
Mailbox Abstractions for Static Analysis of Actor Programs
(Artifact)

Quentin Stiévenart Jens Nicolay Wolfgang De Meuter Coen De Roover
{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be

Software Languages Lab, Vrije Universiteit Brussel, Belgium

The artifact that accompanies the ECOOP paper titled Mailbox Abstractions for Static Analysis of Actor
Programs is a specific version of Scala-AM, a static analysis framework implemented in Scala. We describe
in this document how to install and to use this artifact (Section 1), and then we explain how to reproduce
the experiments conducted in the paper (Section 2).

To facilitate running the commands, all commands listed in this document can be copy-pasted from the
following text file: https://soft.vub.ac.be/~qstieven/ecoop2017/artifact.txt (also available in the
home directory of the VMs).

1 Description of the artifact
1.1 Installation
We describe here the procedure to install our artifact. However, for the sake of simplicity, we also provide
.vdi images that can be used with VirtualBox, and which contain our artifact as well as all its dependencies1.
The remainder of this section describes how to install the artifact locally, while Section 1.2 describes how to
use the VM image.

Because the artifact is written in Scala, the only dependency required for the installation is sbt2, which
will take care of downloading extra dependencies. Once sbt is installed, you can download our modified
version of Scala-AM (or access the one provided in the archive) and compile it with sbt.

Download it
$ git clone -b ecoop2017actors https://github.com/acieroid/scala-am
... or, extract it from the archive
$ unzip artifact.zip; cd artifact/
Then, compile it
$ cd scala-am
$ sbt
> compile

From thereon, you can launch the commands that we provide in the same terminal (commands have to
be given in the sbt prompt, indicated by >).

1.2 Usage of the VM Image
The password of the virtual machine is ecoop2017 (the keyboard is configured as qwerty). We recommend
to allocate at least 2048MB of RAM for the VM. To use our artifact, go to the scala-am directory in a
terminal:

1A light image (terminal only) is available at https://soft.vub.ac.be/~qstieven/ecoop2017/vm-light.vdi.xz (972 MB),
while a heavyweight image (full Ubuntu desktop) is available at https://soft.vub.ac.be/~qstieven/ecoop2017/vm-full.vdi.xz
(1.8 GB). If you downloaded this document from the DROPS server, the heavyweight image is provided in the same archive as
this document.

2See sbt’s manual for instructions on how to install it: http://www.scala-sbt.org/release/docs/Setup.html

1

https://soft.vub.ac.be/~qstieven/ecoop2017/artifact.txt
https://soft.vub.ac.be/~qstieven/ecoop2017/vm-light.vdi.xz
https://soft.vub.ac.be/~qstieven/ecoop2017/vm-full.vdi.xz
http://www.scala-sbt.org/release/docs/Setup.html

$ cd scala-am
$ sbt

From thereon, you can launch the commands that we provide in the same terminal (commands have to
be given in the sbt prompt, indicated by >).

1.3 Usage
To run the analysis on a benchmark, the following command can be used, where <file> denotes the file
to analyze, <mbox> denotes the mailbox abstraction to use, and <mbox-bound> denotes the bound of the
mailbox (for bounded mailboxes).

> run -m AAMGlobalStore --lang AScheme -f <file>
-t 60s -l ConstantPropagation --mbox <mbox> --mbox-bound <mbox-bound>

The possible values for <mbox> are:

• Powerset for the powerset abstraction,

• BoundedList for the bounded list abstraction,

• BoundedMultiset for the bounded multiset abstraction,

• Graph for the graph abstraction.

For example, to analyze the cell benchmark with a bounded multiset abstraction with bound 3, one
would run:

> run -m AAMGlobalStore --lang AScheme -f actors/cell.scm
-t 60s -l ConstantPropagation --mbox BoundedMultiset --mbox-bound 3

Information about other parameters can be found by passing -h as a parameter.
Note: sbt commands (prefixed with a > here) have to be typed on a single line, although we represent

them on two lines for readability.

2 Evaluation
This section follows the same structure as Section 6 of the paper, and describes for each subsection, how to
reproduce the results given in the paper. Note that running times may differ depending on multiple factors,
such as the version of Java and the machine used to run the benchmarks.

