
FACULTY OF SCIENCES

Reusability for Mechanized
Meta-Theory

Steven Keuchel

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Computer Science

Supervisor:
prof. dr. ir. Tom Schrijvers

Department of Applied Mathematics, Computer Science and Statistics
Faculty of Sciences, Ghent University

ii

Acknowledgments

Performing my research and writing this thesis has been a long and enriching
journey, and a countless number of people have in many different ways had an
impact on my work and on me during that time. I want to thank each one of
you. Unfortunately I cannot possibly remember and list everybody here, but
I would like nevertheless to thank several people explicitly.

I first wish to acknowledge my advisor, Tom Schrijvers. I have been very
fortunate to have your help in preparing my publications and presentations,
and your unyielding support and patience. I can safely say, that without you I
would not have finished my Ph.D. and this thesis and I will be forever grateful
that you got me here.

After finishing a provisional manuscript of this thesis, it was sent to an
“examination board” to evaluate the quality of my research and my contri-
butions. I am thankful to Christophe Scholliers, Eric Laermans, François
Pottier, Peter Dawyndt and Stephanie Weirich for accepting this task, and for
the valuable feedback and comments provided. I would likewise thank Geor-
gios Karachalias, Klara Marntirosian and Marie-Anne Haure for proofreading
parts of earlier drafts.

My interest in the subject of my dissertation was formed during my time in
Utrecht, long before I started pursuing my Ph.D. in Ghent. I thank José Pedro
Magalhães, Johan Jeuring and Andres Löh for introducing and teaching me
about datatype-generic programming, dependently typed programming, proof
assistants and programming language meta-theory. I would especially like to
thank and curse Andres for getting me hooked on the problem of variable
binding. It is a fascinating topic and I still take pleasure working on it, but
your warnings were clearly justified.

iii

iv

Over the years, I have enjoyed collaborating and exchanging ideas with
several excellent researchers which were a great inspiration for this thesis.
During my research visit at Penn, Stephanie Weirich was bombarding me with
binding related ideas, requirements and special cases. In our discussions you
were always energetic and full of excitement about this topic, and this was one
of the best work experiences that I had during my Ph.D. for which I thank
you. I think by now I know the answer to a lot of open questions that we had
at the time, but I seem to always find new questions that I would love to talk
to you about. I would likewise thank Arthur Azevedo de Amorin, Dominique
Devriese, François Pottier and Randy Pollack for our interesting discussions
about variable binding at conferences or elsewhere and for their interest in my
work.

Even though we lost contact over the years I would like to thank Christo-
pher Schwaab for introducing me to effect handlers early in my Ph.D. and his
input on effect modularization. This is exactly the topic that I worked on with
Benjamin Delaware that jump started my endeavor to mechanize meta-theory.
This was the first time that I used Coq and I learned a lot from you through
our joint project for which I thank you.

Of course also thanks to my past and present colleagues from my research
group: Alexander, Amr, Benoit, George, Gert-Jan, Klara, Maciej, Paolo, and
Ruben. We certainly had a lot of fun, and some serious and not so serious
discussions about life, the universe and everything.

I thank my family and friends for their incredible support and the good
times out side of work; in particular, my (ex-)flatmate Pablo who introduced
me to good gin and good coffee and lots of places in Ghent that I would
otherwise not have visited, and George who left me and others always amazed
and who was my mental safe haven. Last and perhaps most of all, thanks to
my girlfriend Marie-Anne for her love, patience, and encouragement during
the last years. You’re the best.

Steven Keuchel
May 2018

Summary

Computer scientists develop new programming languages and improve existing
ones to let us write better programs faster. One goal is to develop languages
with useful meta-theoretical properties, like, for example, safety guarantees
for all programs expressed in the language. These guarantees are useful when
reasoning about programs: a programmer can use them when assessing cor-
rectness of her program, and a compiler can use them for optimizations.

Sadly, developing languages is difficult: different language features often
display complicated interactions in edge cases, which are easily overlooked,
and can thus invalidate assumptions about meta-theoretical properties with
potentially disastrous implications. Therefore researchers began to formally
specify programming languages and verify their meta-theory in proof assis-
tants, a process which is also known as mechanization. Unfortunately, mech-
anization of meta-theory is not common practice because of its steep learning
curve and large development effort. As a result, if done at all, mechanizations
often only cover a manageable subset of the language with the downside that
results do not always carry over to the full language.

To increase the adoption of mechanization and to further scale it to real-
istic programming languages, it is imperative to reduce the costs. This thesis
investigates code reuse as a means to achieve this, specifically principled reuse
via modularity and genericity which we discuss in turn.

Modularity Different programming languages often have features in com-
mon, for instance boolean or exception handling. The first part of this thesis
deals with reuse by modularly sharing specification, implementation and meta-
theoretic proofs of features by multiple languages.

v

vi

A stumbling block is that inductive definitions and proofs are closed to
extension. This is solved by using datatype-generic programming techniques
to modularize datatypes, semantics functions and inductive proofs. A case
study shows the advantages of our approach over an existing solution.

Modularizing proofs about languages with side effects is exceptionally chal-
lenging, since the theorem usually depend on all the effects the language uses
and side effectful features display a lot of interaction. We improve this situa-
tion by developing a new denotational semantics based on monadic interpreters
that allows us to factor the type safety theorem into seperate parts: a feature
theorem that captures the well-typing of monadic denotations of an individual
feature, and an effect theorem that adapts the well-typing of denotations to
a fixed superset of effects. The type safety proof for a particular language
combines the theorems for all its features with the theorem of all its effects.
Our case study shows the effictiveness of our approach by modularizing five
language features, including three with effects.

While our techniques achieve the intermediate goals of modularization and
reuse, the complexity and bookkeeping involved inflate the overall development
effort. Further research and direct integration into proof assistants is needed
to make the techniques practical.

Genericity Nearly every high-level programming language uses variable bind-
ing in its syntax. The operational semantics of such languages often imple-
ments reduction of constructs, that involve binding, by means of variable sub-
stitution. Meta-theoretic proofs need to deal with properties of this substitu-
tion. The substitution function and the proofs of its properties can be consid-
ered boilerplate, since they follow a pattern that only depends on the syntax
and the scoping rules of the language. This boilerplate can represent a large
part of the whole mechanization and should therefore best be taken care of
automatically. The second part of this thesis develops a generic solution to
this problem.

We develop a new declarative language Knot for the specification of ab-
stract syntax with variable binding, and for semantic relation on top of the
syntax. A type system ensures that expressions in the definition of relations
are always well-scoped. We give an interpretation of Knot specifications us-
ing de Bruijn terms which we also implemented as a datatype generic library
Loom in Coq. Boilerplate lemmas are implemented by generic elaboration
functions into domain-specific witness languages. In particular, to the best of
our knowledge, we are the first to provide elaborations for shifting and substi-
tution lemmas of semantic relations using a first-order approach. We formally

vii

proof the correctness of the elaborations and the soundness of the witness
languages.

For practical mechanizations, we developed the Needle code generator
that compiles a Knot language specification into Coq definition for that lan-
guage including variable binding boilerplate. Needle’s core proof elaboration
functions are Haskell ports of the verified Loom functions which boosts our
confidence in the correctness of Needle.

Our evaluation shows substantial savings in comparison to fully manual
Coq mechanizations of type safety for various calculi. In particular, our solu-
tion to the POPLmark challenge (1a + 2a) is by far the shortest compared
to other approaches.

In conclusion, this thesis extends upon existing work and provides novel in-
sights into code reusability for mechanization of meta-theory and thereby takes
another step to scaling these methods to realistic programming languages.

viii

Samenvatting

Computerwetenschappers ontwikkelen nieuwe programmeertalen en verbeteren
bestaande talen om ons sneller betere programma’s te laten schrijven. Een doel
is om talen te ontwikkelen met bruikbare meta-theoretische eigenschappen,
zoals bijvoorbeeld veiligheidsgaranties voor alle programma’s uitgedrukt in de
taal. Deze garanties zijn nuttig omdat een programmeur ze bijvoorbeeld kan
gebruiken om de correctheid van haar programma’s te beoordelen, en omdat
een compiler ze kan gebruiken voor optimalisaties.

Helaas is het ontwikkelen van talen moeilijk: taalconcepten hebben vaak in-
gewikkelde onderliggende interacties in randgevallen die gemakkelijk te missen
zijn, en fouten kunnen aannames over meta-theoretische eigenschappen teni-
etdoen, met mogelijk ernstige gevolgen. Daarom zijn onderzoekers begonnen
met het formeel specificeren van programmeertalen en met het verifiren van
hun meta-theorie in bewijsassistenten; dit proces wordt mechanisatie genoemd.

Helaas heeft mechanisatie een steile leercurve en hoge ontwikkelingskosten
en is daarom geen gangbare praktijk. Als mechanisatie wordt gebruikt, dan
meestal alleen op een beperkt deel van de taal, met het nadeel dat resultaten
niet altijd kunnen overgedragen worden naar de volledige taal.

Om het gebruik van mechanisaties uit te breiden en om realistische talen
binnen handbereik te brengen, is het noodzakelijk om de kosten te reduceren.
Dit proefschrift onderzoekt hergebruik van code als middel om dit te bereiken,
en in het bijzonder het principieel hergebruik via modulariteit en genericiteit.

Modulariteit Verschillende programmeertalen hebben vaak gemeenschap-
pelijke concepten zoals booleaanse waarden of afhandeling van excepties. Het
eerste deel van dit proefschrift gaat over het modulair delen van specificatie,

ix

x

implementatie en meta-theoretische bewijzen van concepten tussen meerdere
talen.

Een struikelblok is dat inductieve definities en bewijzen voor extensies ges-
loten zijn. Dit wordt opgelost door het gebruik van datatype-generieke pro-
grammeertechnieken om datatypes, semantiek en bewijzen te modulariseren.
Een case study toont de voordelen van onze aanpak ten opzichte van een
bestaande oplossing.

Het modulariseren van talen met effecten is uitzonderlijk uitdagend, omdat
meta-theoretische stellingen meestal afhangen van alle effecten van de taal, en
concepten met effecten vaak veel interactie vertonen.

We verbeteren deze situatie door het ontwikkelen van een nieuwe denota-
tionele semantiek gebaseerd op monadische interpreters waarmee we het type-
veiligheidsbewijs kunnen opsplitsen: concept-stellingen die goed getypeerde
monadische denotaties van individuele concepten bepalen, en effect-stellingen
die goed getypeerde denotaties aanpassen naar een vaste verzameling van ef-
fecten. Het typeveiligheidsbewijs voor een bepaalde taal combineert de stellin-
gen van al zijn concepten met de stelling van al zijn effecten. Onze case study
toont de effectiviteit van onze aanpak door het modulariseren van vijf taal-
functies, waaronder drie met effecten.

Terwijl onze technieken de tussentijdse doelen van modularisering en herge-
bruik bereiken, hebben complexiteit en boekhouding de totale kosten verhoogd.
Verder onderzoek en directe integratie in proefassistenten is nodig om de tech-
nieken praktisch te maken.

Genericiteit Bijna elke hoog-niveau programmeertaal maakt gebruik van
variabelen in zijn syntaxis. De operationele semantiek van dergelijke talen im-
plementeert reductie van taalconstructies met variabelen meestal door substi-
tuties van variabelen. Meta-theoretische bewijzen moeten met eigenschappen
van deze substitutie redeneren. De substitutiefunctie en de bewijzen van zijn
eigenschappen kunnen als boilerplate geclassificeerd worden, omdat ze een pa-
troon volgen dat alleen afhangt van de syntaxis en de scoping regels van de
taal. Deze boilerplate kan een groot deel van de hele mechanisatie uitmaken,
en moet daarom het best automatisch beschikbaar zijn. Het tweede deel van
dit proefschrift ontwikkelt een generieke oplossing voor dit probleem.

We ontwikkelen een nieuwe declaratieve taal Knot voor de specificatie
van abstract syntaxis met variabelen, en voor semantische relaties boven op
de syntaxis. Een typesysteem zorgt ervoor dat variabelen in uitdrukkingen in
de definitie van relaties altijd in hun bereik worden gebruikt. We geven een
interpretatie van Knot-specificaties met behulp van de Bruijn termen die we

xi

ook gemplementeerd hebben als een datatype generieke bibliotheek Loom in
Coq.

Boilerplate lemmas zijn gemplementeerd door generieke uitwerkingsfunc-
ties naar domeinspecifieke getuige-talen. In het bijzonder, zijn wij, voor zover
we weten, de eersten die uitwerkingen van verzwakking and substitutie lem-
mas van semantische relaties met een eerste-orde aanpak verschaffen. We
bewijzen formeel de correctheid van de uitwerkingen en de deugdelijkheid van
onze domeinspecifieke talen.

Voor praktische mechanisaties hebben we de Needle-codegenerator on-
twikkeld die Knot-specificatie compileert naar Coq-definities inclusief vari-
abelen boilerplate. Needle’s uitwerkingsfuncties zijn Haskell-vertalingen van
de geverifieerde Loom-functies; dit versterkt ons vertrouwen in de correctheid
van Needle.

Onze evaluatie toont aanzienlijke besparingen in vergelijking met hand-
matige Coq mechanisaties van typeveiligheid voor verschillende talen. In het
bijzonder is onze oplossing van de POPLmark-challenge (1a + 2a) veruit de
kortste in vergelijking met andere oplossingen.

Samenvattend breidt dit proefschrift bestaand werk uit en biedt het nieuwe
inzichten in het codeherbruik voor mechanisaties van meta-theorie en zet
daarmee een stap naar het toepassen van deze methoden op realistische pro-
grammeertalen.

xii

Contents

Acknowledgements iii

Summary v

Samenvatting ix

List of Publications xix

List of Figures xxi

List of Tables xxv

1 Introduction 1
1.1 Programming Language Specifications 4

1.1.1 Syntax . 4
1.1.2 Semantics . 5
1.1.3 Typing . 8

1.2 Meta-Theoretical Analysis . 10
1.3 Mechanization . 14
1.4 Reusability . 15
1.5 Overview . 17

I Modularity 21

2 Background 23

xiii

xiv CONTENTS

2.1 Expression Problem . 24
2.2 Datatypes à la Carte . 27

2.2.1 Fixed-points . 27
2.2.2 Automated Injections 28
2.2.3 Semantic Functions . 30

2.3 Reasoning à la Carte . 32
2.3.1 Propositions as Types 32
2.3.2 Induction Principles . 33
2.3.3 Strict Positivity . 34

2.4 Church Encodings . 35
2.4.1 Encoding Algebraic Datatypes 35
2.4.2 Reasoning with Church Encodings 37

2.5 Mendler Folds . 38

3 Modular Predicative Universes 41
3.1 Motivation . 42
3.2 Declarative Specification . 43

3.2.1 Fixed-Points . 45
3.2.2 Fold Operator . 45

3.3 Declarative Specification of Induction 46
3.3.1 All-Modalities . 46
3.3.2 Proof Algebras . 49
3.3.3 Induction Operator . 50

3.4 Modularity Frontend . 51
3.4.1 Non-Modularity of SPF 51
3.4.2 Example: Depth vs. Size 52

3.5 Containers . 54
3.5.1 Generic Universes . 55
3.5.2 Container Universe . 56
3.5.3 Coproducts . 57
3.5.4 Fixpoints and Folds . 57
3.5.5 Induction . 58
3.5.6 Container Class . 59
3.5.7 Extensible Inductive Relations 60

3.6 Polynomial Functors . 62
3.6.1 Universe of Polynomial Functors 64
3.6.2 Universe Embedding . 65
3.6.3 Generic Equality . 67

3.7 Case Study . 68
3.8 Related and Future Work . 73

CONTENTS xv

3.9 Scientific Output . 75

4 Modular Monadic Effects 77
4.1 The 3MT Monad Library . 80

4.1.1 Monad Classes . 80
4.1.2 Algebraic Laws . 81
4.1.3 Monad Transformers . 82
4.1.4 Discussion . 83

4.2 Modular Monadic Semantics . 83
4.2.1 Example: References . 84
4.2.2 Effect-Dependent Theorems 85

4.3 Monadic Type Safety . 86
4.3.1 Three-Step Approach 86
4.3.2 Typing of Monadic Computations 88
4.3.3 Monolithic Soundness for a Pure Feature 89
4.3.4 Modular Sublemmas . 91
4.3.5 Reusable Bind Sublemma 92

4.4 Effect and Language Theorems 92
4.4.1 Pure Languages . 92
4.4.2 Errors . 93
4.4.3 References . 94
4.4.4 Lambda . 96
4.4.5 Modular Effect Compositions 97
4.4.6 State and Exceptions . 97
4.4.7 State, Reader and Exceptions 99

4.5 Case Study . 100
4.6 Related Work . 103

4.6.1 Functional Models for Modular Side Effects 103
4.6.2 Modular Effectful Semantics 105
4.6.3 Effects and Reasoning 105
4.6.4 Mechanization of Monad Transformers 106

4.7 Scientific Output . 106

II Genericity 109

5 Background 111
5.1 Semi-formal Development . 112

5.1.1 Syntax . 112
5.1.2 Semantics . 117

xvi CONTENTS

5.1.3 Meta-Theory . 118
5.2 Formalization and Mechanisation 120

5.2.1 Syntax Representation 121
5.2.2 Well-scopedness . 123
5.2.3 Substitutions . 124
5.2.4 Semantic Representation 127
5.2.5 Meta-Theory . 128
5.2.6 Mechanisation . 130

5.3 Our Approach . 131
5.3.1 Scientific Output . 131

6 The Knot Specification Language 133
6.1 Knot by Example . 133

6.1.1 Abstract Syntax Specifications 133
6.1.2 Inductive Relation Specifications 136

6.2 Key Design Choices . 138
6.2.1 Free Monadic Presentations 138
6.2.2 Local and Global Variables 142
6.2.3 Context Parametricity 143

6.3 Knot Syntax . 143
6.3.1 Well-Formed Knot Specifications 145

6.4 Symbolic Expressions . 148
6.4.1 Expression Well-formedness 148

6.5 Inductive Relations . 150
6.5.1 Relation Well-formedness 150

6.6 Discussion . 152
6.7 Related Work . 157
6.8 Contributions . 157

7 Semantics 159
7.1 Syntax terms . 159

7.1.1 Raw Terms . 160
7.1.2 Binding Specification Evaluation 160
7.1.3 Well-scopedness . 162

7.2 Expression Semantics . 163
7.2.1 Shifting and Weakening 163
7.2.2 Substitution . 164
7.2.3 Evaluation . 165

7.3 Relation Semantics . 166
7.3.1 Environment lookups . 167

CONTENTS xvii

7.3.2 Rule Binding Specifications 167

7.3.3 Derivations . 168

8 Elaboration 169

8.1 Interaction Lemmas . 173

8.1.1 Overview . 174

8.1.2 Semi-formal Shift Commutation 175

8.1.3 Term Equality Witnesses 177

8.1.4 Proof Elaboration . 179

8.2 Well-Scopedness . 181

8.2.1 Witnesses of Well-Scoping 182

8.2.2 Proof Elaboration . 184

8.3 Shifting and Substitution . 185

8.3.1 Shifting . 186

8.3.2 Substitution . 186

8.4 The Loom Generic Library . 188

8.5 The Needle Code Generator 188

8.6 Related Work . 190

8.7 Contributions . 193

9 Evaluation 195

9.1 Comparison of Approaches . 195

9.2 Manual vs. Knot Mechanizations 197

Conclusion 199

10 Conclusion 201

10.1 Research Question . 201

10.2 Summary . 202

10.2.1 Modularity . 202

10.2.2 Genericity . 203

10.3 Future Work . 204

10.3.1 Modularity . 204

10.3.2 Genericity . 206

xviii CONTENTS

Appendices 211

A Needle & Knot 211
A.1 Free Monadic Well-Scoped Terms 211
A.2 Well-scoped Evaluation . 214
A.3 Relation Shift Elaboration . 216

Bibliography 219

List of Publications

Keuchel, S. and Jeuring, J. T. (2012). Generic conversions of abstract
syntax representations. In Proceedings of the 8th ACM SIGPLAN workshop on
Generic programming, WGP ’12, pages 57–68. ACM. Copenhagen, Denmark,
September 12, 2012.

Delaware, B., Keuchel, S., Schrijvers, T., and Oliveira, B. C. d. S. (2013).
Modular Monadic Meta-Theory. In Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming, ICFP ’13, pages 319-330.
ACM. Boston, Massachusetts, USA, September 25–27, 2013.

Keuchel, S. and Schrijvers, T. (2013). Generic Datatypes à la Carte. In
Proceedings of the 9th ACM SIGPLAN workshop on Generic programming,
WGP 13, pages 13-24. ACM. Boston, Massachusetts, USA, September 28,
2013.

Keuchel, S., Weirich, S., and Schrijvers, T. (2016). Needle & Knot: Binder
Boilerplate Tied Up. In Thiemann, P., editor, Proceedings of the 25th Euro-
pean Symposium on Programming, ESOP’16, volume 9632 of Lecture Notes in
Computer Science, pages 419–445. Springer. Eindhoven, The Netherlands,
April 2–8, 2016.

Devriese, D., Patrignani, M., Piessens, F., and Keuchel, S. (2017). Mod-
ular, Fully-abstract Compilation by Approximate Back-translation. Logical
Methods in Computer Science, Volume 13, Issue 4.

xix

xx LIST OF PUBLICATIONS

List of Figures

1.1 λB syntax . 5
1.2 λB reduction rules . 7
1.3 λB typing rules . 9

2.1 Evaluation of arithmetic expressions (Haskell) 24
2.2 Evaluation of arithmetic expressions (Java) 24
2.3 Extended arithmetic expressions (Haskell) 25
2.4 Extended arithmetic expressions (Java) 26
2.5 Arithmetic and logical expressions 27
2.6 Datatypes à la Carte fixed-point 28
2.7 Sub-functor relation . 29
2.8 Modular value datatype . 30
2.9 Function algebra infrastructure 31
2.10 Correspondences for propositional and predicate logic 33
2.11 Fixed-points and fold using Church encodings 36
2.12 Modular datatypes using Mendler-Church encodings 39
2.13 Boolean expressions using Mendler-Church encodings 39

3.1 Strictly-positive functor class 44
3.2 Modular composition of proofs 50
3.3 Arithmetic and logical expressions 52
3.4 SPF instance for expressions 53
3.5 Modular semantic functions . 54
3.6 Modular DepthSize proof . 55
3.7 Container extension . 56

xxi

xxii LIST OF FIGURES

3.8 Container coproducts . 58
3.9 Container induction . 59
3.10 Container functor class . 59
3.11 Container instances . 60
3.12 Indexed Strictly-Positive Functor Class 61
3.13 Indexed Containers . 62
3.14 Equality type class . 63
3.15 Polynomial Functors . 64
3.16 Shapes and Positions of Polynomial Functors 66
3.17 Conversion between Polynomial Interpretations 67
3.18 Container Instance for Polynomial Functors 68
3.19 mini-ML expressions, values, and types 69

4.1 Key classes, definitions and laws from 3MT’s monadic library. 81
4.2 Monad transformers . 82
4.3 Effects used by the case study’s evaluation algebras. 83
4.4 Syntax and type definitions for references. 84
4.5 Dependency Graph . 88
4.6 Typing rules for pure monadic values. 89
4.7 Reusable sublemma for monadic binds. 92
4.8 Typing rules for exceptional monadic values. 93
4.9 Typing rules for stateful monadic values. 95
4.10 Typing rules for environment and failure monads. 96
4.11 Effect theorem statement for languages with errors, state, an

environment and failure. 98
4.12 Interaction laws . 99
4.13 mini-ML expressions, values, and types 100

5.1 F∃,× syntax . 113
5.2 Well-scoping of types . 114
5.3 Free variables . 115
5.4 Type in type substitutions . 116
5.5 F∃,× typing rules . 118
5.6 F∃,× evaluation - selected rules 119
5.7 F∃,× de Bruijn representation 121
5.8 Well-Scopedness of Terms (selected rules) 124
5.9 Shifting functions . 125
5.10 F∃,× typing rules (de Bruijn, selected rules) 128

6.1 Knot specification of F∃,× (part 1) 134

LIST OF FIGURES xxiii

6.2 Typing relation for F∃,× . 137
6.3 Free Monads in Haskell . 140
6.4 Intrinsically Well-Scoped de Brujn terms 140
6.5 The Syntax of Knot . 144
6.6 Well-formed specifications . 146
6.7 Symbolic expressions and their well-formedness 147
6.8 Syntax for relations . 149
6.9 Well-formed relations . 151

7.1 Knot semantics: key definitions 160
7.2 Well-sortedness of terms . 160
7.3 Binding specification evaluation 161
7.4 Well-scopedness of terms . 162
7.5 Shifting of terms . 164
7.6 Substitution of terms . 165
7.7 Expression evaluation . 166
7.8 Environment lookup . 167
7.9 Evaluation of rule binding specifications 168

8.1 Equality Witness DSL . 177
8.2 Interpretation of Domain Equality Witnesses 178
8.3 Interpretation of Term Equality Witnesses 179
8.4 Elaboration of Shift Stability 180
8.5 Elaboration of Shift Commutation 181
8.6 Well-Scopedness Witness DSL 182
8.7 Well-scopedness proof terms . 183
8.8 Well-scopedness of de Bruijn terms 185
8.9 Needle Processing Stages . 189

9.1 Sizes (in LoC) of POPLmark solutions 196

A.1 Free Monads for Well-Scoped Terms 212
A.2 Generic Simultaneous Substitution 212
A.3 Free Monad Instantiation . 213
A.4 Well-scoping proof term interpretation 215
A.5 Grammar of term equality witnesses 216
A.6 Shift commutation elaboration 216
A.7 Term equality semantics . 218

xxiv LIST OF FIGURES

List of Tables

3.1 Size statistic for the GDTC modular reasoning framework . . . 70
3.2 Size statistics of the type-safety infrastructure. 71
3.3 Size statistics of the feature mechanizations. 71
3.4 Size statistics of the language compositions 72

4.1 Size statistic for the 3MT framework for modular effect reasoning100
4.2 Size statistics of the monadic value typing relations. 101
4.3 Size statistics of the feature implementations. 102
4.4 Size statistics of the effect theorems. 103
4.5 Size statistics of the language compositions. 104

5.1 Lines of Coq code for the F∃,× meta-theory mechanisation. . . 130

9.1 Size statistics of the meta-theory mechanizations. 198

xxv

xxvi LIST OF TABLES

Chapter 1
Introduction

The concept of programming can be defined as explaining to a computer how
to perform a particular task. The language of communication is known as
a programming language and the explanation expressed in a programming
language is called a program; collectively programs are known as software.
Unfortunately, programming is notoriously error-prone and software often un-
reliable. Given the ubiquity of computers and the pervasive use of software in
present-day society, this unreliability is a very costly and sometimes critical
issue.

