our overall architecture
does not prevent the implementation of alternative indexing
data structures like a BST (Binary Search Trees) [5].

Our index has the structure of a relational table with
standard database indexes. For example the table representing
the block index has the block’s hash, but also a timestamp and
its parent block’s hash as shown in Figure 2. The two latter
columns are indexed, so we can do fast queries on blocks by
both timestamp and their parent blocks.

To setup such an index, our core algorithm performs a
full scan of the blockchain inserting all the corresponding
values in our database. With a asynchronous I/O sequential
scan approach, our algorithm takes about 30 milliseconds per
indexed entry, meaning that the expected time for indexing the
current load of Ethereum blocks, would take about 2 days and
11 hours.

To avoid a sequential scan, we decided to parallelize such
processing using a Map/Reduce model as described below.

B. Parallelizing Blockchain Indexing

We now detail how we parallelized the indexing algorithm
using a Map/Reduce model. This basically boils down to
expressing the algorithm in terms of the map and reduce
functions of the Map/Reduce model previously explained.
Listing 2 illustrates our functions in pseudocode for the sake
of clarity. In the next subsection, we detail the concrete
implementation in Port.

The map function queries the blockchain to obtain the data
related to a block index. The reduce function takes the result
of the map on several indexes (i.e. a partition of indexes), and
stores them all in a centralized database with a bulk insert.

Listing 2. Pseudocode of Map/Reduce indexing algorithm.
1 map (blockIndex) {
2 return blockIndex−>hash (blockchain . at (blockIndex))
3 }
4
5 reduce (pair){
6 storeInDatabase (pair)
7 }

Programming Environment

Blockchain
Data Node

SQL
Database

Master Node Worker Nodes

Big Data Execution Platform

Fig. 3. Our Map/Reduce Architecture

Such an approach allows us to parallelize the mapping of
the indexes and to execute in parallel different database stores,
minimizing the calls by executing one for each partition of data
(and not one for each index).

C. Implementation

Figure 3 illustrates the main different components of our
Map/Reduce architecture. The application is programmed in
Pharo Smalltalk, on top on top of the Port Map/Reduce frame-
work, which handles the management of master and worker
nodes. Port provides us integration with the Map/Reduce
environment offering an API to implement a Map/Reduce by
the means of map and reduce methods in Smalltalk. Port uses
Hadoop Yarn [20] to manage the allocation of master and
worker nodes in a cluster.

We use Geth 5 as blockchain data node. Internally, the
communication with Geth is managed by the Fog Ethereum
driver 6.

Listing 3 illustrates our application implementation in Port.
Our Map/Reduce application functions accept an additional
parameter, an indexBuilder, that provides the database
connection and all of the information about the properties that
are being indexed. Such parameter is identical in all of the par-
allelized map and reduce functions. The map:parameter:
(lines 1 to 6) obtains a block given a block index, obtains
the indexed property from the given block, and returns a
key value pair in the form (block index, indexed value). For
example, in the case of indexing blocks by timestamp, the
indexed value is the timestamp of the obtained block. The
reduce:parameter: (lines 8 to 9) receives a collection of
pairs produced by the map:parameter: function and uses

5https://github.com/ethereum/go-ethereum/wiki/geth
6https://github.com/smartanvil/Fog

the builder to store those pairs in the corresponding database
table.

Listing 3. Pharo implementation of indexing algorithm
1 MRIndexingApp>>map : blockIndex parameter : aBuilder
2 | ethereumBlock mappedProperty |
3 ethereumBlock := fogBlockChain at : blockIndex .
4 mappedProperty := ethereumBlock
5 get : aBuilder indexedProperty .
6 ↑ blockIndex −> mappedProperty
7
8 MRIndexingApp>>reduce : pairs parameter : aBuilder
9 aBuilder storeIndexedValues : pairs

Differently from a classical Map/Reduce framework, Port
does not enforce the initial data to be in a key-value store.
This allows us to map directly on simple indexes, generating
an intermediate key-value store where each key has only one
value. It also does not always apply a group-by between map
and reduce, as happens in classical Map/Reduce platforms. In
our case this avoids an unneeded shuffling of data over the
network, that would only slow down the blockchain analysis
application.