2.1 Implementation
The implementation analyzes a subset of Scheme that has been extended to support actors constructs (actor,
create, send, become, terminate). This extension is implemented in the file src/main/scala/semantics/
ascheme/ASchemeSemantics.scala file. Should another researcher want to extend the language analyzed,
this is the place where the extensions would be performed.

The machine abstraction that drives the semantics is implemented in the file src/main/scala/machine/
actors/ActorsAAMGlobalStore.scala. This file contains the implementation of the core components of
the analysis: state space, effects, macro-stepping semantics, and the fixpoint computation. This is the file
that would be extended in order to modify how the static analysis behaves (e.g., to support a different type
of macro-stepping), changing the language being analyzed.

Finally, the different mailbox abstractions presented in the paper are implemented in src/main/scala/
machine/actors/Mbox.scala. Should other mailbox abstractions be implemented, this is where it would
be done.

The rest of the artifact forms a generic static analysis framework, and has been described in a previous
paper [1].

2

2.2 Benchmarks
The benchmarks used in the evaluation are the following:

Benchmark File
pp actors/savina/pp.scm
count actors/savina/count.scm
count-seq actors/savina/count-seq.scm
fjt-seq actors/savina/fjt-seq.scm
fjc-seq actors/savina/fjc-seq.scm
factorial actors/factorial.scm
stack actors/stack.scm
cell actors/cell.scm
parikh actors/soter/parikh.scm
pipe-seq actors/soter/pipe-seq.scm
unsafe-send actors/soter/unsafe_send.scm
safe-send actors/soter/safe_send.scm
state-factory actors/soter/state_factory.scm
stutter actors/soter/stutter.scm

2.3 Running time and flow graph size
2.3.1 Scala-AM, automated

Table 2 of Section 6.3 of the paper lists running time in milliseconds, and the number of nodes in the
produced graphs. The process to generate the numbers in this table is automated and can be run with the
following sbt command:

> run-main ArtifactEvaluation timesize

(It will take around 30 minutes to run to completion)
This will run all the benchmarks 12 times. The results are given in the same format as Table 2. Timeouts

are indicated by a negative number. The output will look as follows, where we manually aligned columns.
Each cell includes the number of states generated, and the time taken in milliseconds. The bounds of
bounded mailbox abstractions used are the one listed in Table 2.

benchmark | powerset | multiset | list | graph |
pp | 21, 134 | 8, 4 | 8, 4 | 8, 3 |
count | 83, 306 | 22, 25 | 21, 26 | 22, 19 |
count-seq | 45, 56 | 10, 1 | 8, 1 | 8, 1 |
fjt-seq | 201, 1304 | 589, 3583 | 589, 3457 | 589, 2572 |
fjc-seq | 15, 5 | 15, 3 | 15, 2 | 15, 2 |
factorial | 1490, 31510 | 46, 596 | 52, 666 | 22, 48 |
stack | 85, 225 | 42, 10 | 16, 2 | 16, 2 |
cell | 70, 99 | 23, 3 | 15, 1 | 15, 1 |
parikh | 31, 14 | 8, 0 | 8, 0 | 8, 0 |
pipe-seq | 2952, 49384 | 24, 13 | 24, 13 | 24, 13 |
unsafe-send | 4, 0 | 3, 0 | 3, 0 | 3, 0 |
safe-send | 100, 89 | 32, 6 | 28, 3 | 30, 4 |
state-factory | 76, 146 | 43, 65 | 160, 218 | 214, 246 |
stutter | 28, 19 | 60, 28 | 34, 19 | 15, 3 |

2.3.2 Scala-AM, manual

The size of the graph and the running time is also given each time an analysis is run, e.g.:

> run -m AAMGlobalStore --lang AScheme -f actors/cell.scm
-t 60s -l ConstantPropagation --mbox BoundedMultiset --mbox-bound 3

3

...
Visited 23 states in 0.23487492 seconds, 1 possible results: Set(cell@9.22)
...

Note: the value of n for the bounded multiset and bounded list abstractions has been chosen manually
as explained in the paper (we increased the bound until maximal precision was reached). The values for n
used in our experiments are listen in Table 2 of the paper.