A prominent way to address this situation is to improve the programming
process. In particular, it is important that the programmer can verify whether
the program she has written implements the intended tasks. This is usually
achieved by reasoning with the expected behaviour of a program, which of
course requires a solid understanding of the programming language in which
the program is expressed.

Programming Language Specifications In practice most programming
languages do not start out as well-defined entities with an explicit meaning.
Instead they are usually indirectly defined in terms of a software artifact like
a compiler or interpreter, written in an existing language, that processes the
programs of the new language according to some implicit intended meaning.
Only after widespread use and when the implicit definition becomes unten-
able, a language may go through a standardization process where multiple
stakeholders develop a common specification of the language.

1

2 CHAPTER 1. INTRODUCTION

Such a language specification has many advantages. For instance, it allows
different parties to develop software tools that process programs consistently,
and programmers to switch between tool vendors without a hitch. Also, it
allows programmers to resolve ambiguities when reasoning about programs
independent of a particular implementation.

Programming Language Theory The specification of programming lan-
guages is subject to scientific study in the field of programming language theory.
This field deals with all aspects of language specifications: the design and im-
plementation of their syntax and semantics, and that of auxiliary systems such
as type systems. In addition the field also studies the meta-theoretical proper-
ties (or meta-theory for short) of languages. These meta-theoretical properties
capture expectations and coherence aspects of newly developed languages or
language features, such as useful safety guarantees that hold for all programs
expressed in the language.

A prominent meta-theoretical property is type safety, i.e., the absence of
dynamic type errors during execution. Because meta-theoretical properties
like type safety do not automatically hold for all programming languages, we
need to verify whether they actually hold for given languages. If they do not,
this often points to a flaw in the language’s design or a misunderstanding of
the language’s workings.

Mechanised Meta-Theory of Calculi Verifying meta-theoretical proper-
ties of programming languages is not a trivial activity. Due to many subtle
details and edge cases, proofs can easily become unwieldy and getting the
proof structure right requires a lot of effort. In order to make the process
more manageable, the field of programming language theory has adopted sev-
eral methodological measures.

Firstly, because full programming languages are too large to handle, meta-
theoretical analysis usually restricts itself to a subset of the language, known
as a calculus, that contains the main features of interest for the property at
hand. Because calculi are much smaller so are the proofs of their meta-theory.
The downside is that results for a calculus do not always carry over to the full
language. Problems in the calculus often reveal problems in the full language,
but the absence of problems in the calculus does not guarantee the same for
the full language. For example, the Java programming language was long
believed to be type-safe1 but the addition of generics made Java’s type system

1With dynamic type checking to ensure safety of deliberate defects like the co-variance
of arrays.

3

unsound [Amin and Tate, 2016]. This fact was not apparent for many years,
and contradicts the type safety results for several generic Java calculi [Igarashi
et al., 2001; Cameron et al., 2008]. Luckily generics were never integrated
into the Java Virtual Machine (JVM) which compiles checks that catch this
unsoundness at runtime and throw an exception. Otherwise this unsoundness
could have been used to gain direct access to the raw memory representation
of objects and be used as a security exploit [Tate, 2017].

Secondly, because pen-and-paper proofs are very error-prone and human
reviewers are not perfect at vetting them, meta-theoretical proofs are often
written in formal languages that can be automatically checked by software
tools known as proof assistants. This process, known as “mechanization”,
greatly increases the confidence in the validity of meta-theory proofs. Unfor-
tunately, mechanization does not address the large effort of proving properties,
but rather aggravates it as every little detail has to be spelled out.

Research Question Despite the mitigating efforts of the current state of the
art, neither the formal specification of programming languages nor their rig-
orously mechanised meta-theoretical analysis are a widespread practice. The
development costs are still too steep to make this possible for realistic pro-
gramming languages. This leads us to the research question of this thesis:

How can we reduce the cost of mechanising the formal
meta-theory of programming languages?

The main approach put forward in this thesis is reuse. Reuse is a common
approach in software engineering to reduce development cost and increase both
quality and reliability. The idea is to identify functionality or patterns that
are in common between different software systems, and to implement them
only once in a manner that can be shared by the different software systems
and reused in the development of new systems. We apply the same idea
to programming language meta-theory, identifying repeated functionality and
patterns, and implementing them only once in a way that can be used across
proofs for different languages.

The remainder of this chapter provides a more detailed introduction to
the established methodology for mechanising the meta-theory of programming
languages2 and points out opportunities for reuse.

2We refer the interested reader to introductory textbooks on the matter (e.g., [Pierce,
2002]) for more detail.

4 CHAPTER 1. INTRODUCTION

1.1 Programming Language Specifications

Specifications of programming languages differ in detail and precision. In-
dustrial specifications of major programming languages are usually written in
natural language and cover every aspect of the language in detail. Despite
the fact that natural language leaves opportunities for ambiguity, elaborate
industrial specifications provide a good reference point for language users and
implementors. However, for meta-theoretical analyses more rigorous specifi-
cations are necessary. For this purpose we use formal specifications and a
mathematical language to describe programming languages. This provides
the necessary precision and avoids the ambiguities of natural languages.

This section explains necessary fundamental concepts for the formal spec-
ification of programming languages by example of a small language λB: a
simply-typed lambda calculus with booleans. We specify the abstract syntax,
static type system and evaluation of λB using inductive definitions. Along the
way, we define the terminology and notational conventions and make their
meaning precise.

1.1.1 Syntax

The syntax of λB is given in Figure 1.1. We use a convention that is close
to standard (extended Backus-Naur form) grammars. Elided in the grammar
are syntactic constructs like parentheses. Yet we use parentheses freely to
resolve ambiguities in terms even if the grammar does not define them. Any
implementation that deals with the concrete syntax of a programming language
has of course to be more rigorous.

The grammar in Figure 1.1 defines several syntactic sorts for λB. The meta-
variable e stands for expressions of λB of which there are 6 different kinds. An
expression can either be a boolean constant true or false, a conditional form
if ec then et else ee, an object-language variable (represented by the meta-
variable x), the definition of a function as a λ-abstraction (λx : τ.e) or the
application of an expression e1 to another expression e2. In the case of an
abstraction (λx : τ.e) the scope of the variable x is the body of the abstraction
e. We will also say that x is bound in e and more generally that this construct
and the λB language itself use variable binding.

Of course, we only want to apply expressions e1 that represent functions:
either by being a λ-abstraction or evaluating to one. Applying any value other
than a λ-abstraction is a type error. We make this more precise below and
come back to it in Section 1.2 on analysis.

The grammar also includes the meta-variable τ that describes the types of

1.1. PROGRAMMING LANGUAGE SPECIFICATIONS 5

x, y ::= term variable
τ, σ ::= type

| τ → τ function type
| bool boolean type

e ::= term
| true true constant
| false false constant
| if e then e else e conditional
| x term variable
| λx : τ.e term abstraction
| e e term application

v ::= value
| true true constant
| false false constant
| λx : τ.e term abstraction

Γ ::= type context
| ε empty context
| Γ, x : τ term binding

Figure 1.1: λB syntax

λB. Each λ-abstraction contains a type annotation τ for the argument variable
x. The denotation is that the function represented by the λ-abstraction expects
a value of type τ when it is applied. We discuss types and typing contexts Γ
in more detail in Section 1.1.3, which deals with static typing.

1.1.2 Semantics

We have defined the syntax of λB expressions and can now turn towards defin-
ing their meaning. There are multiple established ways to define semantics
of programming language. We can coarsely classify the approaches into three
different groups:

1. Operational Semantics

Operational semantics defines the meaning of programs by specifying
their execution in a state transition system. A state transition function
or a state transition relation on the terms of the programming language
defines the possible execution steps. The program is part of the state.
For small languages the entire state might consist of only the program.

6 CHAPTER 1. INTRODUCTION

After taking a step we are left with an updated state that includes a
residual program.

2. Denotational Semantics

Denotational semantics defines the meaning of programs in terms of col-
lection of mathematical semantic domains that can include numbers, sets
or functions. An interpretation function maps program terms into these
domains. This function is generally compositional in the syntax which
is beneficial for modularity.

Usually, the semantic domain has an established formal theory. The
theorems of the domain give rise to reasoning laws for programs. Fur-
thermore, we can also derive properties of programming languages from
properties of the collection of semantic domains.

3. Axiomatic Semantics

Instead of deriving laws for programs from their execution behaviour or
denotation we can also axiomatically assume these laws. This is known
as an axiomatic semantics.

This gives us immediately the means for reasoning about programs. Fur-
thermore, we can derive a denotational semantics for the language by
constructing a model that satisfies the chosen laws and derive properties
for this model or even all models.

These three approaches have different trade-offs. Denotational and ax-
iomatic semantics immediately give us powerful mathematical tools to reason
about programming languages and their programs, but for larger languages
the required technicality and complexity makes it extremely difficult to even
define a suitable semantics.

Operational semantics do not give us the same powerful mathematical rea-
soning techniques and instead impose on us the laborious task to reason about
programs by observing their behaviour during execution. However, operational
semantics are simpler and easier to define than more abstract denotational or
axiomatic semantics. Moreover, they are much closer to actual implementa-
tions. Due to the smaller gap, operational semantics make it easier to reason
about the correctness of implementations.

For our λB language we define semantics using a small-step operational
semantics. This is also the approach used in Part II of this thesis. Part I uses
denotational semantics.

Figure 1.2 gives the complete definition of the operational semantics by
means of an evaluation relation. The box in the upper left corner e1 −→ e2

1.1. PROGRAMMING LANGUAGE SPECIFICATIONS 7

e −→ e

if true then et else ee −→ et
EIfTrue

if false then et else ee −→ ee
EIfFalse

ec −→ e′c
if ec then et else ee −→ if e′c then et else ee

EIf

(λx : τ.e1) e2 −→ [x 7→ e2]e1
EAppAbs

e1 −→ e′1
e1 e2 −→ e′1 e2

EApp

Figure 1.2: λB reduction rules

defines the shape and notation that we use for the relation. In this case it is
a binary relation between two terms, which denotes that e1 evaluates to e2 in
one step.

The remainder of the figure defines the relation using Gentzen-style infer-
ence rules [Gentzen, 1935]. In general, rules take the form

J1 J2 . . . Jn

J
Name

where Name is an optional name for the rule that allows us to refer to it.
The meta-variable J stands for judgements, which in our case are usually
mathematical statements in propositional or first-order logic. The judgements
J1, . . . , Jn above the horizontal line are the premises of the rule, and the judge-
ment J below the line is the conclusion. Rule without any premises are also
called axioms. The conclusion will always involve the relation that is being
defined.

The single-step evaluation is defined using five rules that encode a call-
by-name evaluation strategy. The two axioms EIfTrue and EIfFalse show
how to reduce an if -expression in case the condition is either a true or a false
value. The case of a condition that is not yet fully evaluated is handled by
rule EIf. If the condition ec reduces to e′c in one step then we can conclude

8 CHAPTER 1. INTRODUCTION

the one step reduction

if ec then et else ee −→ if e′c then et else ee

The last two rules cover the evaluation of λ-terms. The rule EAppAbs
handles the case where the left-hand side of an application is a λ-term (λx :
τ.e1). The residual program is the the body e1 of the function after substituting
e2 for x which we write as [x 7→ e2]e1. Due to the call-by-name evaluation, the
argument of the function does not have to be fully evaluated. If the left-hand
side is not yet a λ-term, we evaluate it first similarly to EIf.

Note that this definition does not cover all possible cases. In particular the
case of a λ-term in the condition of an if -expression

if (λx : τ.e) then et else ee

and the cases of a boolean in the left-hand side of an application

true e1 or false e2

are not specified. Since no transition is defined and the execution is stopped
without any meaningful result, we also say that the evaluation got stuck. In
an implementation of the programming language, this corresponds to an error
that can happen during the execution of a program. It’s therefore also called
a (dynamic) type error. Programmers want to detect potential problems like
that early in the development cycle and, if possible, at compile time. This
motivates the development of static type systems.

1.1.3 Typing

A type system is an assignment of types to expressions. Usually, not all ex-
pressions are typeable and un-typeable expressions are rejected. Also, in some
languages there are expressions that can be assigned multiple, potentially in-
comparable types. Both the partiality and the ambiguity of types suggest a
relational rather than a functional assignment. Such a relation is defined in

Figure 1.3. It is a ternary relation Γ ` e : τ between a typing context Γ, an
expression e and a type τ .

The typing relation is defined using six rules. The two rules TTrue and
TFalse respectively state that the boolean constants true and false have a
boolean type. The rule TIf handles the case of an if -expression. The three
sub-expression positions contain meta-variables ec, et and ee. The premises
require that the condition ec has type boolean and the then and else branches

1.1. PROGRAMMING LANGUAGE SPECIFICATIONS 9

Γ ` e : τ

Γ ` true : bool
TTrue

Γ ` false : bool
TFalse

Γ ` ec : bool Γ ` et : τ Γ ` ee : τ

Γ ` if ec then et else ee : τ
TIf

x : τ ∈ Γ

Γ ` x : τ
TVar

Γ, y : σ ` e : τ

Γ ` (λy : σ.e) : (σ → τ)
TAbs

Γ ` e1 : σ → τ Γ ` e2 : σ

Γ ` e1 e2 : τ
TApp

Figure 1.3: λB typing rules

have the same type τ . The rule then concludes that the entire if -expression
also has type τ .

The three remaining rules deal with λ-abstractions. The typing context Γ
is a list that associates term variables with types. In the case of a λ-bound
variable, rule TVar looks up the corresponding type in Γ. Rule TAbs checks
the body of a λ-abstraction in the context (Γ, y : σ) which is the outside
context Γ extended with a pair for the λ-bound variable y. The type of the
λ-abstraction is the function type (σ → τ) between the argument type σ and
the type of the body τ . Finally, rule TApp requires that the left expression of
an application has a function type that is compatible with the argument.

Example Consider the boolean negation function

λ(y : bool).if y then false else true

This function sends booleans to booleans and should therefore have the
type bool→ bool. Giving the above typing relations, we can repeatedly apply
the rules to get a typing derivation for this. At each step only one possible
rule applies. We can arrange the rule applications in a so called derivation tree
that illustrates the whole derivation. Using the abbreviation Γ′ := Γ, y : bool,
we have the following tree:

10 CHAPTER 1. INTRODUCTION

Γ′ ` y : bool Γ′ ` false : bool Γ′ ` true : bool

Γ′ ` if y then false else true : bool

Γ ` λy : bool.if y then false else true : bool→ bool

1.2 Meta-Theoretical Analysis

As discussed before, we want to establish meta-theoretical properties that
provide us with evidence for coherence of different parts of our language and to
increase our confidence that a language is well-designed. This needs a rigorous
and formal analysis of the defined semantics of a programming language.

In this section we showcase meta-theoretical analyses with the help of our
example calculus λB. In order to prove these properties we first need to under-
stand how to reason about languages and their semantics. We therefore look
at standard reasoning principles for relations like our typing and evaluation
relations. We show how language properties can be expressed precisely and
define two properties for our language: determinacy of evaluation and type
safety, which we define below. We give a complete proof of determinacy for
our language in order to demonstrate the reasoning principles. In the remain-
der of the thesis the type safety property plays a prominent role. Below we
present an established way of proving type safety, namely through progress
and preservation lemmas, and sketch the proofs.

Inductive Reasoning For our meta-theoretical analyses, we first need to
establish methods for reasoning about the evaluation and typing of λB. Figures
1.2 and 1.3 respectively define evaluation and typing for λB. More precisely,
our intention in both figures is to define the smallest relation that includes
the presented rules. This gives rise to a structural induction principle for the
relations. Put differently, we can induct over the shape of derivation trees (or
their size or height).

As an example consider the following determinacy theorem which states
that at each point there is at most one possible successor state.

Theorem 1 (Determinacy). If e1 −→ e2 ∧ e1 −→ e3 then e2 = e3.

Proof. The proof proceeds by induction over the derivation of e1 −→ e2. For
each possible case in the derivation of e1 −→ e2 we inspect the last rule
that was used to derive e1 −→ e3. If the same rule was used, we can derive

1.2. META-THEORETICAL ANALYSIS 11

the equation. All other combinations lead to a contradiction and hence the
property follows.

We go through one of the inductive steps in detail and omit the others for
brevity. Consider the case where e1 −→ e2 was derived using EIf. So there
exist expressions e11, e

′
11, e12, e13 such that

e1 = if e11 then e12 else e13,

e2 = if e′11 then e12 else e13

and e11 −→ e′11.

Now look at the last rule that was used to derive e1 −→ e3. There are two
possibilities: rule EIfTrue or rule EIf.

1. If rule EIfTrue was used, then we learn that e11 = true and therefore
true −→ e′11. However this is impossible because no rule evaluates true
further.

2. If rule EIf was used, then there exists e′′11 such that

and e11 −→ e′′11.

Applying the inductive hypothesis of e11 −→ e′11 to the derivation e11 −→
e′′11 gives us the equality e′11 = e′′11 from which we can derive e2 = e3.

Type Safety A programmer using a statically-typed language will expect
certain safety guarantees from the type system when her program is executed.
Intuitively, an expression of a given type will eventually evaluate to a value
of that type. Usually side-conditions are implicitly assumed like for example
the assumption that the computation will not diverge. In practice, there are
statically-typed languages that allow non type-safe programs to be written,
e.g. C and C++ are inherently unsafe. The overall convention is still that
programmers write type-safe code and assume that code written by others is
type-safe. In these situations type safety is a property of programs, but in this
section we want to make it a property of languages, or put differently, we want
that all programs of a language are type-safe.

Below we look at a formal definition of a type safety property that guar-
antees that the expectations of the programmer are met. Our definition will
be slightly stronger than what a programmer might anticipate. The intuition

12 CHAPTER 1. INTRODUCTION

is that we disallow dynamic type errors during evaluation instead of focusing
on the result of evaluation.

We first make vague concepts like value, or type error precise. Values are
expressions that are canonical for the types of the language.

Definition 2 (Value). Values are the subset of expressions that are defined by
the following grammar:

v ::= term
| true true constant
| false false constant
| λx : τ.e term abstraction

By inspecting all the rules of the evaluation relation, we can see that there
are no further transitions from a value. Values are thus fully evaluated3 ex-
pressions. Such expressions are also called normal forms. More formally we
have the following definition and lemmas.

Definition 3 (Normal Form). An expression e1 is a normal form if no further
execution step can be taken, i.e.,

∀e2.¬(e1 −→ e2)

Lemma 4 (Values are Normal). If an expression e is a value, then it’s also a
normal form.

Proof. By inspecting the evaluation rules for each value form.

We can thus translate our intuitive understanding of type safety into a
theorem:

Theorem 5 (Type Safety (First Attempt)). Let e1 be an expression of type
τ , i.e. · ` e1 : τ . If e1 evaluates in one or more steps to a value e2, then e2
also has type τ :

∀e2.(e1 −→∗ e2 ∧ e2 is a value)⇒ · ` e2 : τ.

This definition however is problematic to work with directly. First, we
cannot prove it directly by induction over e1 or over the typing derivation
· ` e1 : τ , because in the case of an evaluation step with rule EAppAbs we are

3Fully evaluated with respect to the given semantics. Redexes may still appear under
λ-abstractions which are suspended. There are also semantics that allow evaluation under
λ-abstractions.

1.2. META-THEORETICAL ANALYSIS 13

given a reduced term that is not a sub-term and hence we have no induction
hypothesis available. Second, it does not express strong coherence between
typing and evaluation. Consider for instance the language that we get, if we
remove the evaluation rule EIfTrue. Then the expression

if true then et else ee

is a normal form but not a value. However, it is different than for example the
expression

if (λx : τ.e) then et else ee

which is also a normal from but not a value. But intuitively, evaluations that
stopped should either be values or type errors.

With this understanding we can reformulate our type safety theorem. Type
safe languages rule out type errors; consequently, normal forms should already
be values.

Theorem 6 (Type Safety). Let · ` e1 : τ . If e1 evaluates to a normal form
e2 then e2 is a value of type τ :

(e1 −→∗ e2 ∧ e2 is normal)⇒ (e2 is a value ∧ · ` e2 : τ).

Note that this definition does not require the evaluation to terminate. A
program that runs forever without getting stuck is also considered type-safe.

Proving this property directly is difficult as well. One established and
popular way is to reduce it to two simpler properties, namely progress and
preservation. Progress expresses that we can always take a step as long as we
do not reach a value.

Lemma 7 (Progress). Let · ` e1 : τ . Either e1 is a value or we can take
another step, i.e.

∃e2.e1 −→ e2.

Proof (Sketch). By induction over the typing derivation · ` e1 : τ . If we can
take an evaluation step in a sub-term we can use rule EIf rule EApp. Other-
wise, we learn that we have a value in an evaluation position. By inspecting
the possible values for a given type we can take a step with one of the rules
EIfTrue, EIfFalse or EAppAbs.

Lemma 8 (Preservation). If Γ ` e1 : τ and e1 −→ e2 then Γ ` e2 : τ .

14 CHAPTER 1. INTRODUCTION

Proof (Sketch). By induction over the typing derivation Γ ` e1 : τ and inspec-
tion of the last rule to derive e1 −→ e2. The only interesting case is EAppAbs
which follows from an additional lemma that states that typing is preserved
by well-typed substitutions. In all other cases the property follows immedi-
ately from an induction hypothesis or by application of a single rule and the
induction hypotheses.

Proof of Theorem 6. By induction over the number of evaluation steps in e1 −→∗
e2 and using the progress and preservation lemmas.

1.3 Mechanization

Meta-theoretical proofs are long and require the management of many details.
Consequently, these proofs are prone to error and it is easy for human verifiers
and reviewers to overlook mistakes. This is aggravated by the fact, that prop-
erties tend to fail in subtle edge cases. For instance, the unsoundness example
of Amin and Tate [2016] for Java involves the interplay between constrained
wildcards of generics and null references. Hence, there is a real danger that an
overlooked detail or a falsely assumed assumption leads to both invalid proofs
and invalid results.

Theorem provers In order to gain more confidence in the correctness of
meta-theory proofs, the field of programming language theory has started to
adopt mechanization as a new methodology: writing mathematical theorems
in a formal language and verify correctness of their proofs mechanically by
automated theorem provers. Theorem provers may find proofs for theorems
fully automatically or require a human user to input the proof or proof hints. In
the latter case, the system is also called a proof assistant. In both cases, every
reasoning step of the proof is verified to be valid in the system’s underlying
logic. This has the benefit that gaps in the proof are ruled out and unproven
assumptions need to be explicitly documented. Therefore, the use of theorem
provers greatly increases the confidence in the validity of (meta-theory) proofs.

Among programming language researchers proof assistants are more pop-
ular, because they provide richer logics. Systems like Abella [Gacek, 2008],
Agda [Norell, 2007], Beluga [Pientka and Dunfield, 2010], Coq [Coquand et al.,
1984], Isabelle/HOL [Nipkow et al., 2002] and Twelf [Pfenning and Schürmann,
1999] have been used to check various meta-theoretic proofs. The developments
of this thesis have been done in the context of the Coq proof assistant which

1.4. REUSABILITY 15

offers a competitive degree of automation and is one of the most widely used
proof assistants for meta-theory.