V. EXPERIMENTS

In this paper, we try to tackle the difficult process of
indexing the full blockchain by applying a Map/Reduce al-
gorithm on top of Port, a Map/Reduce framework for Pharo.
We conducted different experiments to check whether our
Map/Reduce architecture and implementation is a scalable
architecture for blockchain analysis. A first experiment, called
architecture, tries to find the best architecture (in the terms
of amount of workers) to index the full blockchain. A second
one, called analyzing the full blockchain, analyses how our
approach scales when trying to analyze the full Ethereum
blockchain. In our experiments we benchmark performance
in terms of execution time.

A. Setup

Before starting our experimentations we setup a Geth node,
using Geth version 1.8.20-stable. In order to do our experi-
ments on the synchronized blockchain, we let the node run the
synchronization for more than five days. During this session
of synchronisation we used the default garbage collection
strategy (i.e. full garbage collection mode). For instance, Geth
was called with the following parameters: --cache 2048
--gcmode full.
Due to the scope of our experiments, and also because of time
limits, we did not experiment with different configurations of
Geth. However, we believe that such parameters would not
influence much our experiments since we conducted them on
a completely synchronized version of the blockchain.

We run our experiments on a cluster of one root node
and ten identical slave nodes. Each slave node presents the
following specifications:

- Processor: Intel Xeon CPU E3-1240 @ 3.50GHz (4 cores,
8 threads)

- Ram: 32 GB

30

40

50

60

70

80

90

4 8 12 16 20 24 28 32 36 40 44 48

Ex
ec

ut
io

n
tim

e
(s

)

Number of Workers

Execution time increasing amount of workers

Full
Duration

Map Time

Fig. 4. Execution time of indexing 10.000 block increasing the number
workers

- Storage: 200 GB SSD
The root node has the same specification as the slave nodes,
but it has enhanced storage. All the nodes are connected
through a 1 GB/s local network.

In our configuration, the root node runs:
- A Postgres server that handles the database.
- An instance of Port to handle the external communication

with the different nodes.
One of the slave nodes runs exclusively Geth, the blockchain
data node. The rest of the slave nodes (9) are used to deploy
Pharo containers through Yarn. There is always one container
running a Yarn application, one running a master, and a
global maximum of 70 containers available to run a worker.
The number of actual containers running a worker variates
depending on the experiment that we are running.

B. Experiment 1: Architecture

Indexing the whole blockchain, even using a Map/Reduce
approach, is not trivial. Not only does the performance of the
indexing depend on the number of workers that can parallelize
the work, but also on how these workers communicate with
the blockchain data node (during the mapping phase) and with
the database (during the reduce phase). While the employed
database (i.e. Postgres) is designed for concurrent accesses and
can scale well, the blockchain data node (i.e. Geth) allows us
to query the blockchain using the RPC protocol, which can
support only a limited amount of concurrent calls. Given our
setup, Geth runs in a dedicated slave node with a total of 8
threads.

In this first experiment we test how the execution time
changes when increasing the number of workers, while index-
ing a fixed amount of blocks (10.000 blocks). We increased
the amount of workers from 4 to 48, 4 by 4. Each iteration is
run 10 times, discarding the worst result.

Using a fixed amount of blocks in this experiment does not
affect our experimental setup because we are not analyzing the
contents of the block, hence the workload is balanced among
the tasks.

Figure 4 shows the result of this experiment. The blue curve
represents the average execution time of the full Map/Reduce,
while the orange curve represents only the average time of

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000 10,000,000

E
xe

cu
tio

n
tim

e
(s

)

Number of blocks analyzed

Scalability when increasing number of blocks

Full Duration

Proportional
Duration

Sequential
duration

Sequential
Projection

Fig. 5. Execution time of indexing an increasing amount of blocks with 20
workers.

the map phase. The black dashed line represents the averaged
minimum amount of execution time (i.e. 43.6 seconds with 20
workers).

Looking at the total execution time, we observe that it
quickly decreases from around 83 seconds (with 4 workers)
to around 58 seconds for 8 workers. It then stabilizes between
47.7 seconds and 43.6 seconds when running with 12 to 48
workers, reaching its global minimum when running with 20
workers. As such, we conclude that 20 is the best amount of
workers for this configuration.

Analyzing the relation between map time and total execution
time, the graph shows that the two lines follow the same trend,
being the map the biggest component of the whole execution
time (between 83% and 92% of the total execution time). It
is clear how the performance of the map is crucial to the
performance of the whole indexing. We discuss more about
the implications of this finding in Section V-D.

C. Experiment 2: Analyzing the full blockchain

The results of experiment 1 show that the best amount of
workers to use in our configuration is 20. In this second
experiment, we use such configuration to check how our
system scales to index the full blockchain. To do so, we
gradually increase by a factor of 10 the number of blocks
to index from 100 to the full Ethereum blockchain, that to the
moment of our latest experiments (29/01/2019) consisted of
7.080.006 blocks.