Note: running times may differ depending on the version of Java and the machine used. However, the
overall picture of differences in timing between benchmarks and mailbox abstractions should remain similar.

2.4 Precision
Figure 8 of Section 6.4 of the paper was produced by listing the mailboxes and messages dequeued from each
mailbox in each benchmark, both for a concrete run and for an abstract run with a given mailbox abstractions.
We then manually compared these mailboxes and messages, and counted the number of spurious mailboxes
and messages, as explained in the paper.

While we could not automate this task, as it is relatively complex, we describe how one proceeds to
produce Figure 8 on the count-seq benchmark. First, one has to know which are the concrete values for
mailboxes and messages that can appear in the execution of the program. In some cases, these are not
computable (e.g., the stutter benchmarks produces unbounded mailboxes), and require a human to be
able to know whether a mailbox can arise in a concrete run or not. On the count-seq benchmark, we
can generate them with the following command (we use a bounded list with bound 3, which is sufficient to
achieve maximal precision).

> run -m AAMGlobalStore --lang AScheme -f actors/savina/count-seq.scm
-t 60s -l Concrete -c --mbox BoundedList --mbox-bound 3

...
Dequeued per behavior and mailbox:
counting-actor@21.27, (actor counting ...), 1, retrieve(producer-actor@22.28)
retrieve(producer-actor@22.28)
counting-actor@21.27, (actor counting ...), 2, increment, retrieve(producer-actor@22.28)
increment()
counting-actor@21.27, (actor counting ...), 1, increment
increment()
producer-actor@22.28, (actor producer ...), 1, increment
increment()
producer-actor@22.28, (actor producer ...), 1, result({1})
result({1})
Visited 8 states in 0.098189418 seconds, 1 possible results: Set(producer-actor@22.28)
...

We extracted only the relevant part of the output. After the Dequeued per behavior and mailbox: line,
the output shows the mailboxes that each actor can have, and which messages can be dequeued for each
of these mailboxes. We see for example that the actor counting-actor can have the concrete mailbox
[retrieve(...)], and that from this mailbox, the message retrieve(...) can be dequeued.

Once we know what the possible concrete mailboxes are, we run the analysis with a given mailbox
abstraction (here with the powerset abstraction). Note that the order of mailboxes in the output might
differ (we reordered it to improve clarity).

> run -m AAMGlobalStore --lang AScheme -f actors/savina/count-seq.scm
-t 60s -l ConstantPropagation --mbox Powerset

...
counting-actor@21.27, (actor counting ...), +, retrieve(producer-actor@22.28)
retrieve(producer-actor@22.28)
counting-actor@21.27, (actor counting ...), +, increment + retrieve(producer-actor@22.28)

4

increment(), retrieve(producer-actor@22.28)
counting-actor@21.27, (actor counting ...), +, increment
increment()
producer-actor@22.28, (actor producer ...), +, increment + result({0})
increment(), result({0})
producer-actor@22.28, (actor producer ...), +, increment
increment()
producer-actor@22.28, (actor producer ...), +, result({Int})
result({Int})
producer-actor@22.28, (actor producer ...), +, increment + result({Int})
increment(), result({Int})
producer-actor@22.28, (actor producer ...), +, result({0})
result({0})
Visited 45 states in 0.275468673 seconds, 1 possible results: Set(producer-actor@22.28)
...

We then have to compare the concrete and abstract results, and to determine:

• Which concrete mailbox correspond to which abstract mailbox. If an abstract mailbox corresponds to
no concrete mailbox, this counts as a spurious mailbox.

• For each spurious mailbox, the messages dequeued are spurious messages dequeued from spurious
mailboxes.

• Which message dequeued from a concrete mailbox correspond to which message dequeued from the
corresponding abstract mailbox. If a message dequeued from an abstract mailbox does not correspond
to the message dequeued from the corresponding concrete mailbox, this counts as a spurious message
dequeued from non-spurious mailboxes.