Benefits To illustrate the benefits of mechanizations, consider the elabo-
rate bug hunting study of Yang et al. [2011] using their randomized test-
case generator Csmith. During their study they found and reported over 325
bugs in 11 open source and commercial C compilers. One of the compilers is
CompCert [Leroy, 2009], a C compiler implemented in the Coq proof assis-
tant [Coquand et al., 1984] and proven to be correct with respect to a formal
specification of the C programming language. Yang et al. [2011] write the
following about CompCert:

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early
2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-
code errors. This is not for lack of trying: we have devoted about
six CPU-years to the task. The apparent unbreakability of Com-
pCert supports a strong argument that developing compiler op-
timizations within a proof framework, where safety checks are ex-
plicit and machine-checked, has tangible benefits for compiler users.

Costs Unfortunately, mechanization does not address the large effort of prov-
ing properties, but rather aggravates it as every little detail has to be spelled
out. The size depends largely on the language and the properties that are
proved. Our example language λB can be specified in about 94 lines4 of Coq
code and type safety including all necessary lemmas can be proven in 55 lines
of code. However, this is not representative since λB is a bare-bones calculus.
It is not uncommon to see developments with few hundreds to thousands of
lines of language specifications and tens of thousands of lines of meta-theory
proofs [Leroy, 2009; Zhao et al., 2010].

1.4 Reusability

Despite the benefits, neither formal specification of programming languages
nor rigorously mechanised meta-theory proofs are widespread practice. One of
the main obstacles are the large development costs. This thesis aims to help

4Including definitions of capture-avoiding substitutions that we omitted for brevity.

16 CHAPTER 1. INTRODUCTION

spur further adoption of formal mechanised meta-theory by promoting reuse
as a method to lower the mechanization effort.

Reuse is a common approach in software engineering to reduce develop-
ment cost and increase both quality and reliability. The idea is to identify
functionality or patterns that different software systems have in common and
implement them only once in a manner that can be shared by the different
software systems and reused in the development of new systems. We apply the
same idea to programming language meta-theory, identifying repeated func-
tionality and patterns, and implementing them only once in a way that can
be used across proofs for different languages.

Unfortunately, the current practice to achieve reuse is to copy an existing
formalization, change the existing definitions manually, integrate new features
and to subsequently patch up the proofs to cater for the changes. This un-
principled approach to reuse leaves much to be desired. First, editing and
patching the existing definitions breaks abstraction, a core principle of com-
puter science. Ideally, we would like to reuse existing code via an interface that
provides functionality (for programming) and properties (for reasoning). Sec-
ond, this approach does not encourage isolation of new features from existing
ones, which hinders backporting improvements to the existing formalization.

Our goal is to replace the current practice with principled ways to achieve
reusability. More specifically, this thesis is examining two different means of
reuse: 1. Through modularity and 2. through genericity.

Modularity Programming languages, just like regular software systems, can
be described by the functionality or features that they provide. The meta-
theoretic development of our example language λB consists of different func-
tionality: the syntax, semantics and its type safety proof. It easy to reuse the
syntax and semantics and prove other kinds of properties, e.g. termination,
or, to reuse the syntax and switch out the semantics and prove type safety for
the new semantics.

Furthermore, λB has two easily distinguishable features: λ-terms and boolean
expressions. Many programming languages and their calculi feature either or
both of these language constructs among many others. This commonality
hints at another opportunity for reuse. However, achieving this kind of reuse
is challenging (cf. Section 2.1).

Ideally, each feature could be developed in complete isolation and mod-
ularly combined into a full language consisting of a specific set of features.
The reality, however, is more complicated. Features may have dependencies
between them or may interact with each other even though they seem to be

1.5. OVERVIEW 17

orthogonal.
This thesis investigates the modularization of meta-theory proofs along fea-

ture boundaries and specifically looks at the reduction of interaction between
side-effecting language features.

Genericity Names are found in almost every high-level programming lan-
guage to refer to classes, methods, types, functions, function parameters, etc.
In case a name is substitutable we call it a variable. A language may have mul-
tiple kinds of variables, for example, term and type variables. The operational
semantics of languages with variables often implement reduction of language
constructs by means of substitution.

Variable substitution is an operation that is not specific to a particular lan-
guage or language feature but is common to any language that uses variable
binding. The implementation of substitution follows a standard recipe that can
be applied for any specific language. This hints at a different way of achiev-
ing reuse: by implementing substitution once generically and specializing this
generic implementation to any given concrete language.

While other kinds of generic functionality are commonly found in pro-
gramming language meta-theory, e.g. term equality or (first-order) unification
[Van Noort et al., 2010], the generic functionality considered in this thesis is
substitution. Substitution is interesting functionality for reuse because the
need for substitutions arises in nearly all meta-theory proofs for languages
with variable binding. Furthermore, many theorems need a large amount of
lemmas about substitutions. Discharging them automatically, e.g. through
reusable generic implementations, can save a lot of development effort.

1.5 Overview

This thesis is split into two parts, corresponding to the two means of achieving
reuse with the discussed focus.

Part I: Modularity Chapter 2 presents the necessary background for this
part. While modular development of software is a well-studied topic in com-
puter science, modular composition of proofs is not as well-studied. Chapter
3 develops one approach to modularized algebraic dataypes and modularized
induction proofs for them. This chapter contains the material from

Keuchel, S. and Schrijvers, T. (2013). Generic Datatypes à la
Carte. In Proceedings of the 9th ACM SIGPLAN workshop on
Generic programming, WGP 13, pages 13-24. ACM.

18 CHAPTER 1. INTRODUCTION

Side-effecting language features exhibit a lot of interaction, e.g. in oper-
ational semantics, which hinders modularization. This is a problem that is
tackled in Chapter 4 by developing a monadic denotational semantics for fea-
tures with side-effects that can be modularized. This chapter is based on the
publication

Delaware, B., Keuchel, S., Schrijvers, T., and Oliveira, B. C. d. S.
(2013). Modular Monadic Meta-Theory. In Proceedings of the
18th ACM SIGPLAN international conference on Functional pro-
gramming, ICFP ’13, pages 319-330. ACM.

Part II: Genericity This part deals with the development of a generic
substitution operation and associated theorems. The solution put forward is a
framework consisting of a specification language Knot for abstract syntax with
variable binding and the tool Needle that compiles Knot-specifications to
Coq code which includes substitution operators and proofs about substitutions.
Chapters 6 and 7 present the syntax and semantics of Knot respectively, while
Chapter 8 discusses the elaboration and code generation underlying Needle.

Part II is based on

Keuchel, S., Weirich, S., and Schrijvers, T. (2016). Needle &
Knot: Binder Boilerplate Tied Up. In Programming Languages
and Systems: 25th European Symposium on Programming, ESOP
’16, pages 419–445. Springer.

which deals with substitutions at the term level and

Keuchel, S., Schrijvers, T., and Weirich, S. (2016). Needle & Knot:
Boilerplate Bound Tighter. Unpublished draft.

which extends the framework further to include predicates on terms expressed
as relations.

Not included Related to the content of this thesis, but not included, are
the articles

Keuchel, S. and Schrijvers, T. (2012). Modular Monadic Reason-
ing, a (Co-)Routine. Presented at the 24th Symposium on Imple-
mentation and Application of Functional Languages, IFL ’12.

which develops initial ideas to modular reasoning about side-effecting compo-
nents, and

1.5. OVERVIEW 19

Keuchel, S. and Schrijvers, T. (2015). InBound: Simple yet pow-
erful Specification of Syntax with Binders. Unpublished draft.

which aims to develop a richer specification language of syntax with binding
than Knot, including binding constructs of realistic programming languages
that Knot does not support.

Furthermore, the experiences gained from the work on Needle & Knot
are used to tackle the substitution boilerplate of

Devriese, D., Patrignani, M., Piessens, F., and Keuchel, S.
(2017). Modular, Fully-abstract Compilation by Approximate
Back-translation. Logical Methods in Computer Science, Volume
13, Issue 4.

20 CHAPTER 1. INTRODUCTION

Part I

Modularity

21

Chapter 2
Background

Formal mechanization of programming language meta-theory is a big endeavor
due its unwieldy size, complexity and attention to detail. Therefore reuse is
crucial and indeed, the POPLmark challenge [Aydemir et al., 2005] iden-
tifies lack of component reuse as one of several key obstacles of large-scale
mechanizations.

It is therefore desirable to apply established and principled software engi-
neering methods for reusability to programming language mechanization. The
objective of these software engineering methods is modularity : to build new
software systems entirely from reusable components, that have been written
independently and can (potentially) be reused in many different configurations
for different applications.

A stumbling block for applying the modularity principle to programming
language formalization is that traditional inductive definitions and proofs are
closed to extension. It is therefore necessary to develop modular reasoning
principles first; in fact, modular induction principles, because we want to stay
as close to established proof techniques as possible. Opening induction defi-
nitions for extensibility is a manifestation of the expression problem [Wadler,
1998].

This chapter covers background information on modular reasoning that
forms the basis for Chapter 3 and 4. In particular, we summarize techniques
that are used in the Meta-Theory à la Carte (MTC) framework, an existing
solution for modular reasoning about programming languages in Coq, on which
we build. However, we limit ourselves to parts that are relevant to Chapters

23

24 CHAPTER 2. BACKGROUND

data ArithExp
= Lit Int
| Add ArithExp ArithExp

eval :: ArithExp → Int
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2

Figure 2.1: Evaluation of arithmetic expressions (Haskell)

interface ArithExp {
int eval ();
}
class Lit implements ArithExp {
public int lit ;
public int eval () {return lit ; }
}
class Add implements ArithExp {
public ArithExp e1, e2;
public int eval () {return e1.eval () + e2.eval (); }
}

Figure 2.2: Evaluation of arithmetic expressions (Java)

3 and 4 and refer the reader to the original paper [Delaware et al., 2013] for
full details.

2.1 Expression Problem

Consider the Haskell program for the evaluation of simple arithmetic expres-
sions in Figure 2.1. We have a datatype ArithExp, representing arithmetic
expressions with constructors for integer literals and addition, and an evalua-
tion function eval :: ArithExp → Int that evaluates an expression to an integer
value.

Figure 2.2 shows an equivalent Java program. The ArithExp interface

2.1. EXPRESSION PROBLEM 25

data ArithExp
= Lit Int
| Add ArithExp ArithExp
| Mul ArithExp ArithExp

eval :: ArithExp → Int
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 ∗ eval e2

print :: ArithExp → String
print (Lit i) = show i
print (Add e1 e2) = "(" ++ print e1 ++ "+" ++ print e2 ++ ")"

print (Mul e1 e2) = "(" ++ print e1 ++ "*" ++ print e2 ++ ")"

Figure 2.3: Extended arithmetic expressions (Haskell)

contains an int eval () method. The two cases of a literal and an addition are
handled by the two classes Lit and Add that implement ArithExp.

We can extend these programs along two dimensions:

1. Adding a new case, e.g. a constructor for multiplication.

2. Adding a new operation, e.g. converting an expression to a string.

In Haskell, performing the second extension in our example is easy: we add
one more function to the program

print :: ArithExp → String
print (Lit i) = show i
print (Add e1 e2) = "(" ++ print e1 ++ "+" ++ print e2 ++ ")"

However, covering a new case inevitably requires modifying existing code:
it has to be added to the ArithExp datatype declaration and, for totality, also
to existing functions. Figure 2.3 shows the code with both extensions.

In Java the situation is reversed. The multiplication case can easily be
added by creating a new class Mul that implements Exp.

class Mul implements ArithExp {
public ArithExp e1, e2;

26 CHAPTER 2. BACKGROUND

interface ArithExp {
int eval ();
String print ();
}
class Lit implements ArithExp {
public int lit ;
public int eval () {return lit ; }
public String print () {return String .valueOf (lit); }
}
class Add implements ArithExp {
public ArithExp e1, e2;
public int eval () {return e1.eval () + e2.eval (); }
public String print () {

return e1.print ().concat ("+").concat (e2.print ());
}

}
class Mul implements ArithExp {
public ArithExp e1, e2;
public int eval () {return e1.eval () ∗ e2.eval (); }
public String print () {

return e1.print ().concat ("*").concat (e2.print ());
}

}

Figure 2.4: Extended arithmetic expressions (Java)

public int eval () {return e1.eval () ∗ e2.eval (); }
}

However, the conversion to a String inevitably requires editing the existing
code and adding a new method to the ArithExp interface and existing imple-
mentations of that interface.1 Figure 2.4 shows the code with both extensions.

Performing such extensions in both dimensions simultaneously and modu-
larly, i.e. without changing or recompiling the existing code, and keeping the
code type-safe was coined as the expression problem by Wadler [1998]. So-
lutions to the expression problem exist in multiple languages: Wadler [1998]

1We disregard the toString () method that is part of the base class Object .

2.2. DATATYPES À LA CARTE 27

data Exp = Lit Int | Add Exp Exp
| BLit Bool | If Exp Exp Exp

data ArithF exp = LitF Int | AddF exp exp
data LogicF exp = BLitF Bool | If F exp exp exp

Figure 2.5: Arithmetic and logical expressions

presents a solution in Java using Generics and the Datatypes à la Carte (DTC)
approach [Swierstra, 2008] is a well-known solution in the Haskell program-
ming language. In both of these solutions, modularity has to be anticipated
and catered for from the beginning however. Indeed, we cannot reuse the
datatype declaration and interface declarations from this section, but have to
use ones that account for modular extensions. We will call a Haskell datatype
that can be modularly extended a modular datatype and use the term mod-
ular function for modularly extensible functions that are defined on modular
datatypes.

Our goal to modularly engineer programming language meta-theory adds a
third dimension to the expression problem: modular proofs of statements about
modular functions on modular datatypes. In the remainder of this chapter we
first present the DTC approach (Section 2.2) and then discuss stumbling and
building blocks to extend the approach to support modular reasoning (Sections
2.3, 2.4 and 2.5).

2.2 Datatypes à la Carte

This section reviews the core ideas behind Datatypes à la Carte (DTC) [Swier-
stra, 2008], a well-known Haskell solution to the expression problem, and
presents the infrastructure for writing modular functions over modular datatypes.

2.2.1 Fixed-points

The main idea behind DTC is to open the recursion of datatypes and model
the fixed point explicitly. Consider the monolithic datatype Exp for simple
arithmetic and logical expressions in Figure 2.5 (top). Abstracting over the
recursive positions of Exp yields a signature functor that we can then split up

28 CHAPTER 2. BACKGROUND

data FixD f = InD {outD :: f (FixD f)}
data (⊕) f g a = Inl (f a) | Inr (g a)

Figure 2.6: Datatypes à la Carte fixed-point

into functors ArithF and LogicF – shown in Figure 2.5 (bottom) – to capture
the signature of features in isolation.

The type-level fixed-point combinator FixD in Figure 2.6 creates a recursive
datatype from a signature. For example ArithD is a type that features only
arithmetic expressions.

type ArithD = FixD ArithF

Different features can be combined modularly by taking the coproduct (⊕) of
the signatures before taking the fixed point. For example, taking the fixed-
point of the coproduct of ArithF and LogicF

type ExpD = FixD (ArithF ⊕ LogicF)

essentially2 yields a datatype that is isomorphic to the monolithic datatype
Exp from Figure 2.5 (top).

2.2.2 Automated Injections

Combining signatures makes writing expressions difficult. For example the
arithmetic expression 3 + 4 is represented as the term

ex1 :: FixD (ArithF ⊕ LogicF)
ex1 = InD (Inl (AddF

(InD (Inl (LitF 3)))
(InD (Inl (LitF 4)))))

Writing such expressions manually is too cumbersome and unreadable. More-
over, if we extend the datatype with a new signature, other injections are
needed.

To facilitate writing expressions and make reuse possible we use the sub-
functor f ≺: g relation shown in Figure 2.7 (top). The member function

2Which due to laziness in Haskell means modulo non-termination.

2.2. DATATYPES À LA CARTE 29

class f ≺: g where
inj :: f a → g a
prj :: g a → Maybe (f a)
inj prj :: ∀a (ga :: g a) (fa :: f a).

prj ga = Just fa → ga = inj fa
prj inj :: ∀a (fa :: f a).

prj (inj fa) = Just fa

inject :: (f ≺: g)⇒ f (FixD g)→ FixD g
inject x = InD (inj x)
project :: (f ≺: g)⇒ FixD g → Maybe (f (FixD g))
project x = prj (outD x)

instance (f ≺: f) where
inj = id

instance (f ≺: g)⇒ (f ≺: (g ⊕ h)) where
inj = Inl ◦ inj

instance (f ≺: h)⇒ (f ≺: (g ⊕ h)) where
inj = Inr ◦ inj

Figure 2.7: Sub-functor relation

inj injects the sub-functor f into the super-functor g . In our case we need
injections of functors into coproducts which are automated using type class
machinery.3 The prj member function is a partial inverse of inj . With it we
can test if a specific sub-functor was used to build the top layer of a value. This
operation fails if another sub-functor was used. The type class also includes
the laws inj prj and prj inj that witness the partial inversion.4

The inject function is a variation of inj that additionally applies the con-
structor of the fixed-point type FixD . Using the sub-functor relation we can
define smart constructors for arithmetic expressions

lit :: (ArithF ≺: expf)⇒ Int → FixD expf
lit i = inject (LitF i)

3Coq’s type-class mechanism performs backtracking. These instances do not properly
work in Haskell. See [Swierstra, 2008] for a partial solution.

4Using a hypothetical dependently-typed Haskell syntax.

30 CHAPTER 2. BACKGROUND

data IntValueF val = VInt Int
data BoolValueF val = VBool Bool
data StuckValueF val = VStuck

vint :: (IntValueF ≺: valf)⇒ Int → FixD valf
vint i = inject (VInt i)
vbool :: (BoolValueF ≺: valf)⇒ Bool → FixD valf
vbool b = inject (VBool b)
vstuck :: (StuckValueF ≺: valf)⇒ FixD valf
vstuck = inject VStuck

Figure 2.8: Modular value datatype

add :: (ArithF ≺: expf)⇒ FixD expf → FixD expf → FixD expf
add a b = inject (AddF a b)

that construct terms of any abstract super-functor expf of ArithF . This is
essential for modularity and reuse. We can define terms using the smart-
constructors, but constructing a value of a specific fixed-point datatype is
delayed. With these smart constructors the above example term becomes

ex1 ′ :: (ArithF ≺: expf)⇒ FixD expf
ex1 ′ = lit 3 ‘add ‘ lit 4

The project function is a variation of prj that strips the constructor of the
fixed-point type FixD . Similarly to injections, we can automate projections
for coproducts by adding corresponding definitions to the instances above.

2.2.3 Semantic Functions

In this section we define evaluation for arithmetic and boolean expressions
modularly. We use another modular datatype to represent values. Its signa-
tures and smart-constructors are given in Figure 2.8. The signature StuckValueF
represents a sentinel value to signal type errors during evaluation.

If f is a functor, we can fold over any value of type FixD f as follows:

type Algebra f a = f a → a
foldD :: Functor f ⇒ Algebra f a → FixD f → a
foldD f (InD x) = f (fmap (foldD f) x)

2.2. DATATYPES À LA CARTE 31

class FAlgebra name f a where
f algebra :: name → Algebra f a

algebraPlus :: Algebra f a → Algebra g a → Algebra (f ⊕ g) a
algebraPlus f g (Inl a) = f a
algebraPlus f g (Inr a) = g a

instance (FAlgebra name f a,FAlgebra name g a)⇒
FAlgebra name (f ⊕ g) a where

f algebra name = algebraPlus (f algebra name) (f algebra name)

Figure 2.9: Function algebra infrastructure

An algebra specifies one step of recursion that turns a value of type (f a)
into the desired result type a. The fold uniformly applies this operation to an
entire term. All semantic functions over a modular datatype are written as
folds of an algebra.

Using type classes, we can define and assemble algebras in a modular fash-
ion. The class FAlgebra in Figure 2.9 carries an algebra for a functor f and
carrier type a. It is additionally indexed over a parameter name to allow defi-
nitions of distinct functions with the same carrier. For instance, functions for
calculating the size and the height of a term can both be defined using Int as
the carrier.

We use the name Eval to refer to the evaluation algebra.

data Eval = Eval

The evaluation algebras are parameterized over an abstract super-functor valf
for values. In case of ArithF we require that integral values are part of valf
and for LogicF we require that boolean values are part of valf .

In the case of an AddF in the evaluation algebra for arithmetic expressions
we need to project the results of the recursive calls to test whether integral
values were produced. Otherwise a type error occurs and the stuck value is
returned.

instance (IntValueF ≺: valf ,StuckValueF ≺: valf)⇒
FAlgebra Eval ArithF (FixD valf) where

f algebra Eval (LitF i) = vint i
f algebra Eval (AddF a b) = case (project a, project b) of

32 CHAPTER 2. BACKGROUND

(Just (VInt a), Just (VInt b))→ vint (a + b)
→ vstuck

Similarly, we have to test the result of the recursive call of the condition of an
If F term for boolean values.

instance (BoolValueF ≺: valf ,StuckValueF ≺: valf)⇒
FAlgebra Eval LogicF (FixD valf) where

f algebra Eval (BLitF b) = vbool b
f algebra Eval (If F c t e) = case project c of

Just (VBool b)→ if b then t else e
→ vstuck

Function algebras for different signatures can be combined to get an algebra
for their coproduct. The necessary instance declaration is also given in Figure
2.9. Finally, we can define an evaluation function for terms given an FAlgebra
instance for Eval .

J·K :: (Functor expf ,FAlgebra Eval expf (FixD valf))⇒
FixD expf → FixD valf

J·K = foldD (f algebra Eval)

2.3 Reasoning à la Carte

Our goal is to extend the DTC’s approach from modular programming to in-
clude modular reasoning. In this Section, we give a brief overview of reasoning
in proof-assistants in general before moving towards modular reasoning in the
next Sections. Moreover, we also discuss restrictions of the proof-assistant set-
tings, which are necessary for logical consistency, but which prevents us from
porting the Haskell definitions to a proof-assistant directly.

2.3.1 Propositions as Types

Researchers in logic and computer science have discovered parallels between
logics and type systems for λ-calculi. For example, the connectives of proposi-
tional logic correspond to a simply-typed lambda calculus with some base type,
disjoint sums and cartesian products [Curry, 1934]. Hence types of the simply-
typed lambda calculus can also be interpreted as propositions in propositional

2.3. REASONING À LA CARTE 33

Implication A⇒ B Function A→ B
Disjunction A ∨B Disjoint sum A+B
Conjunction A ∧B Product A×B
Universal ∀x ∈ A.B[x] Dependent product Π(x:A)B(x)
Existential ∃x ∈ A.B[x] Dependent sum Σ(x:A)B(x)

Figure 2.10: Correspondences for propositional and predicate logic

logic. Figure 2.10 shows several logical connectives and their type counter-
parts. Moreover, a program of a particular type encodes a constructive proof
of the corresponding proposition. Hence proving is just programming.

This correspondence is not limited to propositional logic and simple types,
but has been observed for a variety of logics: propositional, predicate, second-
order, intuitionistic, classical, modal, and linear logics. It is also known as
the Curry-Howard correspondence or the propositions-as-types interpretation.
[Wadler, 2015] gives a nice write-up and a historic account.

This correspondence serves as the basis for many type-theory based proof-
assistant like Agda, Coq, NuPRL and Twelf. These systems support in partic-
ular dependent-types which correspond to universal and existential quantifiers
in predicate logic (see Figure 2.10, bottom) that allows us to implement com-
plex mathematical properties.

2.3.2 Induction Principles

Another feature commonly found in proof-assistants are inductive datatype
definitions and reasoning about values of inductive types via recursion. As an
example, consider a definition of natural numbers and addition:

data Nat = Zero | Succ Nat

plus :: Nat → Nat → Nat
plus Zero n = n
plus (Succ m) n = Succ (plus m n)

To prove a simple proposition like the right-neutrality of Zero we can write
a function that follows the recursive structure of the plus function:

plusZero :: ∀m :: Nat .plus m Zero = m
plusZero Zero = Refl
plusZero (Succ m) = cong Succ (plusZero m)

34 CHAPTER 2. BACKGROUND

In the same way we implement functions using recursion schemes in pro-
gramming, we can implement proofs using similar schemes. These schemes are
called induction schemes or induction principles. For example, for the natural
numbers we can implement the following induction principle:

indNat ::
∀P :: Nat → Prop.

P Zero →
(∀m :: Nat .P m → P (Succ m))→
∀m :: Nat .P m

indNat P pzero psucc = go
where

go :: ∀m :: Nat .P m
go Zero = pzero
go (Succ m) = psucc (go m)

Notice the similarity to the natural number fold. In fact, indNat is a
dependent version of the fold. The second and third argument, named pzero
and psucc after the corresponding constructors, are called the proof algebra
analogously to the term algebra used for folds. Analogously to re-implementing
plus using folds, we can reimplement plusZero using the induction principle:

plusZero2 :: ∀m :: Nat .plus m Zero = m
plusZero2 = indNat (λm → plus m Zero = m) Refl (cong Succ)

Induction principles give us a way to open the recursive structure of proofs.
Hence, we can implement modular induction proofs in the same style as we
implement modular functions. The latter are expressed in terms of modular
algebras and a generic fold operator. Similarly, the former are expressed in
terms of modular proof algebras and a generic induction principle.