Figure 5 shows how the execution time increases when
increasing the number of analyzed blocks. The blue line repre-
sents the execution time, the grey line represents the execution
time of the sequential implementation of the indexing algo-
rithm. The values of the dashed gray line are proportionally
projected, since the execution time would have been too high
for experimenting it. The dashed black line represents what
the proportional expected duration is, calculated on the result
for 10.000 blocks. Both of the scales are logarithmic (log10),
hence the two axis are proportional. The graph shows that the
execution time grows proportionally, as the black dashed line,

except for 100 and 1.000 blocks, where the execution time is
heavily impacted by the overhead of Port.

Using 20 parallel single threaded workers, we managed
to index the full Ethereum blockchain (to the moment the
experiment was executed) in 7 hours 18 minutes and 47
seconds. While the experiments on up to 100.000 blocks
were repeated at least 10 times, due to time limitations the
experiments over 1 million blocks were executed only 4 times
and the one on the full blockchain only once.

If we compare such results to a sequential approach (that
we estimated would take more than 2 days), it is clear how the
execution time of the indexing is lower using our Map/Reduce
approach.

D. Discussion

The first experiment, architecture, aims to give some light
on the limits of the Geth client and, therefore, in our first
general architecture indexing a fixed amount of blocks. It is
still an open question wether to balance the data between the
workers before analyzing it in each task or not, like we did in
our experiments with a fixed amount of blocks independently
of their size. In fact, a fixed amount of blocks may produce
an un-even distribution of work between the different tasks,
because there may be parts of the blockchain with empty
blocks, and others with big blocks. However, we believe that
using a fixed amount of blocks is a simple but still efficient
solution for most cases. In fact, to balance the distribution
of work between the different tasks, a pre-analysis of the
entire blockchain may be required. We believe that such a
pre-analysis will be experiment-dependent and not worth the
trouble in comparison with a fixed block distribution.

The second experiment, analyzing the full blockchain, lever-
ages the results of the first experiment for showing a good
result on how a map reduce approach can improve the perfor-
mance of blockchain analysis.

In the first experiment, we learned that the performance of
the application does not scale to the number of workers, since
between 12 and 48 workers the difference of execution time
ranges in less than 10 seconds for 10.000 blocks. In fact, the
map operation, which constitutes at least 83% of the execution
time, performs calls to the blockchain data node (Geth), which
does not handle optimally concurrent requests, since it is not
designed to be used for analysis on the blockchain. This shows
how making the analysis of the blockchain faster and scalable
is not a mere question of parallelising, but also of finding the
right configuration.

Since our first experiments we were sceptical about the
responsiveness of Geth, the blockchain data node. To confirm
quickly our hypothesis, we launched our algorithm with the
maximum possible amount of workers deployed (70 worker
nodes), one blockchain data node and one database node.
Profiling the network performance exposed the limits of the
blockchain data node towards the processing external requests,
congestioning the network and over-consuming operating sys-
tem resources. Hence, we conducted our first experiment

starting from a little amount of nodes, to discover the limits
of our architecture.

We believe that increasing the number of blockchain data
nodes could further improve the map execution’s time, heavily
impacting the overall duration of the indexing. In our configu-
ration, we found that the best ratio worker/blockchain data
nodes is 20x, or, if we count on the physical threads the
workers and the blockchain data nodes were using, around
2.5 workers for threads of the blockchain data node. However,
further experiments are required to verify that such a ratio
remains the same when increasing the number of blockchain
data nodes (or the amount of cores it is using). In fact
increasing such a number can increase the amount of network
usage in the whole cluster, other than change the storage
footprint of the blockchain that would need to be replicated in
the different blockchain data nodes. We are planning to execute
different experiments to investigate how such ratio can change,
and what can be the impact on the overall execution time. We
are also planning to investigate if this preliminary results are
valid for Ethereum clients other than Geth 7 .

Overall, we believe that the experiments conducted on our
approach shows how the use of a Big Data framework for
parallelisation can improve the blockchain analysis.

VI. CONCLUSION

In this paper, we explored the application of a Big Data
technique to enable blockchain analytics. In particular, we
applied Map/Reduce for indexing Ethereum blocks. To the
best of our knowledge, this is the first work employing Big
Data techniques to enable scalable blockchain analytics. Our
experiments show that Map/Reduce can efficiently be used to
index the blockchain, improving the run-time performances of
the indexing process by 7.7 times with respect to a sequential
implementation.