We summarize this information in the following table, for the count-seq benchmark (we meaningfully
truncate message names for space reasons). Take line 2 as an example: the concrete mailbox is the se-
quence [inc,ret], from which only message inc can be dequeued. The corresponding abstract mailbox is
{inc,ret}, from which both inc and ret can be dequeued. The ret message is therefore a spurious mes-
sage dequeued from a non-spurious mailbox. As an other example, take the last line: the abstract mailbox
{res(0)} has no corresponding concrete mailbox: the only possible value of n for a message res(n) in a
concrete run is 1. This is therefore a spurious mailbox. One message can be dequeued from that mailbox, and
it is therefore a spurious message dequeued from a spurious mailbox. The Spurious column lists in order:
the number of spurious mailboxes, the number of spurious messages dequeued from spurious mailboxes, and
the number of spurious messages dequeued from non-spurious mailboxes.

Actor Concrete Dequeued Abstract Dequeued Spurious
counting-actor [ret] ret {ret} ret 0/0/0

[inc,ret] inc {inc,ret} inc, ret 0/0/1
[inc] inc {inc} inc 0/0/0

producer-actor [inc] inc {inc} inc 0/0/0
[res(1)] res(1) {res(Int)} res(Int) 0/0/0
– – {inc,res(0)} inc,res(0) 1/2/0
– – {inc,res(Int)} inc,res(Int) 1/2/0
– – {res(0)} res(0) 1/1/0

Total 3/5/1
This process can be repeated for all benchmarks, and the individual results are given in the table below.

The Total line is the sum of each column, and this is the information reported in Figure 8 of the paper.
Bounds: the mailbox bounds used to measure precision are the same bounds as used in Table 2 of the

paper (i.e., the bounds that provide maximal precision for each abstraction).
Timing: we ran each benchmark until completion to assess the precision of the full output of the analysis,

hence the timeout of 60s was not used to produce Figure 8.

5

Benchmark PS MSn Ln G
A B C A B C A B C A B C

pp 5 11 0 0 0 0 0 0 0 0 0 0
count 3 5 1 2 2 1 1 1 1 0 0 0
count-seq 3 5 1 1 1 1 0 0 0 0 0 0
fjt-seq 0 0 0 0 0 0 0 0 0 0 0 0
fjc-seq 0 0 0 0 0 0 0 0 0 0 0 0
factorial 7 14 0 5 7 0 5 6 0 5 5 0
stack 4 9 10 6 13 10 0 0 0 0 0 0
cell 0 0 1 0 0 1 0 0 0 0 0 0
parikh 4 7 1 0 0 1 0 0 0 0 0 0
pipe-seq 16 30 0 4 4 0 4 4 0 4 4 0
unsafe-send 0 0 0 0 0 0 0 0 0 0 0 0
safe-send 21 61 11 3 7 11 0 0 0 0 0 0
state-factory 2 3 0 0 0 0 3 4 0 6 6 0
stutter 2 2 2 4 7 2 4 4 2 0 0 0
Total 67 147 27 25 41 27 17 19 3 15 15 0

Table 1: Precision metrics for the different mailbox abstractions. Column A indicates the number of spurious
mailboxes that correspond to no concrete mailbox in a concrete run of the benchmark. Column B indicates
the number of spurious values dequeued from spurious mailboxes. Column C indicates the number of spurious
values dequeued from non-spurious mailboxes.

2.5 Comparison with Soter
Table 3 of Section 6.5 compares the result of our analysis with Soter, another static analysis tool for actor
programs. Because Soter analyzes Erlang programs, while our analysis analyzes programs written in an
extended version of Scheme, we had to translate the benchmarks faithfully in Erlang. The translation of
each benchmark is located at the same place as the Scheme benchmark, and has a .erl suffix. For example,
the count-seq is located in actors/savina/count-seq.erl.

2.6 Verification of absence of errors
2.6.1 Scala-AM, automated

We automated the process for the construction of the first part of Table 3, and one can run the following
command to produce a table listing, for each abstraction (in order: powerset, bounded multiset, bounded
list, graph) how many errors are detected as reachable. A count of 0 in a cell indicates that the verification
of the property succeeded.