2.3.3 Strict Positivity

Unfortunately, we cannot directly translate the generic definition of the Datatypes
à la Carte approach of Section 2.2, namely the type-level fixpoint, to a proof-
assistant. These assistants commonly require all datatype definitions to be
strictly-positive so that all datatypes denote proper inductive definitions. Lift-
ing this restriction, i.e. allowing arbitrary non strictly-positive recursive datatypes,
renders the theory of the proof-assistant inconsistent [Chlipala, 2013].

We define strictly positive types (SPT) by using the following generative
grammar [Abbott et al., 2005]:

2.4. CHURCH ENCODINGS 35

τ ::= X | 0 | 1 | τ + τ | τ × τ | K → τ | µX.τ

where X ranges over type variables and K ranges over constant types, i.e. an
SPT with no free type variables. The constants 0 and 1 represent the empty
and unit types, the operators +, ×, → and µ represent coproduct, cartesian
product, exponentiation and least fixed point construction.

For FixD f from Section 2.2 to be strictly positive means that the argument
functor f has to be strictly-positive, i.e. it corresponds to a term built with
the above grammar with one free type variable.

As a counter example, inlining the non-strictly positive functor X 7→ (X →
Int)→ Int into FixD yields the datatype declaration

data NSP = NSP ((NSP → Int)→ Int)

This is a valid Haskell declaration, but it does not satisfy the positivity require-
ments and is hence rejected by Coq. While Coq can automatically determine
the positivity for any concrete functor by inspecting its definition, it cannot do
so for an abstract functor like the one that appears in the definition of FixD .
Hence, Coq conservatively rejects FixD .

Of course, we have no intention of using non-strictly positive functors for
our application and would like to provide the evidence of strict-positivity to the
fixpoint type constructor. Mini-Agda [Abel, 2010] for example allows program-
mers to annotate strictly-positive and negative positions of type constructors.
Unfortunately, Agda and Coq do not provide us with this possibility and a dif-
ferent approach is needed to define type-level fixed-points and fold operators.

2.4 Church Encodings

The Meta-Theory à la Carte (MTC) [Delaware et al., 2013] framework’s so-
lution to define type-level fixed-points in a proof-assistant setting is to use
Church encodings, or Böhm-Berarducci encodings to be precise [Böhm and
Berarducci, 1985], to encode strictly-positive algebraic datatypes.

2.4.1 Encoding Algebraic Datatypes

The untyped λ-calclus only provides functions as primitives. Yet, this is no
limitation as they can be used to encode other datatypes. This technique
was first used by Alonzo Church and is hence named Church encoding. For
instance, the Church encoding of natural numbers is known as Church numer-
als. The idea is that the Church numeral cn for the natural number n applies

36 CHAPTER 2. BACKGROUND

type FixC f = ∀a.Algebra f a → a

foldC :: Algebra f a → FixC f → a
foldC alg x = x alg

inC :: ∀f .Functor f ⇒ f (FixC f)→ FixC f
inC x = λalg → alg (fmap (foldC alg) x)

outC :: ∀f .Functor f ⇒ FixC f → f (FixC f)
outC = foldC (fmap inC)

inject :: (Functor g , f ≺: g)⇒ f (FixC g)→ FixC g
inject x = inC (inj x)
project :: (Functor g , f ≺: g)⇒ FixC g → Maybe (f (FixC g))
project x = prj (outC x)

Figure 2.11: Fixed-points and fold using Church encodings

a function s n-times to a value z similarly to how we get n by taking n-times
the successor of zero. We can construct the Church numeral for any concretely
given natural number:

c0 = λs.λz .z
c1 = λs.λz .s z
c2 = λs.λz .s (s z)
...

In other words, the n-th Church numeral corresponds to the fold over nat-
ural numbers instantiated for the number n. In fact, typing the above combi-
nators in Haskell yields the familiar type cn :: ∀a.(a → a) → a → a. Böhm
and Berarducci [1985] proved that such an encoding is not limited to simple
datatypes like the naturals, but that all strictly-positive (and parameterized)
datatypes can be encoded in System F in this fashion and proved that the
encoding is an isomorphism.

Specializing the type of DTC’s generic fold operator from Section 2.2

foldD :: Functor f ⇒ Algebra f a → FixD f → a

for a particular datatype FixD f yields the type Algebra f a → a that we use in
Figure 2.11 to define the type-level fixed-point combinator FixC for the Church

2.4. CHURCH ENCODINGS 37

encoding of that datatype. The generic fold operator foldC for this fixed-point
is simply the application of a value to the given algebra. We can also define one-
level folding inC and unfolding outC of the fixed-point which are also given
in Figure 2.11. These can in turn be used to define new inject and project
functions for the definition of smart constructors and feature specific algebras.
DTC’s machinery for taking the coproduct of functors and algebras carries
over to the new fixed-point unchanged. User-defined algebras for semantic
functions only need to be altered to use the new smart constructors.

2.4.2 Reasoning with Church Encodings

The Church encoding of strictly-positive types carries over to (and can be ex-
tended in) the Calculus of Constructions (CoC) [Pfenning and Paulin-Mohring,
1990]. However, proper structural induction principles for Church encodings
are not provable in CoC [Pfenning and Paulin-Mohring, 1990]. Such induction
principles have to be assumed as axioms instead. MTC side-steps this issue
and uses a weaker form of induction for which it adapts the proof methods
used in the initial algebra semantics of data types [Goguen et al., 1977; Mal-
colm, 1990] – in particular universal properties – to support inductive proofs
over Church encodings. Consider the type signature of the function indNat2
that represents an alternative induction principles for the natural numbers:

indNat2 ::
∀P :: Nat → Prop.

(pzero :: P Zero)→
(psucc :: ∀m :: Nat .P m → P (Succ m))→
Algebra NatF (∃m.P m)

The induction principle uses a dependent sum type to turn a proof algebra,
consisting of the functions pzero and psucc, into a regular algebra. The algebra
builds a copy of the original value and a proof that the property holds for the
copy. The proof for the copy can be obtained by folding with this algebra.
In order to draw conclusions about the original value two additional well-
formedness conditions have to be proven.

1. The proof-algebra has to be well-formed in the sense that it really builds
a copy of the original value instead of producing an arbitrary value of the
same type. This proof needs to be done only once for every induction
principle of every functor and is usually short and straightforward.

In the MTC framework, the well-formedness proof is about 20 LoC per

38 CHAPTER 2. BACKGROUND

feature and its use is completely automated using type-classes and hence
hidden from the user.

2. The fold operator used to build the proof using the algebra needs to be
a proper fold operator, i.e. it needs to satisfy the universal property of
folds.

type UniversalProperty (f :: ∗ → ∗) (e :: FixC f)
= ∀a (alg :: Algebra f a) (h :: FixC f → a).

(∀e.h (inC e) = alg h e)→
h e = foldC alg e

In an initial algebra representation of an inductive datatype, we have a
single implementation of a fold operator that can be proven correct. In
MTC’s approach based on Church encodings however, each value con-
sists of a separate fold implementation that must satisfy the universal
property.

Hence, in order to enable reasoning MTC must provide a proof of the
universal property of folds for every value of a modular datatype that is used
in a proof. This is mostly done by packaging a term and the proof of the
universal property of its fold in a dependent sum type.

type FixUP f = ∃(x :: FixC f).UniversalProperty f x

One of the main novelties of MTC is that this approach to induction also
gives us modularity: Proofs are written in the same modular style as functions.
These algebras are folded over the terms and can be modularly combined.

2.5 Mendler Folds

MTC encodes data types and folds with a variant of Church encodings based
on Mendler folds [Mendler, 1987, 1991; Uustalu and Vene, 2000]. The benefit of
this encoding is that we have more control over the evaluation: 1) it allows us
to explicitly define the evaluation order of recursive positions instead of relying
on the evaluation order of the meta-language and 2) model general-recursive
evaluation via bounded fixed-points.

Mendler Church Encodings In comparison to ordinary Church encodings,
the Mendler Church encodings (FixM f) differ in their use of Mendler alge-
bras (AlgebraM f a) instead of ordinary F -algebras as shown in Figure 2.12.

2.5. MENDLER FOLDS 39

type AlgebraM f a = ∀r .(r → a)→ f r → a
type Mixin r f a = (r → a)→ f r → a

type FixM f = ∀a.AlgebraM f a → a

foldM :: AlgebraM f a → FixM f → a
foldM alg fa = fa alg

Figure 2.12: Modular datatypes using Mendler-Church encodings

data LogicF e = BLit Bool | If e e e
type Value = Bool

ifAlg :: AlgebraM LogicF Value
ifAlg J·K (BLit b) = b
ifAlg J·K (If e1 e2 e3) = if Je1K then Je2K else Je3K
eval :: FixM LogicF → Value
eval = foldM ifAlg

Figure 2.13: Boolean expressions using Mendler-Church encodings

Mendler algebras take an additional function argument of type (r → a) for
their recursive calls. To enforce structurally recursive calls, arguments which
appear at recursive positions have a polymorphic type r . Using this polymor-
phic type prevents case analysis, or any type of inspection, on those arguments.
Mendler folds (foldM fa alg) are defined by directly applying a Church encoded
value fa to a Mendler algebra alg . All these definitions are non-recursive and
can thus be expressed in Coq.

The Mixin type slightly generalizes Mendler algebras by using an addi-
tional type parameter instead of the universal type quantification. This gener-
alization is useful for defining non-inductive language features such as general
recursion or higher-order binders.

Example As a simple example, consider a language for boolean expressions
supporting boolean literals and conditionals as shown in Figure 2.13.

The evaluation algebra ifAlg for this language takes the function argument
J·K for evaluating recursive positions. Hence the recursive calls are explicit.

40 CHAPTER 2. BACKGROUND

The evaluation function eval simply folds the ifAlg algebra.

Outlook In the following chapter we present a different approach to encod-
ing fixed-points and folds using universes and datatype-generic programming
that overcomes several shortcomings of MTC’s use of Church encodings: it is
entirely predicative, admits proper strong induction principles and does not
require well-formedness proofs for proof algebras.

Chapter 3
Modular Predicative Universes

The Datatypes à la Carte (DTC) approach is a Haskell solution for modular
programming in Haskell. However, as outlined in Section 2.3 the transition
to a proof-assistant, for modular reasoning, comes with major hurdles. DTC
relies on a general fixed point combinator to define fixed points for arbitrary
functors and uses a generic fold operation that is not structurally recursive.
To keep logical consistency Coq applies conservative restrictions and rejects
both: a) DTC’s type level fixed-points because it cannot see that the defini-
tion is always strictly-positive, and b) DTC’s fold operator because it cannot
determine termination automatically.

Meta-Theory à la Carte (MTC) [Delaware et al., 2013] solves both prob-
lems by using extensible Church encodings. However, MTC’s use of Church
encodings leaves much to be desired. This chapter discusses the problems that
Church encodings bring with them in terms of reasoning and presents an al-
ternative implementation of MTC based on a predicative universe of strictly-
positive functors instead of Church encodings. The universe admits generic
definitions of folds and proper strong induction that fulfill Coq’s conservative
restrictions.

Outline We first discuss the drawbacks of using Church encodings in Sec-
tion 3.1 to motivate their replacement. Section 3.2 presents the approach to
modularized induction for our new representation. This results in a differ-
ent user-facing interface than MTC’s for modular reasoning. In particular, the
representation of proof algebras is significantly different from the one used with

41

42 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

MTC’s weak induction principle and closer to standard structural inductive
reasoning. We discuss the universe of container types in Section 3.5 which is
modular and which admits datatype-generic generic definitions of folds and
induction that we use to generically instantiate our interface. The universe of
containers is very large and admits only a small number of generic functions.
As a complement, we discuss the universe of polynomial functors in Section
3.6, which admits more generic functions like generic equality, and show how to
embed it in the universe of containers which provides us with additional reuse
opportunities. We compare the universe basec solution directly with MTC’s
Church encoding solution in Section 3.7 using a port of MTC’s case study.

3.1 Motivation

The MTC framework uses Church encodings to represent modular datatypes.
Unfortunately Church encodings have multiple drawbacks when it comes to
reasoning:

1. Church encodings are inherently impredicative and thus MTC has to rely
on on an impredicative sort. Hence it is forced to use Coq’s impredicative-set
option. However, this option is inconsistent with standard axioms of
classical logic like the law of excluded middle and double negation elim-
ination. This also restricts the approach to systems that allow impred-
icative encodings and hence rules out systems that are fully predicative
like Agda.

2. The fixed-point combinator provided by Church encodings admits too
many functors. For inductive reasoning, only strictly-positive functors
are valid, i.e, those functors whose fixed-points are inductive datatypes.
Yet, Church encodings do not rule out other functors. Hence, in order
to reason only about inductive values, MTC requires a witness of induc-
tivity: the universal property of folds. Since every value comes with its
own implementation of the fold operator, MTC needs to keep track of
a different such witness for every value. It does so by decorating each
value with its witness with the help of a Σ-type.

As a result of this decoration, the user is confronted with a mix of dec-
orated and un-decorated values. This obviously impairs the readability
of the code, but also creates confusion about which variant is the proper
one to use when stating propositions. Moreover, since proofs are opaque
in Coq, it also causes problems for equality of terms. Finally, the deco-
ration makes it unclear whether MTC adequately encodes fixed-points.

3.2. DECLARATIVE SPECIFICATION 43

3. Böhm and Berarducci’s isomorphism of strictly-positive datatypes and
their Church encodings in System F [Böhm and Berarducci, 1985] is a
purely meta-theoretic result. Hence, we have the guarantee that an in-
duction principle exists for Church encodings of strictly-positive datatypes,
yet Coq’s theory is not powerful enough to prove this for Church encod-
ings directly expressed in Coq.

MTC relies on a poor-man’s induction principle instead and requires the
user to provide additional well-formedness proofs. Even though these
can be automated with proof tactics, they nevertheless complicate the
use of the framework.

We take an alternative approach by applying well-known datatype-generic
programming (DGP) techniques to represent modular datatypes, to build func-
tions from functor algebras with generic folds and to compose proofs from proof
algebras by means of generic induction. This overcomes the above shortcom-
ings:

1. It does not assume impredicative-set or any axioms other than stan-
dard functional extensionality.

2. A witness of inductivity is always associated with the type, i.e. a type-
class instance that holds the universe code for a functor, and not with
values.

3. The generic induction principle is a proper one that does not rely on any
additional well-formedness conditions. Moreover, for some functionality
and proofs, our approach can achieve more reuse than MTC: instead of
composing modular components we provide a single generic definition
once and for all.

Another difference with MTC is that we split the solution into a frontend
and a backend part . Both parts are connected via a declarative specification
of functors, fixed-points, folds and induction principles. The frontend extends
the specification with support for modularity to form the user-facing interface
and the backend is an implementation of the specification in terms of container
types.

3.2 Declarative Specification

Similar to DTC and MTC our approach relies on fixed-points of functors to
model datatypes, folds to implement functions on datatypes and on abstraction

44 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

class Functor f ⇒ PFunctor f where
type All :: ∀a.(a → Prop)→ f a → Prop
all fmap :: ∀a b (g :: a → b) (p :: b → Prop) (xs :: f a).

All f a p (fmap g xs)↔
All f a (λx → p (g x)) xs

type PAlgebra f a (alg :: Algebra f a) (p :: a → Prop) =
PFunctor f ⇒ ∀(xs :: f a).All f a p xs → p (alg xs)

class PFunctor f ⇒ SPF (f :: ∗ → ∗) where
-- Fixed-points

type FixF :: ∗
inF :: f (FixF f)→ FixF f
outF :: FixF f → f (FixF f)
in out inverse :: ∀(e :: FixF f). inF (outF e) = e
out in inverse :: ∀(e :: f (FixF F)).outF (inF e) = e

-- Folds
fold :: ∀a.Algebra f a → FixF f → a
fold uniqueness :: ∀a (alg :: Algebra f a) h.

(∀e.h (inF e) = alg (fmap h e))→
∀x .h x = fold alg x

fold computation :: ∀a (alg :: Algebra f a) (x :: a),
fold alg (inF x) = alg (fmap (fold alg) x)

-- Induction
ind :: ∀(p :: FixF f → Prop).PAlgebra inF p → ∀e.p e

Figure 3.1: Strictly-positive functor class

over super-functors and super-algebras to achieve modularity in programming
and reasoning. We do not lump all of these concepts together in one interface
because the modular composition of signature functor, function algebras and
proof algebras is not an essential part of the fixed-point construction. The
only concern for the fixed-point construction in our interface is the support for
modularity through opening up the recursion. We therefore separate the code
concerning fixed-points into a backend layer and abstract over its implemen-
tation by defining a declarative specification of fixed-points and related defi-
nitions of algebras, folds, proof algebras and induction. This section describes
the declarative specification and Section 3.5 presents a backend implementa-

3.2. DECLARATIVE SPECIFICATION 45

tion based on container types. The user-facing frontend differs from MTC
mainly in the use of modular proof algebras and modular induction principles.
These differences are discussed in Section 3.4.

The SPF type class in Figure 3.1 is a core part of the interface that serves
as a declarative specification of our requirements on functors and carries the
required evidence. We discuss each concept that appears in the type class in
turn starting with the programming related parts.

3.2.1 Fixed-Points

While we need the existence of a fixed-point type of abstract super-functors,
it is inessential how this is constructed. This means that instead of providing
a generic fixed-point type constructor like FixD we can alternatively provide
a witness of the existence of a valid fixed-point in the type class, i.e. we make
the fixed-point an associated type of the SPF type class. We thereby delay the
problem of defining the fixpoint until the final signature functor composition
is created. At this point the user can either use the generic fixed-point combi-
nator that we define in Section 3.5 or even define his own. SPF also includes
the initial algebra function inF and its inverse outF as members to fold/unfold
one layer of the fixed-point. Furthermore, the members in out inverse and
out in inverse are witnesses that folding/unfolding of the fixpoint type form
inverse operations.

3.2.2 Fold Operator

SPF is a subclass of Functor so we would like to define a generic fold operator
similar to DTC’s operator foldD from Section 2.2.

foldF :: SPF f ⇒ Algebra f a → FixF f → a
foldF alg = alg ◦ fmap (foldF alg) ◦ outF

Unfortunately, this definition is not structurally recursive and Coq is not able
to determine its termination automatically. Hence, this definition is rejected.
This is similar to the problem of FixF . For any concrete functor we can inline
the definition of fmap to let foldF pass the termination check, but again we
are working with an abstract functor f and an abstract functorial mapping
fmap. We resolve this similarly by including a witness for the existence of a
valid fold operator in the SPF class and also witnesses that the fold operator
satisfies the universal property of folds.

46 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

3.3 Declarative Specification of Induction

The SPF typeclass also provides an interface for inductive reasoning in terms
of an induction principle. In general, the type of an induction principle depends
on the number of constructors of a datatypes and their arities which makes a
generic definition difficult.

For example, consider the induction principle indA for arithmetic expres-
sions:

indA :: ∀(p :: Arith → Prop).
∀(hl :: ∀n. p (Lit n))).
∀(ha :: ∀x y .p x → p y → p (Add x y))).
∀(x :: Arith).p x

It takes a proposition p as parameter and inductive steps hl and ha for each
case. We say that hl and ha together form a proof algebra of p. An inductive
step consists of showing that p is preserved during one level of construction of a
value, i.e. showing that p holds for an application of a constructor given proofs
of p for all recursive positions. In case of a literal we have no recursive positions
and in case of addition we have two. Proof algebras for other datatypes differ
in the number of cases and the number of recursive positions.

For a generic definition of induction, we first need to develop a uniform
representation of induction which effectively boils down to developing a uni-
form representation of proof algebras which is the subject of the remainder of
this section.

3.3.1 All-Modalities

We first focus on the inputs of the proof algebra functions, i.e. the proofs
that the induction predicate holds for recursive positions. We use an all-
modality [Benke et al., 2003; Morris, 2007] for signature functors to capture
these proofs. Informally, the all-modality of a functor f and a predicate (p ::
a → Prop) is a new type (All a p ::f a → Prop) that denotes that the predicate
p holds for each (x :: a) in an (f a).

Example: Arithmetic Expressions The following type ArithAll is an ex-
ample of an all-modality for the signature functor ArithF of arithmetic expres-
sions. The constructor ALit encodes that the all-modality holds for literals
and AAdd encodes that the all-modality holds for (Add x y) if p holds for
both recursive positions x and y .

3.3. DECLARATIVE SPECIFICATION OF INDUCTION 47

data ArithAll a p :: ArithF a → Prop where
ALit :: ArithAll a p (LitF n)
AAdd :: p x → p y → ArithAll a p (AddF x y)

Using the all-modality definition we can write indA equivalently as

indA′ :: ∀(p :: Arith → Prop).
∀(h :: ∀(xs :: ArithF Arith).ArithAll a p xs → p (inArith xs)).
∀(x :: Arith).p x

The induction principle now takes a single argument h that represents the proof
algebra independent of the number of cases and arity of constructors. Notice
in particular the result of h. The constructor applications in the result of the
proof algebra functions of indA are now combined into a single application of
the initial algebra inArith of ArithF with carrier Arith:

inArith :: ArithF Arith → Arith
inArith (LitF n) = Lit n
inArith (AddF x y) = Add x y

Comparison to MTC The all-modality ArithAll shares the structure of
its functor ArithF , reminiscent of ornamentation [McBride, 2010]. In fact,
we can represent it using the functor ArithF as witnessed by the following
isomorphism:

∀(a :: ∗) (p :: a → Prop).
(∃ (xs :: ArithF a).ArithAll a p xs) ∼= (ArithF (∃ (x :: a).p x))

If access to the index xs is needed, as for example for the induction principles,
we can relate the existentially quantified values via an equation:

∀(a :: ∗) (p :: a → Prop) (xs :: ArithF a).
(ArithAll a p xs) ∼= (∃ (ps :: ArithF (∃ x .p x)).fmap projT 1 ps ≡ xs)

where (projT 1 :: (∃ (x :: a).p x)→ a) projects a Σ-type to its first component.
This suggests, that we can define all-modalities generically without requiring
the definition of a separate type. Indeed, MTC uses the right-hand sides of
both of the above isomorphisms:

1. The first, existentially quantified variant is used generally for proof al-
gebras. This is a choice that follows directly from MTC’s weak in-
duction principle. The constraint on the existential values is proved

48 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

by means of a intricate well-formedness requirement for proof algebras
(palg :: Algebra ArithF (∃ x .p x)):

∀(xs :: ArithF (∃ x .p x)).
projT 1 (palg xs) ≡ inject (fmap projT 1 xs)

which expresses that the algebra behaves like a sub-algebra of the

initial algebra. This well-formedness proof can be done once for a sig-
nature functor and subsequently reused for any proof algebra of that
functor, but, the user is still required to keep track of well-formedness
properties.

2. The second, equationally constrained variant is used to track the uni-
versal property of recursive positions. Unfortunately, MTC does not use
all-modalities as an abstract concept and simply works with the generic
definition directly. As a consequence, often both the decorated value ps
and the undecorated one xs are in scope, creating additional noise for
the user.

PFunctor Class To counter the proliferation of Σ-types and projections out
of Σ-types we do not introduce a generic definition of an all-modality in our
interface and work with an abstraction instead. To this end, we introduce
a new typeclass PFunctor that carries the associated all-modality type and
make SPF a subclass of it.

All-modalities share the structure of their associated functors. For example,
the mapping of a functor f generalizes to a dependent variant:

amap :: ∀(a :: ∗) (p :: a → Prop).(∀(x :: a).p x)→ (∀xs.All f a p xs)

The function amap can be used to define an induction operator in the same
way that fmap can be used to define a fold operator. However, the same
caveats apply: it is not obvious that this is a terminating definition. We adopt
a similar solution as for fold : inline amap in the definition of the induction
operator. Hence, because we have no use for amap other than in the induction,
it is unnecessary to include it in the interface.

We include however one property all fmap that is underlying the general-
ization of the fmap fusion law:

3.3. DECLARATIVE SPECIFICATION OF INDUCTION 49

(x :: f a)
fmap g

//

amap a (p◦g) (q◦g)
,,

f b
amap b p q

// All f b p (fmap g x)

∼=
All f a (p ◦ g) x

all fmap expresses the propositional equivalence of the types on the right
side, albeit without a proof that these form an isomorphism. This property
is used to derive another induction principle on pairs instead of single val-
ues which in turn is used to encode proof algebras of properties of equality
functions.

3.3.2 Proof Algebras

In the Arith example, the induction principle ind A′ now takes a uniformly
represented proof algebra as a single parameter h. Note that h shows that p
holds for an application of the initial algebra inArith . In the modular setting
however, we want to provide proofs for sub-algebras of the initial algebra, or
more generally, of any (not necessarily initial) algebra.