Our current architecture includes one node running a SQL
database (i.e. Postgres), one node running the blockchain
data node (i.e. Geth), one master node coordinating different
worker nodes that run the map and reduce tasks. Our Map/Re-
duce application is written using Port, a Map/Reduce frame-
work for Pharo Smalltalk. In such application, we parallelize
the queries to the blockchain data node in the map function,
trying to minimize the impact of such queries on the run-time.
In the reduce function, we then perform a bulk insert of the
indexed data in the database. By testing different setups of
such architecture, we identified Geth as being a performance
bottleneck, discovering the right ratio of worker nodes (that
are consuming data from the blochckain) and blockchain data
nodes.

Despite of the promising results shown in this paper, we
believe it is too early to say that our architecture reached
the limit of the Map/Reduce efficiency to enable blockchain
analytics. Further research is needed to explore the best

7For example, we could consider using one of the clients listed
in https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,
-wallets-and-other-projects

configuration for such an architecture. In particular, we are
interested in exploring the following research directions:

• Exploring the advantages and limitations of different
garbage collection policies.

• Exploring the advantages and limitations of using multi-
ple data nodes.

• Exploring the utility of Map/Reduce on the resolution of
index based queries.

• Exploring the limits of Map/Reduce as an online algo-
rithm for continuous indexing.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
input. We would also like to thank UTOCAT for incentivating
this work.
Matteo Marra is funded by a SB PhD grant at FWO - Research
Foundation - Flanders. Project number: 1S63418N.

REFERENCES

[1] M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A general
framework for blockchain analytics,” in 1st Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers, ser. SERIAL ’17.
New York, NY, USA: ACM, 2017, pp. 7:1–7:6. [Online]. Available:
http://doi.acm.org/10.1145/3152824.3152831

[2] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: Characterizing payments
among men with no names,” Communications of the ACM, vol. 59, no. 4,
pp. 86–93, 2016.

[3] M. Vasek and T. Moore, “There is no free lunch, even using bitcoin:
Tracking the popularity and profits of virtual currency scams,” in
International conference on financial cryptography and data security.
Springer, 2015, pp. 44–61.

[4] M. Lischke and B. Fabian, “Analyzing the bitcoin network: The first
four years,” Future Internet, vol. 8, no. 1, p. 7, 2016.

[5] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Ethereum
query language,” in 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), may
2018, pp. 1–8. [Online]. Available: http://rmod.inria.fr/archives/papers/
Braga18b-WETSEB-Query.pdf

[6] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“Blocksci: Design and applications of a blockchain analysis platform,”
ArXiv e-prints, sep 2017.

[7] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out:
Bitcoin stress testing,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2016, pp. 3–18.

[8] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 127–140.

[9] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and anonymity
of the bitcoin transaction graph,” Future internet, vol. 5, no. 2, pp. 237–
250, 2013.

[10] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting in-
telligence from the bitcoin network,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 457–
468.

[11] M. Fleder, M. S. Kester, and S. Pillai, “Bitcoin transaction graph
analysis,” arXiv preprint arXiv:1502.01657, 2015.

[12] M. Moser, R. Bohme, and D. Breuker, “An inquiry into money laun-
dering tools in the bitcoin ecosystem,” in eCrime Researchers Summit
(eCRS), 2013. IEEE, 2013, pp. 1–14.

[13] M. Möser, R. Böhme, and D. Breuker, “Towards risk scoring of bitcoin
transactions,” in International Conference on Financial Cryptography
and Data Security. Springer, 2014, pp. 16–32.

[14] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[15] H. T. Vo, A. Kundu, and M. K. Mohania, “Research directions in
blockchain data management and analytics.” in EDBT, 2018, pp. 445–
448.

[16] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[17] Apache, “Apache spark,” http://spark.apache.org/, accessed: 2017-05-12.
[18] C. K. Mayer-Schönberger, V., Big Data: A Revolution That Will Trans-

form How We Live, Work, and Think. London: John Murray., 2013.
[19] M. Marra, C. Bèra, and E. G. Boix, “A debugging approach for big data

applications in pharo,” in To Appear in Proceedings of the 13th Edition
of the International Workshop on Smalltalk Technologies (IWST ’18).
New York, NY, USA: ACM, 2018.

[20] Apache, “Apache hadoop yarn,” https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html, accessed: 2017-08-24.