> run-main ArtifactEvaluation errors

(It will take around 10 seconds to run to completion)
The output looks as follows. This means for example that, for the parikh benchmark, the powerset

abstraction detects one possible error (a false positive), while the other abstractions successfully detect no
errors.

benchmark | powerset | multiset | list | graph |
parikh | 1 | 0 | 0 | 0 |
unsafe-send | 1 | 1 | 1 | 1 |
safe-send | 3 | 2 | 0 | 0 |
stutter | 1 | 1 | 1 | 0 |
stack | 1 | 1 | 0 | 0 |
count-seq | 1 | 1 | 0 | 0 |
cell | 1 | 1 | 0 | 0 |

Relation with Table 3: Table 3 of the paper states whether each benchmark can be analyzed with
full precision (i.e., detecting no errors when the benchmark is free of errors, and detecting exactly the same

6

errors as the ones that are expected if it is not the case), and lists the abstraction for which full precision was
achieved. The graph abstraction always has full precision in the case of these benchmarks (all benchmarks
have no errors except unsafe-send which has one error).

Timing: The automated technique here only runs the benchmarks once. Timing information of Table
3 is retrieved from Table 2 (verification of errors also happens when computing the information of Table 2),
where the time is taken by averaging 10 runs of the benchmarks after 2 warm-up runs.

Bounds: The bounds used for each abstraction and benchmark are the same bound as the ones given
in Table 2.

2.6.2 Scala-AM, manual

To verify absence of errors, we run our analysis on each benchmark as follows (here for the parikh bench-
mark). The last part of the output lists the errors that may be reachable, or states whether no errors are
reachable (in which case, the verification succeeded).

Here is the output with the powerset abstraction, where the analysis cannot prove the property:

> run -m AAMGlobalStore --lang AScheme -f actors/soter/parikh.scm
-t 60s -l ConstantPropagation --mbox Powerset

[info] Running Main -m AAMGlobalStore --lang AScheme -f actors/soter/parikh.scm
-t 60s -l ConstantPropagation --mbox Powerset

...
Visited 31 states in 0.170430096 seconds, 1 possible results: Set(server-init-actor@20.21)
One error is reachable:
UserError({We should be already initialized!},7.38)

And here is the output with the graph abstract, where the analysis can prove that no errors are reachable:

> run -m AAMGlobalStore --lang AScheme -f actors/soter/parikh.scm
-t 60s -l ConstantPropagation --mbox Graph

[info] Running Main -m AAMGlobalStore --lang AScheme -f actors/soter/parikh.scm
-t 60s -l ConstantPropagation --mbox Graph

...
Visited 8 states in 0.077454421 seconds, 1 possible results: Set(server-init-actor@20.21)
No error reachable!

This process is repeated for every benchmark and abstraction, with the bounds given in Table 3 of the
paper. Again, these bounds have been selected manually by running the analysis with a bound of 1, and
increasing the bound until the analysis can prove the property.

The timing information of Table 3 is the information used in Table 2 (see Section 2.3).

2.6.3 Soter

To run Soter on each benchmark for verifying absence of errors, one has to use the web interface of Soter3.
On the left part of the user interface, one has to paste the Erlang version of the benchmark, select Verify All
as the Mode, and click Run!. If the property can be verified, the right part of the user interface reports The
program is Safe!. Otherwise, it reports The program could not be proved safe!. The Stats tab gives timing
information.

2.7 Verification of mailbox bounds
We verify the following bounds on the benchmarks:

3https://mjolnir.cs.ox.ac.uk/soter/

7

https://mjolnir.cs.ox.ac.uk/soter/

Benchmark Actor Bound
pipe-seq pipe-node 1
state-factory state-actor 1
pp ping-actor 1

pong-actor 1
count-seq producer-actor 1

counting-actor 2
cell cell 2

display-actor 1
fjc-seq forkjoin-actor 1
fjt-seq throughput-actor 10

2.7.1 Scala-AM, automated

We automated the processus to generate the second part of Table 3: you can run it using the following
command.

> run-main ArtifactEvaluation bounds

(It will take around 2 minutes to run to completion).
This will output a table, listing for each benchmark and each mailbox abstraction (in order: powerset,

bounded multiset, bounded list, graph) whether the mailbox bounds could be verified (v) or not (x). Again,
the bounds for the bounded abstractions (multiset and list) have been selected manually.

2.7.2 Scala-AM, manual

The output of the analysis lists the bound on the mailbox of each actor, and uses + to indicate that it could
not deduce a bound for a mailbox. For example, if we run the analysis on state-factory with a suitable
abstraction, we see that both the actors ping-actor and pong-actor have a mailbox size bounded by 1.