As an example, consider the combined arithmetic and logical expressions
from Figure 2.5 in Section 2.2 with signature functor (ArithF ⊕ LogicF). The
induction principle for the non-modular datatype Exp has the type

indExp :: ∀(p :: Exp → Prop).
∀(hl :: ∀n. p (Lit n))).
∀(ha :: ∀x y . p x → p y → p (Add x y))).
∀(hb :: ∀b. p (BLit b))).
∀(hi :: ∀x y z .p x → p y → p z → p (If x y z))).
∀(x :: Exp).p x

For the purpose of modularity, we want to represent the proof algebras of
specific features, i.e. signature sub-functors, separately and combine these
proof sub-algebras to a complete proof algebra for the initial algebra. The
result type of proof sub-algebras needs to be a value of the fixed-point type.
Hence, we inject the signature sub-functor, e.g. ArithF , into the complete
signature functor, e.g. (ArithF ⊕ LogicF), and then apply the initial algebra;
this is exactly what is performed by inject . We can thus rewrite the above
induction principle into one which uses the uniform representation for each
feature.

50 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

instance (PFunctor f ,PFunctor g)⇒ PFunctor (f ⊕ g) where
type All a p xs = case xs of

Inl xs → All a p xs
Inr xs → All a p xs

all fmap = ...

class PFunctor f ⇒
ProofAlgebra f a (alg :: Algebra f a) (p :: a → Prop)

where
palgebra :: PAlgebra f a alg p

instance (ProofAlgebra f a falg p,ProofAlgebra g a galg p)⇒
ProofAlgebra (f ⊕ g) a (algebraPlus falg galg) p where

palgebra (Inl xs) axs = palgebra xs axs
palgebra (Inr xs) axs = palgebra xs axs

Figure 3.2: Modular composition of proofs

indExp′ :: ∀(p :: Exp → Prop).
∀(ha :: ∀(xs :: ArithF Exp).ArithAll Exp p xs → p (inject xs)).
∀(hl :: ∀(xs :: LogicF Exp).LogicAll Exp p xs → p (inject xs)).
∀(x :: Exp).p x

We will discuss how the proof sub-algebras can be composed into a proof-
algebra for the intial algebra in Section 3.4.

3.3.3 Induction Operator

As discussed above, just like with fold , the generic definition of the induction
operator for abstract functors is not structurally recursive and we apply a
similar solution to solve it: we delay the problem of defining induction to the
point where the final composition is made and require its existence by adding
an induction operator ind as a member of the SPF class. The ind operator
takes a property p of a and a proof algebra for the initial algebra and constructs
a proof for every value of FixF .

3.4. MODULARITY FRONTEND 51

3.4 Modularity Frontend

The modular composition of signatures and semantic functions in our ap-
proach, based on co-products of functors, is the same as in DTC and MTC
and carries over largely unchanged to our declarative specification. Therefore
we discuss only the composition of modular proofs in this section.

Figure 3.2 contains the instance of the PFunctor class for a co-product
(f ⊕ g). For both, the associated type All and the property all fmap a simple
case distinction is sufficient.

We use the type class ProofAlgebra, also shown in Figure 3.2, to define and
assemble proof algebras in a modular fashion. The parameter f represents the
underlying functor, a the carrier type, alg the underlying f -algebra and p a
property of the carrier.

In the definition of the ProofAlgebra instance for functor composition we
use the function algebraPlus from Figure 2.9 in Section 2.2.3 to composes the
two function algebras falg and galg which also forms the implementation of
the FAlgebra instance for co-products. To avoid any coherence concerns, we
assume that algebras are always composed using algebraPlus – or equivalently
the FAlgebra instance for composition.

3.4.1 Non-Modularity of SPF

When instantiating modular functions to a specific set of signatures, we need
an SPF instance for the coproduct of that set. Ideally, as with algebras, we
would like to derive an instance for f ⊕ g given instances for f and g , because
we cannot expect the programmer to provide an instance for every possible
set of signatures.

Unfortunately, SPF does not include enough information about the func-
tors to do this in a constructive way. We cannot construct the fixed-point
of the coproduct f ⊕ g from the fixed-points of the summands f and g and
likewise for the fold and induction operators. Therefore SPF serves solely as
a high-level interface class.

In Section 3.5 we develop an approach that side-steps this issue. Instead
of composing fixed-points, folds and induction along coproducts of arbitrary
SPF s, we focus on the class of containers which are strictly-positive functors
that are 1) closed under coproducts and 2) allow a generic instantiation of
SPF ’s interface.

52 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

data ArithF a = LitF Nat | AddF a a
deriving Functor

data ArithAll (a :: ∗) (p :: a → ∗) :: ArithF a → ∗where
ALitF :: ∀(n :: Nat).ArithAll a p (LitF n)
AAddF :: ∀(a1 a2 :: a).p a1 → p a2 → ArithAll a p (AddF a1 a2)

instance PFunctor ArithF where
type All ArithF a = ArithAll a
all fmap = ...

data LogicF a = BLitF Bool | If F a a a
deriving Functor

data LogicAll (a :: ∗) (p :: a → ∗) :: LogicF a → ∗where
ABLitF :: ∀(b :: Bool).ArithAll a p (BLitF b)
AIfF :: ∀(i t e :: a).p i → p t → p e → ArithAll a p (If F i t e)

instance PFunctor LogicF where
type All LogicF a = LogicAll a
all fmap = ...

Figure 3.3: Arithmetic and logical expressions

3.4.2 Example: Depth vs. Size

In this section we develop a complete example to showcase how the previous
definitions work. We reuse one of [Pierce, 2002] basic examples of structural
induction: Define a depth and a size function on expressions and show that
the depth is always smaller than the size. We compose expressions out of
two features that we define independently: arithmetic and logical expressions.
Figure 3.3 shows the signature functors ArithF (top) and LogicF (bottom) for
the two features, their all-modalities and PFunctor instances.

To avoid giving away the generic definition of fixed-points, folds and in-
duction from Section 3.5, we simply instantiate the SPF class manually with
the non-modular datatype definition of expressions that contains both arith-
mentic and logical expressions. The datatype and the SPF instance are show
in Figure 3.4.

Figure 3.5 shows the modular definition of the two semantic functions
depthOf and sizeOf . Each feature/function combination has a separate named

3.4. MODULARITY FRONTEND 53

type ExpF = ArithF ⊕ LogicF
data Exp = Lit Nat | Add Exp Exp | BLit Bool | If Exp Exp Exp

instance SPF ExpF where
type FixF ExpF = Exp
inF (Inl (LitF n)) = Lit n
inF (Inl (AddF a1 a2)) = Add a1 a2

inF (Inr (BLitF b)) = BLit b
inF (Inr (If F i t e)) = If i t e
outF (Lit n) = Inl (LitF n)
outF (Add a1 a2) = Inl (AddF a1 a2)
outF (BLit b) = Inr (BLitF b)
outF (If i t e) = Inr (If F i t e)
inoutinverse = ...
outininverse = ...
fold alg (Lit n) = alg (Inl (LitF n))
fold alg (Add a1 a2) = alg (Inl (AddF (fold alg a1) (fold alg a2)))
fold alg (BLit b) = alg (Inr (BLitF b))
fold alg (If i t e) =

alg (Inr (If (fold alg i) (fold alg t) (fold alg e)))
folduniqueness = ...
foldcomputation = ...
ind = ...

Figure 3.4: SPF instance for expressions

FAlgebra instance and the semantic functions themselves are defined as a fold
over the fixed-point of any signature functor for which an FAlgebra exists,
including the combined ExpF signature functor of arithmetic and logical ex-
pressions.

Similarly, Figure 3.6 defines proof algebra instances of DepthSize for each
feature separately. We omit the proofs for brevity. The final proof depthSize
is again overloaded: we get the property for the fixed-point of any signature
functor with a DepthSize proof algebra instance.

54 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

data DepthOf = DepthOf
depthOf :: (SPF f ,FAlgebra DepthOf f Nat)⇒ FixF f → Nat
depthOf = fold (falgebra DepthOf)

instance FAlgebra DepthOf ArithF Nat where
falgebra DepthOf (LitF n) = 0
falgebra DepthOf (AddF a1 a2) = 1 + max a1 a2

instance FAlgebra DepthOf LogicF Nat where
falgebra DepthOf (BLitF n) = 0
falgebra DepthOf (If F i t e) = 1 + max i (max t e)

data SizeOf = SizeOf
sizeOf :: (SPF f ,FAlgebra SizeOf f Nat)⇒ FixF f → Nat
sizeOf = fold (falgebra SizeOf)

instance FAlgebra SizeOf ArithF Nat where
falgebra SizeOf (LitF n) = 1
falgebra SizeOf (AddF a1 a2) = 1 + a1 + a2

instance FAlgebra SizeOf LogicF Nat where
falgebra SizeOf (BLitF n) = 0
falgebra SizeOf (If F i t e) = 1 + i + t + e

Figure 3.5: Modular semantic functions

3.5 Containers

The type-class SPF of Section 3.2 captures all the requirements on abstract
functors for modular programming. We can modularly compose algebras and
proof algebras for semantics functions and proofs. However, as discussed in
Section 3.4.1 SPF itself is not modular in the sense that we cannot construct
coproducts (directly). In the example in Section 3.4.2 we avoided that issue
by manually giving the instance of the SPF class for the sum of the signa-
ture functors ArithF and LogicF . This is essentially the approach taken by
[Schwaab and Siek, 2013].

In this section we go the last mile and implement a modular refinement
of SPF using datatype-generic programming (DGP) in general and containers
in particular. The problem of defining fixed-points for a class of functors also
arises in many approaches to DGP and we can use the same techniques in our

3.5. CONTAINERS 55

type DepthSize e = depthOf e < sizeOf e
depthSize :: (SPF f ,FAlgebra DepthOf f Nat ,

FAlgebra SizeOf f Nat ProofAlgebra f (FixF f) inF DepthSize)⇒
∀(e :: FixF f).DepthSize e

depthSize = ind f DepthSize (palgebra f (FixF f) inF DepthSize)

instance (SPF f , ...)⇒
ProofAlgebra ArithF (FixF f) inject DepthSize

where
palgebra (ALitF n) = ...
palgebra (AAddF a1 a2 p1 p2) = ...

instance (SPF f , ...)⇒
ProofAlgebra LogicF (FixF f) inject DepthSize

where
palgebra (ABLitF b) = ...
palgebra (AIfF a1 a2 p1 p2) = ...

Figure 3.6: Modular DepthSize proof

setting. Containers are one approach to DGP that models a class of functors
which is 1) closed under coproducts 2) and admits a generic implementation of
SPF ’s methods that respects all the restrictions of the proof-assistant setting.

Section 3.5.1 discusses universes in general and Section 3.5.2 and Section
3.5.2 reviews the universe of containers in particular. Sections 3.5.3, 3.5.4
and 3.5.5 discuss the implementation of coproducts, fixed-points & folds and
induction respectively. Finally in Section 3.5.6 we bridge the gap to modular
programming. We show how Functor , PFunctor and SPF are instantiated by
containers and discuss the automation for composing the container instances
of a set of signature functors.

3.5.1 Generic Universes

In a dependently-typed setting it is common to use a universe for generic
programming [Altenkirch and McBride, 2003; Altenkirch et al., 2007; Benke
et al., 2003]. A universe consists of two important parts:

1. A set Code of codes that represent types in the universe.

2. An interpretation function Ext that maps codes to types.

56 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

data Cont where
(.) :: (s :: ∗)→ (p :: s → ∗)→ Cont

shape (s . p) = s
pos (s . p) = p

data Ext (c :: Cont) (a :: ∗) where
Ext :: (s :: shape c)→ (pos c s → a)→ Ext c a

Figure 3.7: Container extension

There is a large number of approaches to DGP that vary in the class of types
they can represent and the generic functions they admit. For our application
we choose the universe of containers [Abbott et al., 2005].

An important property of the container universe is that it can represent all
strictly-positive functors [Abbott et al., 2005] and allows folds and induction
to be implemented generically. Hence, we meet our goal and do not loose any
expressivity.

In Section 3.6 we discuss the universe of polynomial functors. it is a sub-
universe of containers in the sense that any polynomial functor is also a con-
tainer, but the universe admits more generic functions. We use this universe to
supplement our approach with a generic implementation of equality in Section
3.6.3 to achieve more reuse.

3.5.2 Container Universe

The codes of the container universe are of the form S . P where S denotes a
type of shapes and P :: S → ∗ denotes a family of position types indexed by
S . The extension Ext c of a container c in Figure 3.7 is a functor. A value
of the extensions Ext c a consists of a shape s :: shape c and for each position
p :: pos c s of the given shape we have a value of type a. We can define the
functorial mapping gfmap generically for any container.

gfmap :: (a → b)→ Ext c a → Ext c b
gfmap f (Ext s pf) = Ext s (λp → f (pf p))

Example The functor ArithF for arithmetic expressions can be represented
as a container functor using the following shape and position type.

3.5. CONTAINERS 57

data ArithS = LitS Int | AddS

data ArithP :: ArithS → ∗where
AddP1 :: ArithP AddS

AddP2 :: ArithP AddS

type ArithC = ArithS . ArithP

The shape of an ArithF value is either a literal Lit with some integer value or
it is an addition Add . In case of Add we have two recursive positions AddP1

and AddP2 . Lit does not have any recursive positions.
The isomorphism between ArithF and Ext ArithC is witnessed by the fol-

lowing two conversion functions.

from :: ArithF a → Ext ArithC a
from (Lit i) = Ext (LitS i) (λp → case p of { })
from (Add x y) = Ext AddS pf

where pf :: ArithP AddS → a
pf AddP1 = x
pf AddP2 = y

to :: Ext ArithC a → ArithF a
to (Ext (LitS i) pf) = Lit i
to (Ext AddS pf) = Add (pf AddP1) (pf AddP2)

Literals do not have recursive positions and hence we cannot come up with a
position value. In Coq one needs to refute the position value p ::ArithP (Lit i)
as its type is uninhabited. We use a case distinction without alternatives as
an elimination.

3.5.3 Coproducts

Given two containers S1 . P1 and S2 . P2 we can construct a coproduct. The
shape of the coproduct is given by the coproducts of the shape and the family
of position types delegates the shape to the families P1 and P2. Figure 3.8
contains the definitions of shape and positions of the coproduct and injection
functions on the extensions.

3.5.4 Fixpoints and Folds

The universe of containers allows multiple generic constructions. First of all,
the fixpoint of a container is given by its W-type.

data W (c :: Cont) = Sup {unSup :: Ext c (W c)}

58 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

type S+ = Either S1 S2

type P+ (Left s) = P1 s
type P+ (Right s) = P2 s

inl :: Ext (S1 . P1)→ Ext (S+ . P+)
inl (Ext s pf) = Ext (Left s) pf
inr :: Ext (S2 . P2)→ Ext (S+ . P+)
inr (Ext s pf) = Ext (Right s) pf

Figure 3.8: Container coproducts

The definition of Ext is known at this point and Coq can see that the W c is
strictly positive for any container c and hence the definition of W is accepted.

Furthermore, we define a fold operator generically.

gfold :: Algebra (Ext c) a →W c → a
gfold alg (Sup (Ext s pf)) =

alg (Ext s (λp → gfold alg (pf p)))

We have obtained this definition by taking the usual definition

gfold alg x =
alg (gfmap (gfold alg) (unSup x))

which is essentially the same as the definition of foldD from Section 2.2 and
inlining the implementation of gfmap. Because this exposes the structural
recursion, Coq accepts the definition. Indeed the recursive call gfold alg (pf p)
is performed on the structurally smaller argument pf p. Note that, unlike for
foldD , inlining is possible because gfmap is defined uniformly for all containers.

3.5.5 Induction

To define an induction principle for container types we proceed in the same
way as in Section 3.3 by defining proof algebras using an all-modality [Benke
et al., 2003]. The all-modality on containers is given generically by a Π-type
that asserts that q holds at all positions as shown in Figure 3.9.

As with the implementation of the generic fold operations, enough structure
is exposed to write a valid induction function: gind calls itself recursively on
the structurally smaller values pf p to establish the proofs of the recursive
positions before applying the proof algebra palg .

3.5. CONTAINERS 59

GAll :: (q :: a → Prop)→ Ext c a → Prop
GAll q (Ext s pf) = ∀(p :: pos c s).q (pf p)

gind :: ∀(c :: Cont)→
∀(q :: W c → Prop)→
∀(palg :: ∀xs.GAll q xs → q (Sup xs))→
∀x .q x

gind c q palg (Sup (Ext s pf)) =
palg (λp → gind c q palg (pf p))

Figure 3.9: Container induction

class Container (f :: ∗ → ∗) where
cont :: Cont
from :: f a → Ext c a
to :: Ext c a → f a
fromTo :: ∀x .from (to x) ≡ x
toFrom :: ∀x .to (from x) ≡ x

Figure 3.10: Container functor class

3.5.6 Container Class

Directly working with the container representation is cumbersome for the user.
As a syntactic convenience we allow the user to use any conventional functor
of type ∗ → ∗ as long as it is isomorphic to a container functor. The type
class Container in Figure 3.10 witnesses this isomorphism. The class contains
the functions from and to that perform the conversion between a conventional
functor and a container functor and proofs that these conversions are inverses.

Via the isomorphisms from and to we can import all the generic functions
to concrete functors and give instances for Functor , PFunctor , and SPF , which
are displayed in Figure 3.11.

The important difference to the SPF class is that we can generically build
the instance for the coproduct of two Container functors

instance (Container f ,Container g)⇒ Container (f ⊕ g)

60 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

instance Container f ⇒ Functor f where
fmap f = to ◦ gfmap f ◦ from

instance Container f ⇒ PFunctor f where
All q = GAll q ◦ from
all fmap = ...

instance Container f ⇒ SPF f where
FixF = W S P
inF = sup ◦ from
outF = to ◦ unSup
fold alg = gfold (alg ◦ to)
...

Figure 3.11: Container instances

by using the coproduct of their containers with the generic coproduct con-
struction from Section 3.5.3.

3.5.7 Extensible Inductive Relations

Many properties are expressed as relations over datatypes. These relations are
represented by inductive families where a constructor of the family corresponds
to a rule defining the relation.

When using relations over extensible datatypes the set of rules must be
extensible as well. For instance, a well-typing relation of values WTValue ::
(Value,Type) → Prop must be extended with new rules when new cases are
added to Value.

Extensibility of inductive families is obtained in the same way as for induc-
tive datatypes by modularly building inductive families as fixpoints of functors
between inductive families. The following indexed functor WTNatF covers the
rule that a natural number value has a natural number type.

data WTNatF (wfv :: (FixF vf ,FixF tf)→ Prop) ::
(Value,Type)→ Prop where
WTNat :: (NatValueF ≺: vf ,NatTypeF ≺: tf)⇒

WTNat wfv (vi n, tnat)

MTC constructs fixed points of indexed functors also by means of Church
encodings. The indexed variants of algebras and fixed points are

3.5. CONTAINERS 61

class IFunctor i (f :: (i → Prop)→ i → Prop) where
ifmap :: ∀(a :: i → Prop) (b :: i → Prop) (j :: i).

(∀j .a j → b j)→ f a j → f b j

class IFunctor i f ⇒
ISPF i (f :: (i → Prop)→ i → Prop) where

type IFix :: i → Prop
inIF :: ∀(j :: i).f (IFix f i)→ IFix f i
outIF :: ∀(j :: i).IFix f i → f (IFix f i)
ifold :: IAlgebra i f a → ∀j .IFix f j → a j

Figure 3.12: Indexed Strictly-Positive Functor Class

type IAlgebra i (f :: (i → Prop)→ i → Prop) a =
∀(j :: i).f a j → a j

type IFixM i (f :: (i → Prop)→ i → Prop) j =
∀a.IAlgebra i f a → a j

For type-soundness proofs we perform folds over proof-terms in order to es-
tablish propositions on the indices and hence make use of the fold operation
provided by Church encodings. However, contrary to inductive datatypes we
do not make use of propositions on proof-terms and hence do not need an
induction principle for them. This also means that we do not need to keep
track of the universal property of folds for proof-terms. Figure 3.12 defines the
type class ISPF that collects the necessary reasoning interface for modularly
building relations and indexed folds.

Since Prop is impredicative in Coq and induction-principles and univer-
sal properties are of no concern here, MTC’s approach to modular inductive
relations is sufficient for type-soundness proofs in Coq and we can univer-
sally instantiate ISPF with the definitions from MTC. However, other kinds
of meta-theoretic proofs may require induction principles for proof terms and
the approach is still limited to systems that support impredicativity.

Alternatively we can use a universe of indexed containers [Altenkirch and
Morris, 2009] that does not have the above restrictions. An indexed container
is essentially a container together with an assignment of indices for each shape
and each position of that shape.

More formally, an i -indexed container S . P . R is given by a family of
shapes S :: i → ∗ and family of position types P :: (j :: i) → S j → ∗ and

62 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

data ICont i where
(. .) :: (s :: i → ∗)→

(p :: ∀j .s j → ∗)→
(r :: ∀j s.p j s → i)→ ICont i

ishape (s . p . r) = s
ipos (s . p . r) = p
irec (s . p . r) = r

data IExt (c :: ICont i)
(a :: i → Prop) (j :: i) :: Prop where

IExt :: (s :: ishape c j)→
(pf :: ∀(p :: ipos c j s).a (irec c j s p))→
IExt c a j

data IW (c :: ICont i) (j :: i) :: Prop where
ISup :: IExt c IW j → IW c j

Figure 3.13: Indexed Containers

an assignment R :: (j :: i) → (s :: S j) → P j s → i of indices for positions.
Figure 3.13 gives the definition of the extension and the fixed point of an
indexed container. Similarly to containers, one can generically define a fold
operator for all indexed containers and construct the coproduct of two indexed
containers.

Fixed points and fold operators can be defined generically on that universe
similarly to Section 3.5.4. Indexed containers are also closed under coproducts
and indexed algebras can be modularly composed using type classes.

3.6 Polynomial Functors

When choosing an approach to generic programming there is a trade-off be-
tween the expressivity of the approach, i.e. the collection of types it covers, and
the functionality that can be implemented generically using the approach. The
container universe is a very expressive universe in the sense that it supports a
large class of types, but therefore the set of generic functions that can be imple-
mented for containers is limited. In the previous section we have implemented
generic functions for functorial mappings, fixed points, folds, induction and
generic proofs about their properties for each container functor. Containers

3.6. POLYNOMIAL FUNCTORS 63

class Eq a where
eq :: a → a → Bool
eqTrue :: ∀x y . eq x y = True → xs = ys
eqFalse :: ∀x y . eq x y = False → xs 6= ys

Figure 3.14: Equality type class

are therefore well-suited as a solution for modularly defining datatypes and
functions. But containers also include function types. Therefore any function-
ality that is not defined or decidable on function types cannot be implemented
generically for every container. An example of such functionality is equality,
which is in general not decidable for function types.

Other universes provide a different trade-off: they admit less types but
allow more generic functionality. In this section we look at a universe that
supports a generic implementation of equality testing and proofs about its
correctness. Equality testing is used for example in the MTC framework in
the implementation of a modular type-checker that tests if both branches of an
if expression have the same type and that the function and argument type of
a function application are compatible. Furthermore for reasoning about func-
tions that use equality testing we need proofs of its correctness. For example,
we want to prove that type-checked terms are indeed type-safe, i.e. they do
not get stuck during evaluation. We thus include the equality function and
the properties in an equality type class that is shown in Figure 3.14.

We choose the universe of univariate polynomial functors for the generic
implementation of equality because it is well-studied, since it usually forms the
basis of other datatype-generic programming approaches that take a sums-of-
products view [Jansson and Jeuring, 1997] on datatypes. It can also be encoded
in a lot of languages. For example the regular library [Van Noort et al., 2010;
Yakushev et al., 2009] is an implementation in Haskell. Furthermore it is
relatively easy to write instances for polynomial functors and a lot of signature
functors that come up in practice are indeed polynomial functors.

Polynomial functors are a sub-class of container functors; we use this fact to
integrate polynomial functors into our approach by writing a universe embed-
ding into containers and allow mixing them freely with any container functors.
Such universe embeddings have been studied by [Magalhães and Löh, 2012].
However, the universe of polynomial functors is not the only possible choice.
There are universes of functors such as regular tree types [Morris et al., 2006]

64 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

data Poly = U | I | C Poly Poly | P Poly Poly

data ExtP (c :: Poly) (a :: ∗) where
EU :: ExtP U a
EI :: a → ExtP I a
EL :: ExtP c a → ExtP (C c d) a
ER :: ExtP d a → ExtP (C c d) a
EP :: ExtP c a → ExtP d a → ExtP (P c d) a

class Polynomial f where
pcode :: Poly
pto :: ExtP pcode a → f a
pfrom :: f a → ExtP pcode a
ptoFromInverse :: ∀a.pto (pfrom a) = a
pfromToInverse :: ∀a.pfrom (pto a) = a

Figure 3.15: Polynomial Functors

or finite containers [Abbott et al., 2003] 1 that lie strictly between polynomial
and container functors and also allow a generic implementation of equality.

Section 3.6.1 presents the definition of polynomial functors and Section
3.6.2 shows the embedding of polynomial functors into container functors.
Generic equality for every fixed-point of a polynomial functors is defined in
Section 3.6.3

3.6.1 Universe of Polynomial Functors

The codes Poly and interpretation ExtP of the polynomial functor universe
are shown in Figure 3.15. A polynomial functor is either the constant unit
functor U , the identity functor I , a coproduct C p1 p2 of two functors, or the
cartesian product P p1 p2 of two functors. The interpretation ExtP is defined
as an inductive family indexed by the codes. As before we define a type-class
Polynomial that carries the conversion functions and isomorphism proofs. The
definition of the class is also given in Figure 3.15.

1Also known as dependent polynomial functors [Gambino and Hyland, 2004] or shapely
functors [Jaskelioff and Rypacek, 2012; Moggi et al., 1999].

3.6. POLYNOMIAL FUNCTORS 65

Example As an example consider the functor FunType that can represent
function types of an object language.

data FunType a = TArrow a a

It has a single constructor with two recursive positions for the domain and
range types. Hence it can be represented by the code P I I . The conversion
functions between the generic and conventional representation are given by

fromFunType :: FunType a → ExtP (P I I) a
fromFunType (TArrow x y) = EP (EI x) (EI y)

toFunType :: ExtP (P I I) a → FunType a
toFunType (EP (EI x) (EI y)) = TArrow x y

An instance for FunType is the following, with proofs omitted:

instance Polynomial FunType where
pcode = P I I
pto = toFunType
pfrom = fromFunType
ptoFromInverse = ...
pfromToInverse = ...

3.6.2 Universe Embedding

To write modular functions for polynomial functors we proceed in the same
way as in Section 3.5 by showing that Polynomial is closed under coproducts
and building the functionality of the SPF type class generically.

However, that would duplicate the generic functionality and would prevent
us from using polynomial functors with containers. Since containers are closed
under products and coproducts we can embed the universe of polynomial func-
tors in the universe of containers. In order to do this, we have to derive a shape
type from the code of a polynomial functor and a family of position types for
each shape which are defined in Figure 3.16.

Shapes and Positions We compute the shape by recursing over the code.
The constant unit functor and the identity functor have only one shape which
is represented by a unit type. As in section 3.5 the shape of a coproduct is the

66 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

polyS :: Poly → ∗
polyS U = ()
polyS I = ()
polyS (C c d) = polyS c + polyS d
polyS (P c d) = (polyS c, polyS d)

polyP :: (c :: Poly)→ polyS c → ∗
polyP U () = Empty
polyP I () = ()
polyP (C c d) (Left s) = polyP c s
polyP (C c d) (Right s) = polyP d s
polyP (P c d) (s1, s2) =

Either (polyP c s1) (polyP d s2)

Figure 3.16: Shapes and Positions of Polynomial Functors

coproduct of the shapes of the summands and the shape of a product is the
product of shapes of the factors.

The definition of positions also proceeds by recursing over the code. The
constant unit functor does not have any positions and the identity functor has
exactly one position. For coproducts the positions are the same as the ones
of the chosen summand and for a product we take the disjoint union of the
positions of the shapes of the components.

Conversion The next essential piece for completing the universe embedding
are conversions between the interpretations of the codes which are given in Fig-
ure 3.17. The function ptoCont converts the polynomial interpretation to the
container interpretation. Similarly we define the function pfromCont that per-
forms the conversion in the opposite direction. We omit the implementation.

To transport properties, like the correctness of equality in Figure 3.14,
across these conversion functions we need to prove that they are inverses.
These proofs proceed by inducting over the code; we omit them here.

Container Instance As the last step we derive an instance of Container
from an instance of Polynomial in Figure 3.18. This way all the generic func-
tionality of containers is also available for polynomial functors.

3.6. POLYNOMIAL FUNCTORS 67

ptoCont :: (c :: Poly)→ ExtP c a → Ext (polyS c . polyP c) a
ptoCont U EU = Ext () (λp → case p of)
ptoCont I (EI a) = Ext () (λ()→ a)
ptoCont (C c d) (EL x) = Ext (Left s) pf

where Ext s pf = ptoCont c x
ptoCont (C c d) (ER y) = Ext (Right s) pf

where Ext s pf = ptoCont c y
ptoCont (P c d) (EP x y) = Ext (s1, s2) (λp → case p of

Left p → pf1 p
Right p → pf2 p)

where Ext s1 pf1 = ptoCont c x
Ext s2 pf2 = ptoCont d y

pfromCont :: (c :: Poly)→ Ext (polyS c . polyP c) a → ExtP c a
pfromCont = ...

Figure 3.17: Conversion between Polynomial Interpretations

3.6.3 Generic Equality

Performing the conversions between polynomial functors and containers in the
definition of recursive functions makes it difficult to convince the termination
checker to accept these definitions. So instead of using the generic fixed point
provided by the container universe we define a generic fixed point on the
polynomial functor universe directly.

data FixP (c :: Poly) = FixP (ExtP c (FixP c))

We define the generic equality function geq mutually recursively with go that
recurses over the codes and forms an equality function for a partially con-
structed fixed point.

geq :: (c :: Poly)→ FixP c → FixP c → Bool
geq c (FixP x) (FixP y) = go c x y

where
go :: (d :: Poly)→ ExtP d (FixP c)→ ExtP d (FixP c)→ Bool
go U EU EU = True
go I (EI x) (EI y) = geq x y
go (C c d) (EL x) (EL y) = go c x y

68 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

instance Polynomial f ⇒ Container f where
cont = polyS pcode . polyP pcode
from = ptoCont pcode ◦ pfrom
to = pto ◦ pfromCont pcode
fromTo = ...
toFrom = ...

Figure 3.18: Container Instance for Polynomial Functors

go (C c d) (EL x) (ER y) = False
go (C c d) (ER x) (EL y) = False
go (C c d) (ER x) (ER y) = go d x y
go (P c d) (EP x x ′) (EP y y ′) = go c x y ∧ go d x ′ y ′

In the same vein we can prove the properties of the Eq type class for this equal-
ity function using mutual induction over fixed points and partially constructed
fixed points.

Of course FixP c and FixF (polyS c . polyP c) are isomorphic and we
can transport functions and their properties across this isomorphism to get a
generic equality function on the fixed-point defined by containers which can
be used to instantiate the Eq type class in Figure 3.14.

instance Polynomial f ⇒ Eq (FixF f)

3.7 Case Study

As a demonstration of the advantages of our approach over MTC’s Church
encoding-based approach, we have ported the case study from [Delaware et al.,
2013]. The study consists of soundness and continuity2 proofs in addition to
typing and evaluation functions of five reusable language features: 1) arith-
metic expressions, 2) boolean expressions, 3) natural number pattern match-
ing, 4) lambda abstraction and 5) a general recursion fixed-point operator.

Figure 3.19 presents the syntax of the expressions, values, and types pro-
vided by the features; each line is annotated with the feature that provides
that set of definitions.

2of step-bounded evaluation functions

3.7. CASE STUDY 69

e ::= N | e + e Arith
| B | if e then e else e Bool
| case e of { z ⇒ e ; S n ⇒ e } NatCase
| lam x : T.e | e e | x Lambda
| fix x : T.e Recursion

V ::= N Arith T ::= nat Arith
| B Bool | bool Bool
| closure e V Lambda | T → T Lambda

Figure 3.19: mini-ML expressions, values, and types

In this section we discuss the benefits and trade-offs we have experienced
while porting the case study to our approach.

Impredicative sets The higher-rank type in the definition of FixM

FixM (f :: Set → Set) = ∀(a :: Set).Algebra f a → a

causes FixM f to be in a higher universe level than the domain of f . Hence
to use FixM f as a fixed-point of f we need an impredicative sort. MTC uses
Coq’s impredicative-set option for this which is known to be incompatible with
axioms of classical logic.

When constructing the fixed-point of a container we do not need to raise
the universe level and thus avoid impredicative sets.

Adequacy Adequacy of definitions is an important problem in mechaniza-
tions. One concern is the adequate encoding of fixed-points. MTC relies
on a side-condition to show that for a given functor f the folding (inM ::
f (FixM f) → FixM f) and unfolding (outM :: FixM f → f (FixM f)) are in-
verse operations, namely, that all appearing (FixM f) values need to have the
universal property of folds. This side-condition raises the question if (FixM f)
is an adequate fixed-point of f . The pairing of terms together with their proofs
of the universal property do not form a proper fixed-point either, because of
the possibility of different proof components for the same underlying terms.

Our approach addresses this adequacy issue: the SPF type class from
Figure 3.1 requires that inF and outF are inverse operations without any side
conditions on the values and containers give rise to proper SPF instances.

70 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

Module Spec Proof Total Description

FJ tactics 193 99 292 Tactic library.
Functors 675 83 758 Functors, algebras and coproducts.
Containers 758 105 863 Universe of containers).
Polynomial 249 198 447 Universe of polynomial functors.
Equality 63 53 116 Equality for polynomial functors.

Total 1938 548 2476

Table 3.1: Size statistic for the GDTC modular reasoning framework

Equality of terms Packaging universal properties with terms obfuscates
equality of terms when using Church encodings. The proof component may
differ for the same underlying term.

This shows up for example in type-soundness proofs in MTC. An extensible
logical relation WTValue (v , t) is used to represent well-typing of values. The
judgement ranges over values and types. The universal properties are needed
for inversion lemmas and thus the judgement needs to range over the variants
that are packaged with the universal properties.

However, knowing that WTValue (v , t) and proj1 t = proj1 t ′ does not
directly imply WTValue (v , t ′), because of the possibly distinct proof compo-
nent. To solve this situation auxiliary lemmas are needed that establish the
implication. Other logical relations need similar lemmas. Every feature that
introduces new rules to the judgments must also provide proof algebras for
these lemmas.

In the case study two logical relations need this kind of auxiliary lemmas:
the relation for well-typing and a sub-value relation for continuity. Both of
these relations are indexed by two modular types and hence need two lem-
mas each. The proofs of these four lemmas, the declaration of abstract proof
algebras and the use of the lemmas amounts to roughly 30 LoC per feature.

In our approach we never package proofs together with terms and hence
this problem never appears. We thereby gain better readability of proofs and
a small reduction in code size.

Code Size By moving to a datatype-generic approach the underlying frame-
work for modular datatypes and modular relations and modular reasoning grew
from about 1,200 LoC to about 2,500 LoC. Table 3.1 shows a detailed break-
down of the different modules which include both the universe of containers
and polynomial functors and the generic implementations of fold, induction

3.7. CASE STUDY 71

GDTC MTC

Module Spec Proof Total Spec Proof Total

Names 480 145 625 479 92 571
PNames 399 180 579 507 119 626

Total 879 325 1204 986 211 1197

Table 3.2: Size statistics of the type-safety infrastructure.

GDTC MTC

Module Spec Proof Total Spec Proof Total

Arith 415 150 565 522 492 1014
Bool 441 151 592 560 169 729
Lambda 779 171 950 1223 159 1382
Mu 401 31 432 481 26 507
NatCase 212 25 237 282 12 294
ArithLambda 59 9 68 103 7 110
BoolLambda 60 11 71 112 7 119

Total 2367 548 2915 3283 872 4155

Table 3.3: Size statistics of the feature mechanizations.

and equality.

The feature-independent infrastructure for type-safety is defined in modules
Names and PNames. These contain declarations of modular functions for
typing and evaluation, and modular proofs of continuity and type safety of
evaluation. Table 3.2 contains a breakdown of these modules and a comparison
with the original versions from the MTC case study. The GDTC versions
avoid some duplicate declarations for decorated and undecorated fixed-points
and save code by eliminating the need to reason about universal properties.
However the GDTC approach also requires instance declarations for containers,
in particular indexed container instances for predicates on environments, which
are new obligations and nullify any savings. Both the MTC and the GDTC
version are about 1,200 LoC.

The size of the implementation of the five modular feature components and
feature interactions is roughly 830 LoC per feature in the original MTC case
study. By switching from Church encodings to a datatype-generic approach we

72 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

GDTC MTC

Composition Spec Proof Total Spec Proof Total

A 52 3 55 47 3 50
AL 76 5 81 49 9 58
BL 76 5 81 57 9 66
AB 79 3 82 73 6 79
ABL 103 5 108 129 9 138
MiniML 91 5 96 67 10 77

Total 477 26 503 422 46 468

Table 3.4: Size statistics of the language compositions

stripped away on average about 230 LoC of additional proof obligations needed
for reasoning with Church encodings per feature. However, instantiating the
MTC interface amounts to roughly 40 LoC per feature while our approach
requires about 70 LoC per feature for the container and polynomial instances.

By using the generic equality and generic proofs about its properties we
can remove the feature-specific implementations from the case study. This
is about 40 LoC per feature. In total we have reduced the average size of
a feature implementation by about 240 LoC to 590 LoC. Table 3.3 shows a
detailed breakdown of the different features implemented as part of the case
study.

The last piece of the case study consists of the language compositions: a
subset of features is chosen to form a language and the type-safety theorem is
derived for that language from the modular proof algebras. The breakdown
for six different compositions is shown in Table 3.4. The GDTC compositions
derive local container instances for composed functors to avoid costly and
repetitive type class resolutions. This puts the GDTC variants slightly above
the MTC version in terms of code size.

Summary The case study shows that our approach can effectively replace
the MTC approach and offers simplifications for programming and reasoning
about modular datatypes and relations. Another benefit is the applicability in
proof-assistants that do not offer impredicative sorts to implement the MTC
approach.

In terms of development effort the savings achieved by switching to the con-
tainer based approach and removing boilerplate functions like equality testing

3.8. RELATED AND FUTURE WORK 73

are in the order of a 25% code size reduction per feature. Since the user does
not need to concern herself with the preservation of the universal properties
of folds in her definitions, our approach offers a less complex framework that
can result in less development effort not only in terms of code size, but also in
terms of coding time and mental effort.

3.8 Related and Future Work

There is a fairly large amount of related work on modular programming and
datatype-generic proramming. Below we discuss the most relevant related to
this chapter: work on modular proofs and datatype-generic programming in
proof assistants.

DGP in proof-assistants Datatype-generic programming started out as
a form of language extension such as PolyP [Jansson and Jeuring, 1997] or
Generic Haskell [Löh et al., 2003]. Yet Haskell has turned out to be power-
ful enough to implement datatype-generic programming in the language itself
and over the time a vast number of DGP libraries for Haskell have been pro-
posed [Cheney and Hinze, 2002; Lämmel and Jones, 2003; Oliveira et al., 2006;
Yakushev et al., 2009; Chakravarty et al., 2009; Mitchell and Runciman, 2007;
Magalhães et al., 2010]. Compared with a language extension, a library is
much easier to develop and maintain.

There are multiple proposals for performing datatype-generic programming
in proof-assistants using the flexibility of dependent-types [Verbruggen et al.,
2008; Altenkirch and McBride, 2003; Benke et al., 2003; Löh and Magalhães,
2011; Altenkirch and Morris, 2009]. This setting not only allows the imple-
mentation of generic functions, but also of generic proofs. The approaches vary
in terms of how strictly they follow the positivity or termination restrictions
imposed by the proof-assistant. Some circumvent the type-checker at various
points to simplify the development or presentation while others put more effort
in convincing the type-checker and termination checker of the validity [Morris
et al., 2006]. However, in any of the proposals there does not seem to be any
fundamental problem caused by the positivity or termination restrictions.

DGP for modular proofs Modularly composing semantics and proofs
about the semantics has also been addressed by [Schwaab and Siek, 2013]
in the context of programming language meta-theory. They perform their
development in Agda and, similar to our approach, they also use a universe
approach based on polynomial functors to represent modular datatypes. They

74 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

split relations for small-step operational semantics and well-typing on a fea-
ture basis. However, the final fixed-points are constructed manually instead
of having a generic representation of inductive families.

Schwaab and Siek did not model functors, folds or induction operators con-
cretely but instead rely also on manual composition of algebras. Therefore,
their definitions have a more natural directly-recursive style. But as a conse-
quence, some of their definitions are not structurally recursive. Unfortunately
Schwaab and Siek circumvent Agda’s termination checker instead of stratifying
their definitions.

Using Coq’s type classes both MTC and our approach provide more au-
tomation in the final composition of datatypes, functions and proofs. Agda
features instance arguments that can be used to replace type classes in var-
ious cases. Schwaab and Siek [2013]’s developments took place when Agda’s
implementation did not perform recursive resolution, and as a result Agda did
not support automation of the composition to the extent that is needed for
DTC-like approaches. However, as of Agda version 2.4.2 instance argument
resolution is recursive. Hence it should now be possible to augment Schwaab
and Siek’s approach with full automation for composition and also port our
approach to Agda.

A notable difference is that Schwaab and Siek do not define a dependent
recursor for induction but instead completely rely on non-dependent recursion
over relations. Therefore the needs for a strong generic induction principle
does not arise in their work and MTC’s generic folds for relations is sufficient
for their approach. However, MTC’s Church encodings are rejected by Agda’s
type-checker because Agda is a fully predicative system.

Combining different DGP approaches We have shown an embedding of
the universe of polynomial functors into the universe of containers. Similar in-
clusions between universes have been presentend in the literature [Morris et al.,
2007]. Magalhães and Löh [2012] have ported several popular DGP approaches
from Haskell to Agda and performed a formal comparison by proving inclu-
sion relations between the approaches including a port of the regular Haskell
library that is equivalent to our polynomial functor universe. However, they
did not consider containers in their comparison.

DGP approaches differ in terms of the class of datatypes they capture and
the set of generic functions that can be implemented for them. Generic func-
tions can be transported from a universe into a sub-universe. However, we are
not aware of any DGP library with a systematic treatment of universes where
each generic function is defined at the most general universe that supports

3.9. SCIENTIFIC OUTPUT 75

that function.

Automatic derivation of instances Most, if not all, generic programming
libraries in Haskell use Template Haskell to derive the generic representation
of user-defined types and to derive the conversion functions between them.

The GMeta [Lee et al., 2012] framework includes a standalone tool that also
performs this derivation for Coq. Similarly, deriving instances for Container
and Polynomial classes automatically is possible. An alternative is presented
in [Chapman et al., 2010]. Chapman et al.’s goal is to reflect the datatype
declarations of the programming language automatically in the language itself,
which are then immediately available for datatype-generic programming.

3.9 Scientific Output

This chapter is based on the contents of the article:

Keuchel, S., & Schrijvers, T. (2013). Generic Datatypes la
Carte. In Proceedings of the 9th ACM SIGPLAN workshop on
Generic programming, WGP 13, pages 13-24. ACM.

The main contributions of this work are

• Bringing existing work from the fields of modularity, genericity and type
theory together in the same framework.

• A novel representation of proof algebras that serves as a connection be-
tween these fields.

Below we make the border between prior work and this work precise.
Firstly, both modular programming and datatype-generic programming

have been indepedently well-studied.

• Modular programming and the expression problem have been studied
extensively. The Datatypes à la Carte [Swierstra, 2008] approach is an
existing solution in a purely functional programming setting. Metatheory
à la Carte [Delaware et al., 2013] extends DTC to modular proving.
We reuse most of the definitions from MTC, in particular automation
of compositions. The main difference and contribution of this work is
the change to a new datatype-generic based representation of signature
functors that provides an alternative to the Church encodings of MTC.
This alternative representation addresses multiple shortcoming of MTC.

76 CHAPTER 3. MODULAR PREDICATIVE UNIVERSES

• Datatype-generic programming (DGP) or polytypic programming [Jans-
son and Jeuring, 1997] is an established field in functional programming
which has also seen extensive use in dependently-type theory [Benke
et al., 2003]. The universe of containers is a well-studied subject, includ-
ing generic functionality like generic induction for containers [Abbott
et al., 2003]. The container-based representation comes with generic
fixed-points, folds and induction principles that meet the requirements
of proof-assistants.

The novelty of our setting is that we combine modular programming with the
container presentation.

Secondly, we present a generic representation of proof algebras that is inde-
pendent of the particular generic universe. All-modalities have been implicitly
used before by [Benke et al., 2003] to define generic induction, but specialized
for a particular universe. [Morris, 2007] models all-modalities explicitly for
datatype-generic universes but does not use them for generic induction prin-
ciples. Our contribution is to provide the last missing piece to define induc-
tion independently of the particular generic universe used: formulate uniform
proof-algebras on explicit all-modalities.

Chapter 4
Modular Monadic Effects

Traditional proofs by structural induction are not modular. The MTC and
GDTC frameworks open up the recursion in these proofs to allow for extensi-
bility. However, the closedness of inductive proofs is not the only concern that
inhibits modularity in proofs. For instance, in the metatheory of programming
languages with side-effects, existing non-modular formalizations typically as-
sume a concrete set of effects that the feature of a particular language at hand
is using. The semantic functions, theorem statements (such as type safety)
and corresponding proofs of these formalizations have the concrete set of ef-
fects hardwired.

No Effect Modularity The statement of type soundness for a language
depends intimately on the effects it uses, making it particularly difficult to
achieve modularity. Consider defining two features in MTC: mutable references
Ref F and errors ErrF . Both of these introduce an effect to any language, the
former state and the latter the possibility of raising an error. These effects
show up in the type of their evaluation algebras:

evalRef :: AlgebraM Ref F (Env → (Value,Env))
evalErr :: AlgebraM ErrF (Maybe Value)

MTC supports the composition of two algebras over different functors as long
as they have the same carrier. That is not the case here, making the two
algebras incompatible. This problem can be solved by anticipating both effects
in both algebras by choosing a common and uniform carrier for both algebras:

77

78 CHAPTER 4. MODULAR MONADIC EFFECTS

evalRef :: AlgebraM Ref F (Env → (Maybe Value,Env))
evalErr :: AlgebraM ErrF (Env → (Maybe Value,Env))

This anticipation is problematic for modularity: the algebra for references
mentions the effect of errors even though it does not involve them, while a
language that includes references does not necessarily feature errors. More
importantly, the two algebras cannot be composed with a third feature that
introduces yet another effect (e.g., local environments) without further fore-
sight. It is impossible to know in advance all the effects that new features may
introduce.

Hence, a key challenge in modularizing effects is how to generalize every
definition – semantic functions, theorem statements and proofs – to a form
that is uniform and general enough to account for any desired set of potential
effects instead of hardwiring one specific set of effects.

This chapter introduces the 3MT approach to tackle the problem of modu-
lar type-safety proofs for effectful languages. We first give a high-level charac-
terization of how the approach achieves uniformity and thus modularity before
giving an outline of this chapter.

Modular Semantic Functions Fortunately, for semantic functions there is
already a good solution: monads and monad transformers. Monads are a well-
established mechanism for defining the semantics of languages with effects.
Moreover, monads give a uniform representation for effectful computations
independent of the effects which is an important point for modularization.
With the help of monad transformers, monads can be modularly composed.

For each effect, a monad subclass captures a set of primitive operations.
These abstract type classes form the main interface that is used for imple-
menting and reasoning about features and their effects, instead of using a
particular monad (or monad stack) directly. This ensures that definitions
are general enough without assuming a concrete implementation. Reasoning
about monadic programs is commonly performed using equational reasoning
[Gibbons and Hinze, 2011; Oliveira et al., 2010] which is a prevalent tech-
niques in functional programming. For each of the monad type-classes, a set
of algebraic laws governs the interaction between primitive operations.

Modular Soundness Proofs To solve the key challenge of modularizing
and reusing theorems and proofs of type soundness, we split the classic type
soundness theorems into three separate parts:

1. Reusable feature theorems capture the essence of type soundness for an

79

individual feature. They depend on that feature’s syntax, typing rela-
tion, semantic function and only the effects used therein. At the same
time, they abstract over the syntax, semantics and effects of other fea-
tures. This means that the addition of new features with other types of
effects does not affect the existing feature theorem proofs.

To achieve the abstraction over other effects, a feature uses a polymorphic
monad that is constrained by monad sub-classes. As a consequence, it
only establishes the well-typing of the resulting denotations with respect
to the effects of the declared subclass constraints.

2. Reusable effect theorems fix the monad of denotations and consequently
the set of effects. They take well-typing proofs of monadic denotations
expressed in terms of a constrained polymorphic monad and which men-
tion only a subset of effects, and turn them into well-typings with respect
to a fixed monad and all the effects it provides.

Effect theorems reason fully at the level of denotations and abstract
over the details of language features like syntax and semantic functions.
Consequently the same effect theorem will work for any languages that
use the particular combination of effects captured by the theorem.

3. Finally, language theorems establish type soundness for a particular lan-
guage. They require no more effort than to instantiate the set of features
and the set of effects (i.e., the monad), thus tying together the respective
feature and effect theorems into an overall proof.

Outline Monads form the underlying mechanism to define the semantics
of languages denotationally and monad transformers are used to modularize
the semantics. Section 4.1 introduces the 3MT monad library that we use
throughout this chapter.

Section 4.2 presents a monadic and uniform representation of algebras of
semantic function to define denotational semantics with effects without fixing
the particular set of effects. It further combines the modular datatypes of
MTC/GDTC and monads/monad transformers to define semantic function
algebras on a per-feature basis, and thus make the denotational semantics also
independent of a particular set of language features.

Section 4.3 examines feature theorems and Section 4.4 concerns itself with
effect theorems and language theorems. Section 4.5 discusses our case study of
5 features with their feature theorems, 8 different effect theorems and 28 fully
mechanized languages, including a mini-ML variant with errors and references.