> run -m AAMGlobalStore --lang AScheme -f actors/savina/pp.scm
-t 60s -l ConstantPropagation --mbox BoundedMultiset --mbox-bound 1

[info] Running Main -m AAMGlobalStore --lang AScheme -f actors/savina/pp.scm
-t 60s -l ConstantPropagation --mbox BoundedMultiset --mbox-bound 1

...
Bounds:
ping-actor@26.24: 1
pong-actor@24.24: 1
...

On the other hand, with an unsuitable abstraction (here, the powerset abstraction), the analysis is
inconclusive, as indicated by the + signs.

> run -m AAMGlobalStore --lang AScheme -f actors/savina/pp.scm
-t 60s -l ConstantPropagation --mbox Powerset

[info] Running Main -m AAMGlobalStore --lang AScheme -f actors/savina/pp.scm
-t 60s -l ConstantPropagation --mbox Powerset --mbox-bound 1

...
Bounds:
ping-actor@26.24: +
pong-actor@24.24: +
...

2.7.3 Soter

To run Soter on each benchmark for verifying mailbox bounds, the process is similar to the verification of
absence of errors. Each benchmark code is annotated with the properties to verify, and Soter will output

8

The program is Safe! when the property is verified, otherwise it outputs The program could not be proved
safe!.

Note: The fjt-seq benchmark is a special case. Our analysis is unable to prove the bound on that
benchmark, while Soter is “able” to prove it, but also to prove lower bounds, meaning that it produces
unsound results. This is why this benchmark is earmarked in the paper. Our technique cannot prove this
benchmark, but one cannot rely on Soter results for this benchmark, because they are unsound.

2.8 Soundness
The soundness proofs are given in an accompanying technical report4. We also mechanized some of these
proofs5 in Coq. The Coq proof script can be run using coqc (Coq version 8.6 is required). The theorems
proved will be printed on the screen. In the table below, we show the correspondance between the theorems
proved in the Coq script and in the technical report (not all lemmas and theorems are mechanized, as
explained in the technical report).

To run the proof script, you need Coq installed, and you should run the following commands. Coq is
already installed in the provided VM (skip the first command if you use the VM).

Download proof script
$ git clone https://github.com/acieroid/mailbox-abstraction-proofs
... or use the version given in the archive
$ unzip artifact.zip; cd artifact/
Then, run the proofs
$ cd mailbox-abstraction-proofs
$ coqc proofs

Theorem/Lemma Name
Lemma 1 SetMbox_empty_sound
Lemma 2 SetMbox_enq_sound
Lemma 3 SetMbox_deq_sound
Lemma 4 SetMbox_size_sound
Theorem 1 SetMbox_sound
Lemma 5 BListMbox_empty_sound
Lemma 6 BListMbox_enq_sound
Lemma 7 BListMbox_deq_sound_overapprox
Lemma 8 BListMbox_size_sound
Theorem 2 BListMbox_sound
Lemma 9 MultiSetMbox_empty_sound
Lemma 10 MultiSetMbox_enq_sound
Lemma 11 MultiSetMbox_deq_sound
Lemma 13 BMultiSetMbox_empty_sound
Lemma 14 BMultiSetMbox_enq_sound
Lemma 15 BMultiSetMbox_deq_sound
Lemma 17 Graph_empty_sound
Lemma 18 Graph_enq_sound

References
[1] Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, and Coen De Roover. Scala-AM:

A modular static analysis framework. In 16th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, October 2-3, 2016, pages 85–90, 2016.

4https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf
5https://github.com/acieroid/mailbox-abstraction-proofs

9

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf
https://github.com/acieroid/mailbox-abstraction-proofs

	Description of the artifact
	Installation
	Usage of the VM Image
	Usage

	Evaluation
	Implementation
	Benchmarks
	Running time and flow graph size
	Scala-AM, automated
	Scala-AM, manual

	Precision
	Comparison with Soter
	Verification of absence of errors
	Scala-AM, automated
	Scala-AM, manual
	Soter

	Verification of mailbox bounds
	Scala-AM, automated
	Scala-AM, manual
	Soter

	Soundness