80 CHAPTER 4. MODULAR MONADIC EFFECTS

4.1 The 3MT Monad Library

3MT includes a monad library to support effectful semantic functions using
monads and monad transformers, and provides algebraic laws for reasoning.
Monads provide a uniform representation for encapsulating computational ef-
fects such as mutable state, exception handling, and non-determinism. Monad
transformers allow monads supporting the desired set of effects to be built.
Algebraic laws are the key to modular reasoning about monadic definitions.

3MT implements the necessary definitions of monads and monad trans-
formers as a Coq library inspired by the Haskell monad transformer library
(MTL) [Liang et al., 1995]. Our library refines the MTL in two key ways in
order to support modular reasoning using algebraic laws:

1. While algebraic laws can only be documented informally in Haskell, our
library fully integrates them into type class definitions using Coq’s ex-
pressive type system.

2. 3MT systematically includes laws for all monad subclasses, several of
which have not been covered in the functional programming literature
before.

4.1.1 Monad Classes

Figure 4.1 summarizes the library’s key classes, definitions and laws. The type
class Monad describes the basic interface of monads.1 The type m a denotes
computations of type m which produce values of type a when executed. The
function return lifts a value of type a into a (pure) computation that simply
produces the value. The bind function >>= composes a computation m a
producing values of type a, with a function that accepts a value of type a and
returns a computation of type m b. The function >> defines a special case of
bind that discards the intermediate value:

(>>) :: Monad m ⇒ m a → m b → m b
ma >>mb = ma >>= \ → mb

The do notation is syntactic sugar for the bind operator: do {x ← f ; g }
means f >>= λx → g .

1In contrast to pending changes to Haskell’s standard library, we do not require
Applicative but merely Functor as a superclass of Monad (cf. https://wiki.haskell.

org/Functor-Applicative-Monad_Proposal. We do however exclude the fail method (cf.
https://wiki.haskell.org/MonadFail_Proposal).

https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/Functor-Applicative-Monad_Proposal
https://wiki.haskell.org/MonadFail_Proposal

4.1. THE 3MT MONAD LIBRARY 81

Monad classes
class Functor m ⇒ Monad m where

return :: a → m a
(>>=) :: m a → (a → m b)→ m b
return bind :: return x >>= f ≡ f x
bind return :: p >>= return ≡ p
bind bind :: (p >>= f)>>= g ≡

p >>= λx → (f x >>= g)
fmap bind :: fmap f t ≡

t >>= (return ◦ f)

State class
class Monad m ⇒ SM s m where

get :: m s
put :: s → m ()
get drop :: get >> t ≡ t
put get :: put s >> get ≡

put s >> return s
get put :: get >>= put ≡ return ()
get get :: get >>= λs → get >>= f s ≡

get >>= λs → f s s
put put :: put s1 >> put s2 ≡ put s2

Failure class
class Monad m ⇒ FM m where

fail :: m a
bind fail :: fail >>= f ≡ fail

Reader class
class Monad m ⇒ RM e m where

ask :: m e
local :: (e → e)→ m a → m a
ask query :: ask >> t ≡ t
local return :: local f ◦ return = return
ask ask :: ask >>= λs → ask >>= f s ≡

ask >>= λs → f s s
ask bind :: t >>= λx → ask >>= λe → f x e ≡

ask >>= λe → t >>= λx → f x e
local bind :: local f (t >>= g) ≡

local f t >>= local f ◦ g
local ask :: local f ask ≡ ask >>= return ◦ f
local local :: local f ◦ local g ≡ local (g ◦ f)

Exception class
class Monad m ⇒ EM x m where

throw :: x → m a
catch :: m a → (x → m a)→ m a
bind throw :: throw e >>= f ≡ throw e
catch throw1 :: catch (throw e) h ≡ h e
catch throw2 :: catch t throw ≡ t
catch return :: catch (return x) h ≡ return x
fmap catch :: fmap f (catch t h) ≡

catch (fmap f t) (fmap f ◦ h)

Figure 4.1: Key classes, definitions and laws from 3MT’s monadic library.

The primitive operations of each effect are defined in monad subclasses
(denoted by subscript M) such as SM and EM. For example, get is a method
of the SM class to retrieve the state without changing it.

4.1.2 Algebraic Laws

Each monad (sub)class includes a set of algebraic laws that govern its oper-
ations. These laws are an integral part of the definition of the monad type
classes and constrain the possible implementations to sensible ones. Thus,
even without knowing the particular implementation of a type class, we can
still modularly reason about its behavior via these laws. This is crucial for
supporting modular reasoning [Oliveira et al., 2010].

The first three laws for the Monad class are standard, while the last law
(fmap bind) relates fmap and bind in the usual way. Each monad subclass
also includes its own set of laws. The laws for various subclasses can be
found scattered throughout the functional programming literature, such as for

82 CHAPTER 4. MODULAR MONADIC EFFECTS

Identity monad
newtype I a
I :: a → I a
runI :: I a → a

State transformer
newtype ST s m a

ST :: (s → m (a, s))→ ST s m a
runST :: ST s m a → s → m (a, s)

Reader transformer
newtype RT e m a

RT :: (e → m a)→ RT e m a
runRT :: RT e m a → e → m a

Failure transformer
newtype FT m a

FT :: m (Maybe a)→ FT m a
runFT :: FT m a → m (Maybe a)

Exception transformer
newtype ET x m a

ET :: m (Either x a)→ ET x m a
runET :: ET x m a → m (Either x a)

Figure 4.2: Monad transformers

failure [Gibbons and Hinze, 2011] and state [Gibbons and Hinze, 2011; Oliveira
et al., 2010]. Yet, as far as we know, 3MT is the first to systematically bring
them together. Furthermore, although most laws have been presented in the
semantics literature in one form or another, we have not seen some of the laws
in the functional programming literature. One such example are the laws for
the exception class:

• The bind throw law generalizes the bind fail law: a sequential compu-
tation is aborted by throwing an exception.

• The catch throw1 law states that the exception handler is invoked when
an exception is thrown in a catch.

• The catch throw2 law indicates that an exception handler is redundant
if it just re-throws the exception.

• The catch return law states that a catch around a pure computation is
redundant.

• The fmap catch law states that pure functions (fmap f) distribute on
the right with catch.

4.1.3 Monad Transformers

Particular monads can be built from basic monad types such as the identity
monad (I) and monad transformers including the failure (FT), mutable state

4.2. MODULAR MONADIC SEMANTICS 83

Arithmetic Expressions Monad m
Boolean Expressions Monad m
Errors EM () m
References SM Store m
Lambda RM Env m,FM m

Figure 4.3: Effects used by the case study’s evaluation algebras.

(ST), reader (RT), and exception (ET) transformers that are shown in Figure
4.2. These transformers are combined into different monad stacks with (I) at
the bottom. Constructor and extractor functions such as (ST) and (runST)
provide the signatures of the functions for building and running particular
monads/transformers.

4.1.4 Discussion

Our monad library contains a number of other classes, definitions and laws
apart from the definitions discussed here. This includes infrastructure for
other types of effects (e.g. writer effects), as well as other infrastructure from
the MTL. There are roughly 30 algebraic laws in total.

4.2 Modular Monadic Semantics

Features can utilize the monad library included with 3MT to construct alge-
bras for semantic functions. In order to support extensible effects, a feature
needs to abstract over the monad implementation used. Any implementation
which includes the required operations is valid. These operations are captured
in type classes and each class offers a set of primitive operations. The abstract
type classes form the main interface that is used for implementing and rea-
soning about features and their effects, instead of using a particular monad
(or monad stack) directly. This ensures that definitions are general enough
without assuming a concrete implementation.

Take for example monadic evaluation algebras for references and error:

evalRef :: SM Store m ⇒ AlgebraM Ref F (m a)
evalErr :: EM () m ⇒ AlgebraM ErrF (m a)

These algebras use monad subclasses such as SM and EM to constrain the
monad required by the feature, allowing the monad to have more effects than

84 CHAPTER 4. MODULAR MONADIC EFFECTS

Simplified value interface
type Value

loc :: Int → Value
stuck :: Value
unit :: Value
isLoc :: Value → Maybe Int

Expression functor
data Ref F a = Ref a

| DeRef a
| Assign a a

type Store = [Value]

Monadic typing algebra
typeofRef :: FM m ⇒

AlgebraM Ref F (m Type)
typeofRef rec (Ref e) = do

t ← rec e
return (tRef t)

typeofRef rec (DeRef e) = do
te ← rec e
maybe fail return (isTRef te)

typeofRef rec (Assign e1 e2) = do
t1 ← rec e1
case isTRef t1 of

Nothing → fail
Just t → do

t2 ← rec e2
if (t ≡ t2)

then return tUnit
else fail

Simplified type interface
type Type

tRef :: Type → Type
tUnit :: Type
isTRef :: Type → Maybe Type

Monadic evaluation algebra

evalRef :: SM Store m ⇒
AlgebraM Ref F (m Value)

evalRef rec (Ref e) = do
v ← rec e
env ← get
put (v : env)
return (loc (length env))

evalRef rec (DeRef e) = do
v ← rec e
env ← get
return $

case isLoc v of
Nothing → stuck
Just n →

maybe stuck id (fetch n env)
evalRef rec (Assign e1 e2) = do

v ← rec e1
env ← get
case isLoc v of

Nothing → return stuck
Just n → do

v2 ← rec e2
put (replace n v2 env)
return unit

Figure 4.4: Syntax and type definitions for references.

those used in the feature. These two algebras can be combined to create a new
evaluation algebra with type:

(SM m s,EM m x)⇒ AlgebraM (Ref F ⊕ ErrF) (m a)

The combination imposes both type class constraints while the monad type
remains extensible with new effects. The complete set of effects used by the
evaluation functions for the five language features used in our case study of
Section 4.5 are given in Figure 4.3.

4.2.1 Example: References

Figure 4.4 illustrates this approach with definitions for the signature functor
for expressions and the evaluation and typing algebras for the reference feature.
Other features have similar definitions.

4.2. MODULAR MONADIC SEMANTICS 85

For the sake of presentation the definitions are slightly simplified from the
actual ones in Coq. For instance, we have omitted issues related to the ex-
tensibility of the syntax for values (Value) and types (Type). Value and Type
are treated as abstract datatypes with a number of smart constructor func-
tions (c.f. Section 2.2.2): loc, stuck , unit , tRef and tUnit denote respectively
reference locations, stuck values, unit values, reference types and unit types.
There are also matching functions isLoc and isTRef for checking whether a
term is a location value or a reference type, respectively.

The type Ref F is the functor for expressions of references. It has con-
structors for creating references (Ref), dereferencing (DeRef) and assigning
(Assign) references. The evaluation algebra evalRef uses the state monad
for its reference environment, which is captured in the type class constraint
SM Store m. The typing algebra (typeofRef) is also monadic, using the failure
monad to denote ill-typing.

4.2.2 Effect-Dependent Theorems

Monadic semantic function algebras are compatible with new effects and al-
gebraic laws facilitate writing extensible proofs over these monadic algebras.
Effects introduce further challenges to proof reuse, however: each combination
of effects induces its own type soundness statement. Consider the theorem
LSoundSfor a language with references which features a store σ and a store
typing Σ that are related through the store typing judgement Σ ` σ:

∀e, t,Σ, σ.
{

typeof e ≡ return t
Σ ` σ

}
→

∃v,Σ′, σ′.


put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ
Σ′ ` v : t
Σ′ ` σ′

 (LSoundS)

The initial store σ is well-formed w.r.t. the initial store typing Σ, the final
store typing Σ′ is an extension of the initial one, and the final store σ′ is well-
formed w.r.t. Σ′. The put operation is used to constrain the initial and final
store of the monadic computation.

Contrast this with the theorem LSoundE for a language with errors,
which must account for the computation possibly ending in an exception being
thrown which is modeled by a disjunction in the conclusion:

∀e, t.typeof e ≡ return t →
(∃v.JeK ≡ return v∧ ` v : t) ∨ (∃x.JeK ≡ throw x) (LSoundE)

86 CHAPTER 4. MODULAR MONADIC EFFECTS

Clearly, the available effects are essential for the formulation of the theorem. A
larger language which involves both exceptions and state requires yet another
theorem LSoundES where the impact of both effects cross-cut one another2:

∀e, t,Σ, σ.
{

typeof e ≡ return t
Σ ` σ

}
→

∃v,Σ′, σ′.


put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ
Σ′ ` v : t
Σ′ ` σ′


∨

∃x.put σ >> JeK ≡ throw x (LSoundES)

Modular formulations of LSoundS and LSoundE are useless for proving
a modular variant of LSoundES , because their induction hypotheses have the
wrong form. The hypothesis for LSoundE requires the result to be of the form
return v , disallowing put σ′>>return v (the form required by LSoundS). Simi-
larly, the hypothesis for LSoundS does not account for exceptions occurring in
subterms. In general, without anticipating additional effects, type soundness
theorems with fixed sets of effects cannot be reused modularly.

4.3 Monadic Type Safety

As demonstrated in Section 4.2.2, soundness theorem which hardwire the set
of effects limit their modularity by rendering proofs for soundness with distinct
effects incompatible. In this Section we discuss how to split type soundness
into smaller theorems and how to generalize the parts for modularization.

4.3.1 Three-Step Approach

In order to preserve a measure of modularity, we do not prove type soundness
directly for a given feature, but by means of more generic theorems. In order
to maximize compatibility, the statement of the type soundness theorem of
a feature cannot hardwire the set of effects. This statement must instead
rephrase type soundness in a way that can adapt to any superset of a feature’s
effects. Hence, similar to the modularization of the semantics in Section 4.2,
the idea is to abstract over any monad that provides the effects of a feature.

2A similar proliferation of soundness theorems can be found in TAPL [Pierce, 2002].

4.3. MONADIC TYPE SAFETY 87

Our approach to state and prove type soundness of features, is to establish
that the monadic evaluation and typing algebras of a feature satisfy an exten-
sible well-typing relation of computations, defined in terms of effect-specific
typing rules. This relation forms the basis of a feature theorem that has uni-
form shape independent of specific features or effects (except for constraints
on the monad). A feature’s proof algebra for the feature theorem only uses the
typing rules required for the effects specific to that feature. The final language
combines the typing rules of all the language’s effects into a closed relation
and the feature theorem for the complete set of features into a type soundness
theorem of the whole language.

As discussed in Section 4.2.2 the type soundness statement of a language
still depends on the set of effects of all the features of a language. The state-
ment is however independent of the set of features. This allows us to split
the type soundness theorem further into a reusable effect theorem and a lan-
guage theorem. In summary, we split the type soundness into three kinds of
theorems:

• FSound: a reusable feature theorem that is only aware of the effects
that a feature uses,

• ESound: an effect theorem for a fixed set of known effects, and

• LSound: a language theorem which combines the two to prove soundness
for a specific language.

Figure 4.5 illustrates how these reusable pieces fit together to build a proof
of soundness. Each feature provides a proof algebra for FSound which relies
on the typing rules (WFM-X) for the effects it uses. Each unique statement
of soundness for a combination of effects requires a new proof of ESound.
The proof of LSound for a particular language is synthesized entirely from a
single proof of ESound and a combination of proof algebras for FSound.

Note that there are several dimensions of modularity here. A feature’s
proof of FSound only depends on the typing rules for the effects that fea-
ture uses and can thus be used in any language which includes those typing
rules. The typing rules themselves can be reused by any number of different
features. ESound depends solely on a specific combination of effects and can
be reused in any language which supports that unique combination, e.g. both
LSoundR and LSoundAR use ESoundS .

88 CHAPTER 4. MODULAR MONADIC EFFECTS

E!ect

Language
Feature

Arith
FSOUND

SM

ESOUNDS

WFM-STATE

A
LSOUNDA

R
LSOUNDR

AR
LSOUNDARMonad

ESOUND

WFM-PURE

Ref
FSOUND

Typing Rule

Theorem

Dependencies

Figure 4.5: Dependency Graph

4.3.2 Typing of Monadic Computations

For type-soundness we make use of two separate typing relations: a relation
for values and one for computations. The value typing relation

Σ ` v : t

is implicitly parameterized by an environment type env and has three indices:
an environment Σ, a value v and a type t. The computation typing relation
has the form:

Σ `M vm : tm

The relation is polymorphic in an environment type env and an evaluation
monad type m. The parameters Σ, vm and tm have types env , (m Value) and
(Maybe Type) respectively.

The extensible feature theorem FSound states that J·K and typeof are
related by the typing relation:

4.3. MONADIC TYPE SAFETY 89

Σ `M vm : fail
Wfm-Illtyped

Σ ` v : t

Σ `M return v : return t
Wfm-Return

Figure 4.6: Typing rules for pure monadic values.

∀e,Σ. Σ `M JeK : typeof e (FSound)

The modular typing rules for this relation can impose constraints on the
environment type env and monad type m. A particular language must in-
stantiate env and m in a way that satisfies all the constraints imposed by the
typing rules used in its features.

Figure 4.6 lists the two base typing rules of this relation. These do not
constrain the evaluation monad and environment types and are the only rules
needed for pure features. The (WFM-Illtyped) rule denotes that noth-
ing can be said about computations (vm) which are ill-typed. The (WFM-
Return) rule ensures that well-typed computations only yield values of the
expected type.

4.3.3 Monolithic Soundness for a Pure Feature

To see how the reusable theorem works for a pure feature, consider the proof
of soundness for the boolean feature.

Proof Using the two rules of Figure 4.6, we can show that FSound holds
for the boolean feature. The proof has two cases. The boolean literal case is
handled by a trivial application of (WFM-Return). The second case, for

90 CHAPTER 4. MODULAR MONADIC EFFECTS

conditionals, is more interesting3:

(`M JecK : typeof ec)→ (`M JetK : typeof et)→ (`M JeeK : typeof ee)→

`M



do
v ← JecK
case isBool v of

Just b →
if b then JetK

else JeeK
Nothing → stuck


:



do
tc ← typeof ec
tt ← typeof et
te ← typeof ee
guard (isTBool tc)
guard (eqT tt te)
return tt


(WFM-If-Vc)

Because J·K and typeof are polymorphic in the monad, we cannot directly
inspect the values they produce. We can, however, perform case analysis on
the derivations of the proofs produced by the induction hypothesis that the
subexpressions are well-formed, `M JecK : typeof ec , `M JetK : typeof et , and
`M JeeK : typeof ee . The final rule used in each derivation determines the
shape of the monadic value produced by J·K and typeof . Assuming that only
the pure typing rules of Figure 4.6 are used for the derivations, we can divide
the proof into two cases depending on whether ec , et , or ee was typed with
(WFM-Illtyped).

• If any of the three derivations uses (WFM-Illtyped), the result of
typeof is fail . Hence (WFM-Illtyped) resolves the case.

• Otherwise, each of the subderivations was built with (WFM-Return)
and the evaluation and typing expressions can be simplified using the
return bind monad law.

`M


case isBool vc of

Just b →
if b then return vt

else return ve
Nothing → stuck


:


do

guard (isTBool tc)
guard (eqT tt te)
return tt


3We omit the environment Σ to avoid clutter.

4.3. MONADIC TYPE SAFETY 91

After simplification, the typing expression has replaced the bind with
explicit values which can be reasoned with. If (isTBool tc) is false, then
the typing expression reduces to fail and well-formedness again follows
from the WFM-Illtyped rule. Otherwise (tc ≡ TBool), and we can
apply the canonical forms lemma

` v : TBool → ∃b.isBool v ≡ Just b

to establish that vc is of the form (Just b), reducing the evaluation to
either (return ve) or (return vt). A similar case analysis on (eqT tt te)
will either produce fail or (return tt). The former is trivially true, and
both `M return vt : return tt and `M return ve : return tt hold in the
latter case from the induction hypotheses.

4.3.4 Modular Sublemmas

The above proof assumed that only the pure typing rules of Figure 4.6 were
used to type the subexpressions of the if-expression, which is clearly not the
case when the boolean feature is included in an effectful language. Instead,
case analyses are performed on the extensible typing relation in order to make
the boolean feature theorem compatible with new effects. Case analyses over
the extensible `M relation are accomplished using extensible proof algebras
which are folded over the derivations provided by the induction hypothesis, as
outlined in Section 3.5.7.

In order for the boolean feature’s proof of FSound to be compatible with
a new effect, each extensible case analysis requires a proof algebra for the new
typing rules the effect introduces to the `M relation. More concretely, the
conditional case of the previous proof can be dispatched by folding a proof
algebra for the property WFM-If-Vc over `M JvcK : typeof tc . However,
each new effect induces a new case for this proof algebra.

These proof algebras are examples of interactions [Batory et al., 2011]
from the setting of modular component-based frameworks. In essence, an
interaction is functionality (e.g., a function or a proof) that is only necessary
when two components are combined. Our case is an interaction between the
boolean feature and any effect.

Importantly, these proof algebras do not need to be provided up front when
developing the boolean algebra, but can instead be modularly resolved by later
by separate proof algebras for the interaction of the boolean feature and each
effect.

Nevertheless, the formulation of the properties proved by extensible case
analysis has an impact on modularity. WFM-If-Vc is specific to the proof of

92 CHAPTER 4. MODULAR MONADIC EFFECTS

Σ `M vm : tm
(∀v t Σ′.(Σ′ ⊇ Σ)→ (Σ′ ` v : t)→ (Σ′ `M kv v : kt t))

Σ `M (vm >>= kv) : (tm >>= kt)
WFM-Bind

Figure 4.7: Reusable sublemma for monadic binds.

FSound in the boolean feature; proofs of FSound for other features require
different properties and thus different proof algebras. Relying on such specific
properties can lead to a proliferation of proof obligations for each new effect.

4.3.5 Reusable Bind Sublemma

Alternatively, the boolean feature can use a proof algebra for a stronger prop-
erty that is also applicable in other proofs, cutting down on the number of
feature interactions. One such stronger, more general sublemma WFM-Bind
is shown in Figure 4.7. It relates the monadic bind operation to well-typing.
If the two subcomputations vm and tm on the left-hand side of the bind yield
values v and t , then invoking the continuations kv and kt with these values
gives rise to well-typed computations. The rule requires this for any possible
well-typed combination of v and t .

A proof of WFM-If-Vc follows from two applications of this stronger
property. The advantage of WFM-Bind is clear: it can be reused to deal
with case analyses in other proofs of FSound, while a proof of WFM-If-Vc
has only a single use. As WFM-Bind is a desirable property for typing rules,
the case study focuses on that approach.

4.4 Effect and Language Theorems

The second phase of showing type soundness is the effect theorem, that proves
a statement of soundness for a fixed set of effects.

4.4.1 Pure Languages

For pure effects, the soundness statement is straightforward:

∀vm t . `M vm : return t ⇒ ∃v .vm ≡ return v ∧ ` v : t (ESoundP)

4.4. EFFECT AND LANGUAGE THEOREMS 93

Σ `M throw x : tm
Wfm-Throw

Σ `M m >>= k : tm ∀ Σ′ ⊇ Σ x . Σ′ `M h x >>= k : tm

Σ `M catch m h >>= k : tm
Wfm-Catch

Figure 4.8: Typing rules for exceptional monadic values.

Each effect theorem is proved by induction over the derivation of `M vm :
return t . ESoundP fixes the irrelevant environment type to the unit type ()
and the evaluation monad to the pure monad I. Since the evaluation monad
is fixed, the proof of ESoundP only needs to consider the pure typing rules
of Figure 4.6. The proof of the effect theorem is straightforward: WFM-
Illtyped could not have been used to derive `M vm : return t , and WFM-
Return provides both a witness for v and a proof that it is of type t .

The statement of soundness for a pure language built from a particular set
of features is similar to ESoundP :

∀e, t .typeof e ≡ return t ⇒ ∃v .JeK ≡ return v ∧ ` v : t (LSoundP)

The proof of LSoundP is an immediate consequence of the reusable proofs
of FSound and ESoundP . Folding a proof algebra for FSound over e pro-
vides a proof of `M JeK : return t , satisfying the first assumption of ESoundP .
LSoundP follows immediately.

4.4.2 Errors

The evaluation algebra of the error language feature uses the side effects of
the exception monad, requiring new typing rules.

Typing Rules Figure 4.8 lists the typing rules for monadic computations in-
volving exceptions which are parameterized by a type x for exceptional values.
WFM-Throw states that (throw x) is typeable with any type. WFM-Catch
states that binding the results of both branches of a catch statement will pro-
duce a monad with the same type. While it may seem odd that this rule is
formulated in terms of a continuation >>=k , it is essential for compatibility with
the proofs algebras required by other features. As described in Section 4.3.2,
extensible proof algebras over the typing derivation will now need cases for the

94 CHAPTER 4. MODULAR MONADIC EFFECTS

two new rules. To illustrate this, consider the proof algebra for the general
purpose WFM-Bind property. This algebra requires a proof of:

(Σ `M catch e h >>= k : tm)→
(∀v t Σ′ ⊇ Σ. (Σ′ ` v : t)→ Σ′ `M kv v : kt t)→
Σ `M (catch e h >>= k)>>= kv : tm >>= kt

With the continuation, we can first apply the associativity law to reorder
the binds so that WFM-Catch can be applied:

(catch e h >>= k)>>= kv = catch e h >>= (k >>= kv).

The two premises of the rule follow immediately from the inductive hypoth-
esis of the lemma, finishing the proof. Without the continuation, the proof
statement only binds catch e h to vm , leaving no applicable typing rules.

Effect Theorem The effect theorem, ESoundE , for a language whose only
effect is exceptions reflects that the evaluation function is either a well-typed
value or an exception.

∀vm t . `M vm : return t →
∃x.vm ≡ throw x ∨ ∃v .vm ≡ return v∧ ` v : t

(ESoundE)

The proof of ESoundE is again by induction on the derivation of `M vm :
return t . The irrelevant environment can be fixed to the unit type (), while
the evaluation monad is the exception monad ET x I.

The typing derivation is built from four rules: the two pure rules from
Figure 4.6 and the two exception rules from Figure 4.8. The case for the two
pure rules is effectively the same as before, and WFM-Throw is straightfor-
ward. In the remaining case, (vm ≡ catch e ′ h), and we can leverage the fact
that the evaluation monad is fixed to conclude that either (∃v .e ′ ≡ return v)
or (∃x .e ′ ≡ throw x). In the former case, catch e ′ h can be reduced using
catch return, and the latter case is simplified using catch throw1. In both
cases, the conclusion then follows immediately from the assumptions of WFM-
Catch. The proof of the language theorem LSoundE is similar to LSoundP
and is easily built from ESoundE and FSound.

4.4.3 References

Typing Rules Figure 4.9 lists the two typing rules for stateful computa-
tions. To understand the formulation of these rules, consider LSoundS , the

4.4. EFFECT AND LANGUAGE THEOREMS 95

∀σ,Σ ` σ → Σ `M k σ : tm

Σ `M get >>= k : tm
Wfm-Get

Σ′ ` σ Σ′ ⊇ Σ Σ′ `M k : tm

Σ `M put σ >> k : tm
Wfm-Put

Figure 4.9: Typing rules for stateful monadic values.

statement of soundness for a language with a stateful evaluation function. The
statement accounts for both the typing environment Σ and evaluation envi-
ronment σ by imposing the invariant that σ is well-formed with respect to Σ.
FSound however, has no such conditions (which would be anti-modular in
any case). We avoid this problem by accounting for the invariant in the typing
rules themselves:

• WFM-Get requires that the continuation k of a get is well-typed under
the invariant.

• WFM-Put requires that any newly installed environment maintains this
invariant.

The intuition behind these premises is that effect theorems will maintain these
invariants in order to apply the rules.

Effect Theorem The effect theorem for mutable state proceeds again by
induction over the typing derivation. The evaluation monad is fixed to ST Σ I
and the environment type is fixed to [Type] with the obvious definitions for
⊇.

• The proof case for the two pure rules is again straightforward.

• For WFM-Get we have that put σ >>JeK ≡ put σ >>get >>= k . After re-
ducing this to (k σ) with the put get law, the result follows immediately
from the rule’s assumptions.

• Similarly, for WFM-Put we have that put σ >>JeK ≡ put σ >>put σ′

>>k . After reducing this to put σ′ >>k with the put put law, the result
again follows immediately from the rule’s assumptions.

96 CHAPTER 4. MODULAR MONADIC EFFECTS

∀γ. Γ ` γ → Γ `M k γ : tm

Γ `M ask >>= k : tm
Wfm-Ask

∀ γ. Γ ` γ → Γ′ ` f γ Γ′ `M m : return t′m
∀v. ` v : t′m → Γ `M (k v) : tm

Γ `M local f m >>= k : tm
Wfm-Local

Γ `M ⊥ : tm
Wfm-Bot

Figure 4.10: Typing rules for environment and failure monads.

4.4.4 Lambda

The case study represents the binders of the lambda feature using PHOAS [Chli-
pala, 2008] to avoid many of the boilerplate definitions and proofs about term
well-formedness found in first-order representations.

The Environment Effect 3MT neatly hides the variable environment of
the evaluation function with a reader monad RM, unlike MTC which passes
the environment explicitly. This new effect introduces the two new typing rules
listed in Figure 4.10. Unsurprisingly, these typing rule are similar to those of
Figure 4.9. The rule for ask is essentially the same as WFM-Get. The typing
rule for local differs slightly from WFM-Put. Its first premise ensures that
whenever f is applied to an environment that is well-formed in the original
typing environment Γ, the resulting environment is well-formed in some new
environment Γ′. The second premise ensures the body of local is well-formed
in this environment according to some type T , and the final premise ensures
that k is well-formed when applied to any value of type T . The intuition
behind binding the local expression in some k is the same as with put .

The Partiality Effect The lambda feature also introduces the possibility
of non-termination to the evaluation function, which is disallowed by Coq.
MTC solves this problem by combining mixin algebras with a bounded fixed-
point function. This function applies an algebra a bounded number of times,
returning a ⊥ value when the bound is exceeded. Because MTC represented
⊥ as a value, all evaluation algebras needed to account for it explicitly. In the
monadic setting, 3MT elegantly represents ⊥ with the fail primitive of the

4.4. EFFECT AND LANGUAGE THEOREMS 97

failure monad. This allows terminating features to be completely oblivious
to whether a bounded or standard fold is used for the evaluation function,
resulting in a much cleaner semantics. WFM-Bot allows ⊥ to have any type.

4.4.5 Modular Effect Compositions

As we have seen, laws are essential for proofs of FSound. The proofs so far
have involved only up to one effect and the laws regulate the behavior of that
effect’s primitive operations.

Languages often involve more than one effect, however. As outline in Sec-
tion 4.2.2 the effect theorem depends on the set of available effects, and in
the case of multiple effects the theorem is different from the theorem for any
proper subset of effects. Moreover, the proofs of effect theorems must reason
about the interaction between multiple effects. There is a trade-off between
fully instantiating the monad for the language as we have done previously, and
continuing to reason about a constrained polymorphic monad. The former is
easy for reasoning, while the latter allows the same language proof to be in-
stantiated with different implementations of the monad. In the latter case,
additional effect interaction laws are required.

The following sections discuss compositions of different set of effects, their
effect theorem statement, and the necessary interaction laws to prove the effect
theorem.

4.4.6 State and Exceptions

Consider the effect theorem which fixes the evaluation monad to support ex-
ceptions and state. The statement of the theorem mentions both kinds of
effects by requiring the evaluation function to be run with a well-formed state
σ and by concluding that well-typed expressions either throw an exception or
return a value. The WFM-Catch case this theorem has the following goal:

(Σ ` σ : Σ)

→

∃ Σ′, σ′, v .

{
put σ >> catch e h >>= k ≡ put σ′ >> return v

Σ′ ` v : t

}
∨

∃ Σ′, σ′, x .

{
put σ >> catch e h >>= k ≡ put σ′ >> throw x

Σ′ ` σ′ : Σ′

}

98 CHAPTER 4. MODULAR MONADIC EFFECTS

∀Σ,Γ, δ, γ, σ, eE , eT .


γ, δ ` eE ≡ eT

Σ ` σ : Σ
Σ ` γ : Γ

typeof eT ≡ return t

→
∃ Σ′, σ′, v .

 local (λ .γ) (put σ >> JeKE)
≡ local (λ .γ) (put σ′ >> return v)

Σ′ ` v : t

∨
∃ Σ′, σ′, v .


local (λ .γ) (put σ >> JeKE)
≡ local (λ .γ(put σ′ >>⊥)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ

∨

∃ Σ′, σ′, v .


local (λ .γ) (put σ >> JeKE)
≡ local (λ .Γ(put σ′ >> throw t)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ



(ESoundESRF)

Figure 4.11: Effect theorem statement for languages with errors, state, an environ-
ment and failure.

In order to apply the induction hypothesis to e and h, we need to precede
them by a (put σ). Hence, (put σ) must be pushed under the catch statement
through the use of a law governing the behavior of put and catch. There
are different choices for this law, depending on the monad that implements
both SM and EM. We consider two reasonable choices, based on the monad
transformer compositions ET x (ST s I) and ST s (ET x I):

• Either catch passes the current state into the handler:

put σ >> catch e h ≡ catch (put σ >> e) h

• Or catch runs the handler with the initial state:

put σ >> catch e h ≡ catch (put σ >> e) (put σ >> h)

The WFM-Catch case is provable under either choice. As the ESoundES proof
is written as an extensible theorem, the two cases are written as two separate
proof algebras, each with a different assumption about the behavior of the
interaction. Since the cases for the other rules are impervious to the choice,
they can be reused with either proof of WFM-Catch.

4.4. EFFECT AND LANGUAGE THEOREMS 99

Exceptional Environment

class (EM x m,RM m)⇒ ERM x g m where
local throw :: local f (throw e) ≡ throw e
local catch :: local f (catch e h) ≡

catch (local f e) (λx .local f (h x))

Exceptional Failure

class (EM x m, FM m)⇒ FSM x m where
catch fail :: catch fail h ≡ fail
fail neq throw :: fail 6= throw x

Exceptional State Failure

class (EM x m, SM s m, FM m)⇒ EFSM x m where

put fail throw :: put σ >> fail 6= put σ′ >> throw x

Exceptional State

class (EM x m, FM m)⇒ ESM x m where

put ret throw :: put σ >> return a 6= put σ′ >> throw x

put throw :: ∀A B.put σ >> throw A x ≡ put σ′ >> throw A x →
put σ >> throw B x ≡ put σ′ >> throw B x

Alternate Exceptional State laws

class (EM x m, FM m)⇒ ESM1 x m where

put catch1 :: put σ >> catch e h ≡ catch (put σ >> e) h

Or

class (EM x m, FM m)⇒ ESM2
x m where

put catch2 :: put env >> catch e h ≡
catch (put σ >> e) (λx → put σ >> h x)

Figure 4.12: Interaction laws

4.4.7 State, Reader and Exceptions

A language with references, errors and lambda abstractions features four ef-
fects: state, exceptions, an environment and failure. The language theorem for
such a language relies on the effect theorem ESoundESRF given in Figure 4.11.
The proof of ESoundESRF is similar to the previous effect theorem proofs,
and makes use of the full set of interaction laws given in Figure 4.12. Perhaps
the most interesting observation here is that because the environment monad
only makes local changes, we can avoid having to choose between laws regard-
ing how it interacts with exceptions. Also note that since we are representing

100 CHAPTER 4. MODULAR MONADIC EFFECTS

e ::= N | e + e Arith
| B | if e then e else e Bool
| lam x : T.e | e e | x Lambda
| ref e | !e | e:=e References
| try e with e | error Errors

V ::= N Arith
| B Bool
| clos e V Lambda
| loc N References

T ::= Nat Arith
| Bool Bool
| T → T Lambda
| Ref T References

Figure 4.13: mini-ML expressions, values, and types

Module Spec Proof Total Description

MTC 803 388 1191 MTC Framework.
MonadLib 1350 201 1551 3MT monad and monad transfomers.
Names 358 94 452 Type-safety infrastructure.
PNames 229 100 329 PHOAS type-safety infrastructure.

Total 2740 783 3523

Table 4.1: Size statistic for the 3MT framework for modular effect reasoning

nontermination using a failure monad FM m, the catch fail law conforms to
our desired semantics.

4.5 Case Study

As a demonstration of the 3MT framework, we have built a set of five reusable
language features and combined them to build a family of languages which
includes a mini-ML [Clément et al., 1986] variant with references and errors.
The study includes pure boolean and arithmetic features as well as effectful
features for references, errors and lambda abstractions.

The study builds twenty eight different combinations of the features which
are all possible combinations with at least one feature providing values. Fig-
ure 4.13 presents the syntax of the expressions, values, and types provided;
each line is annotated with the feature that provides that set of definitions.

Table 4.1 gives an overview of the size in lines of code (LoC) of different

4.5. CASE STUDY 101

Module Spec Proof Total

Pure 79 60 139
Fail 65 11 76
Except 97 59 156
Reader 95 24 119
State 107 20 127

Total 483 174 657

Table 4.2: Size statistics of the monadic value typing relations.

parts of the 3MT library. The 3MT library consists of about 3,550 LoC of
which 1,200 LoC comprise the MTC implementation of modular datatypes
and modular induction, 1,550 LoC comprise the implementation of the monad
transformers and their algebraic laws and finally the infrastructure for monadic
type safety consists of 800 LoC. All of this code is not specific to language
features and is therefore reusable.

A breakdown of the size of the effect implementations is given in Table
4.2. These include the modular typing rules for the specified effect and a proof
algebra for the reusable bind lemma of these rules.

The size in LoC of the implementation of semantic evaluation and typing
functions and the reusable feature theorem for each language feature is given
in Table 4.3. Two kinds of feature interactions appear in the case study.

• The PHOAS representation of binders requires an auxiliary equivalence
relation, the details of which are covered in the MTC paper [Delaware
et al., 2013]. The soundness proofs of language theorems for languages
which include binders proceed by induction over this equivalence relation
instead of expressions. The reusable feature theorems of other features
need to be lifted to this equivalence relation. In our case study only the
Lambda feature includes binders. The equivalence relations and liftings
of the other features are contained in the modules ArithEqv , BoolEqv ,
ErrorEqv and RefEqv which are also listed in Table 4.3. Together, they
represent about 16% of the LoC of the feature implementations. How-
ever, this code does not represent feature interactions with the Lambda
feature, but rather with variable binding and is reusable in combination
with other features that use binding.

• Inversion lemmas for the well-formed value relation, such as in the proof
of FSound for the boolean feature in Section 4.3.2, are proven by in-

102 CHAPTER 4. MODULAR MONADIC EFFECTS

Module Spec Proof Total

Arith 524 110 634
Bool 590 122 712
Error 348 60 408
Ref 895 229 1124
Lambda 840 173 1013

ArithEqv 158 13 171
BoolEqv 174 14 188
ErrorEqv 145 14 159
RefEqv 229 16 245

Lambda Arith 40 16 56
Lambda Bool 40 16 56
Lambda Ref 53 35 88

Total 4036 818 4854

Table 4.3: Size statistics of the feature implementations.

duction over the relation. Inversion lemmas are needed for natural num-
bers, boolean, store locations and closures. Except for closures, these
inversion lemmas are dispatched by tactics hooked into the type class
inference algorithm. For the closure inversion, manually written proof
algebras are used. These are implemented in the modules Lambda Arith,
Lambda Bool and Lambda Ref which together form amount to 200 LoC
or about 4% of the feature specific code and are thus negligible.

Table 4.4 lists the sizes of the effect theorems for each set of effects used in
the case study. The letters in the module name encode the effect set: P = Pure
(no effects), E = Exceptions, R = Reader , F = Fail and S = State. The effect
theorems are completely un-modular, but are reusable for languages that use
the specific set of effects. With an average of 220 LoC, these effect theorems
are much smaller than the modular feature implementations.

Each language needs on average 90 LoC to assemble its semantic functions
and soundness proofs from those of its features and the effect theorem for
its set of effects. Table 4.5 contains a detailed overview. The letters encode
the set of used features: A = Arith,B = Bool ,E = Error ,L = Lambda and
R = References.

Apart from the language specific compositions, our approach significantly

4.6. RELATED WORK 103

Module Spec Proof Total

ESoundP 59 20 79
ESoundE 76 61 137
ESoundRF 95 50 145
ESoundS 87 70 157
ESoundERF 210 31 241
ESoundRFS 179 104 283
ESoundES 134 164 298
ESoundERFS 199 233 432

Total 1039 733 1772

Table 4.4: Size statistics of the effect theorems.

reduces the amount of un-reusable code. The code with the least reuse are the
effect theorems. However, for any language composition, the size of the effect
theorem is overshadowed by the size of the feature implementations.

4.6 Related Work

While previous work has explored the basic techniques of modularizing dy-
namic semantics of languages with effects, our work is the first to show how
to also do modular proofs. Adding the ability to do modular proofs required
the development of novel techniques for reasoning about modular components
with effects.

4.6.1 Functional Models for Modular Side Effects

Monads and Monad Transformers Since Moggi [1989] first proposed
monads to model side-effects, and Wadler [1992] popularized them in the con-
text of Haskell, various researchers (e.g., [Jones and Duponcheel, 1993; Steele,
1994]) have sought to modularize monads. Monad transformers emerged [Cen-
ciarelli and Moggi, 1993; Liang et al., 1995] from this process, and in later years
various alternative implementation designs facilitating monad (transformer)
implementations, have been developed, including Filinski [1999]’s layered mon-
ads and Jaskelioff [2011]’s Monatron.

104 CHAPTER 4. MODULAR MONADIC EFFECTS

Module Spec Proof Total Module Spec Proof Total

A 25 4 29 BL 58 9 67
B 26 10 36 BARE 58 19 77
AB 27 12 39 BAL 64 9 73
R 35 9 44 LR 75 18 93
AR 37 12 49 ARL 80 18 98
BR 37 12 49 BRL 81 18 99
AE 37 22 59 ALE 85 18 103
BE 37 22 59 BARL 86 16 102
BAR 38 14 52 BLE 87 18 105
ABE 38 25 63 BALE 93 18 111
RE 53 18 71 LRE 106 9 116
ARE 56 17 73 ARLE 113 9 122
BRE 57 17 74 BRLE 115 9 124
AL 58 9 67 BARLE 121 9 130

Total 1783 400 2184

Table 4.5: Size statistics of the language compositions.

Monads and Subtyping Filinski’s MultiMonadic MetaLanguage (M3L) [Fil-
inski, 2007, 2010] embraces the monadic approach, but uses subtyping (or
subeffecting) to combine the effects of different components. The subtyping
relation is fixed at the program or language level, which does not provide the
adaptability we achieve with constrained polymorphism.

Algebraic Effects and Effect Handlers In the semantics community the
algebraic theory of computational effects [Plotkin and Power, 2002] has been
an active area of research. Many of the laws about effects, which we have not
seen before in the context of functional programming, can be found throughout
the semantics literature. Our first four laws for exceptions, for example, have
been presented by Levy [2006].

A more recent model of side effects are effect handlers. They were in-
troduced by Plotkin and Pretnar [2009] as a generalization from exception
handlers to handlers for a range of computational effects, such as I/O, state,
and nondeterminism. Bauer and Pretnar [2015] built the language Eff around
effect handlers and show how to implement a wide range of effects in it. Kam-
mar et al. [2012] showed that effect handlers can be implemented in terms of
delimited continuations or free monads.

4.6. RELATED WORK 105

The major advantage of effect handlers over monads is that they are more
easily composed, as any composition of effect operations and corresponding
handlers is valid. In contrast, not every composition of monads is a monad. In
the future, we plan on investigating the use of effect handlers instead of monad
transformers, which could potentially reduce the amount of work involved on
proofs about interactions of effects.

Other Effect Models Other useful models have been proposed, such as
applicative functors [Mcbride and Paterson, 2008] and arrows [Hughes, 2000],
each with their own axioms and modularity properties.

4.6.2 Modular Effectful Semantics

There are several works on how to modularize semantics with effects, although
none of these works considers reasoning.

Mosses [2004] modularizes structural operational semantics by means of a
label transition system where extensible labels capture effects like state and
abrupt termination. Swierstra [2008] presents modular syntax with functor
coproducts and modular semantics with algebra compositions. To support
effects, he uses modular syntax to define a free monad. The effectful semantics
for this free monad is not given in a modular manner, however. Jaskelioff
et al. [2011] present a modular approach for operational semantics on top of
Swierstra’s modular syntax, although they do not cover conventional semantics
with side-effects. Both Schrijvers and Oliveira [2010] and Bahr and Hvitved
[2011] have shown how to define modular semantics with monads for effects;
this is essentially the approach followed in this paper for modular semantics.

4.6.3 Effects and Reasoning

Non-Modular Monadic Reasoning Although monads are a purely func-
tional way to encapsulate computational-effects, programs using monads are
challenging to reason about. The main issue is that monads provide an abstrac-
tion over purely functional models of effects, allowing functional programmers
to write programs in terms of abstract operations like >>=, return, or get and
put . One way to reason about monadic programs is to remove the abstrac-
tion provided by such operations [Hutton and Fulger, 2008]. However, this
approach is fundamentally non-modular.

Modular Monadic Reasoning Several more modular approaches to mod-
ular monadic reasoning have been pursued in the past.

106 CHAPTER 4. MODULAR MONADIC EFFECTS

One approach to modular monadic reasoning is to exploit parametric-
ity [Reynolds, 1983; Wadler, 1989]. Voigtländer [2009] has shown how to derive
parametricity theorems for type constructor classes such as Monad . Unfortu-
nately, the reasoning power of parametricity is limited, and parametricity is
not supported by proof-assistants like Coq.

A second technique uses algebraic laws. Liang and Hudak [1996] present
one of the earliest examples of using algebraic laws for reasoning. They use
algebraic laws for reader monads to prove correctness properties about a mod-
ular compiler. In contrast to our work, their compiler correctness proofs are
pen-and-paper and thus more informal than our proofs. Since they are not re-
stricted by a termination checker or the use of positive types only, they exploit
features like general recursion in their definitions. Oliveira et al. [2010] have
also used algebraic laws for the state monad, in combination with parametric-
ity, for modular proofs of non-interference of aspect-oriented advice. Gibbons
and Hinze [2011] discuss several other algebraic laws for various types of mon-
ads. However, as far as we know, we are the first to provide an extensive
mechanized library for monads and algebraic laws in Coq.

4.6.4 Mechanization of Monad Transformers

Huffman [2012] illustrates an approach for mechanizing type constructor classes
in Isabelle/HOL with monad transformers. He considers transformer variants
of the resumption, error and writer monads, but features only the generic
functor, monad and transformer laws. The work tackles many issues that are
not relevant for our Coq setting, such as lack of parametric polymorphism and
explicit modeling of laziness.

4.7 Scientific Output

This chapter is based on the contents of the article

Delaware, B., Keuchel, S., Schrijvers, T., and Oliveira, B. C.
d. S. (2013). Modular Monadic Meta-Theory. In Proceed-
ings of the 18th ACM SIGPLAN international conference on
Functional programming, ICFP ’13, pages 319-330. ACM.

The project also drew ideas from previous unpublished work of mine (see
[Keuchel and Schrijvers, 2012]):

4.7. SCIENTIFIC OUTPUT 107

Keuchel, S. and Schrijvers, T. (2012). Modular Monadic Rea-
soning, a (Co-)Routine. Presented at the 24th Symposium on
Implementation and Application of Functional Languages, IFL
’12.

In particular, the modeling of explicit continuations in the monadic typ-
ing rules of the 3MT framework is reminiscent of a free monad or a co-
routine/resumption monad which is the basis for this previous work. The co-
routine based approach used an inductive datatype to encode computations
which turned out to be cumbersome with respect to equality and algebraic
reasoning. 3MT uses monadic values directly instead. Nevertheless, the fun-
damental setup of the use of explicit continuations in the monadic typing rules
is directly influenced by my prior work. However, Benjamin Delaware took the
lead in this project and has contributed the major part of the development
and refinement of the monadic typing rules.

The reusable bind lemma was developed by me during the work on the case
study and was used to significantly cut down the number of feature interaction
lemmas.

Concerning the technical development in Coq, the 3MT monad library –
including most of the algebraic laws – was written before I joined the project.
My main contribution lies in the development of feature theorems, language
compositions and the presentation of the case study in the publication.

108 CHAPTER 4. MODULAR MONADIC EFFECTS

Part II

Genericity

109

Chapter 5
Background

Names are commonly used in programming languages to refer to defined enti-
ties such as constants, functions, function parameters, classes, methods, record
labels, program points, type and data constructors. Variable binding is a spe-
cial case, in which names not only serve as references, but also as placeholder
that can be substituted or instantiated with members of some domain. For
instance, function parameters might be instantiated to values during evalu-
ation, or to arbitrary expressions when the function is being inlined during
compilation. On the other hand, we do normally not consider a Java class
name to be substitutable, for example with the definition of the class.

Syntactic operations like calculating the set of free variables, renaming
bound variables, or substituting variables can be defined for every language
with variable binding. Moreover, their implementation is highly repetitive:
it follows a pattern that only depends on the scoping rules of a particular
language. Furthermore, proof of properties about these operations are equally
repetitive.

This raises the question of whether we can achieve reuse in the implemen-
tation of such boilerplate functions and boilerplate lemmas related to variable
binding. In this part of the thesis, we investigate a generic approach to solv-
ing this problem: generically defining the boilerplate and instantiating it to a
particular language when needed.

This chapter covers background information on formalising languages with
variable binding and illustrates the boilerplate that arises when mechanising
meta-theory. Furthermore, it outlines and motivates our specific approach and

111

112 CHAPTER 5. BACKGROUND

defines necessary terminology. Our running example is F∃,×, i.e. System F
with universal and existential quantification, and products. In the following
sections, we elaborate on the development and point out which definitions and
proofs can be considered variable binding boilerplate and which are essential.
The kind of boilerplate that arises, is coarsely determined by the semantics,
the meta-theoretic property that is being proved and the approach to proving
it. We use the syntactic approach of Wright and Felleisen [1994] to prove type
safety via progress and preservation of small-step operational semantics and
specifically focus on the boilerplate of such proofs.

For the illustration in this chapter, we proceed in three steps. First, we
present a textbook-like definition of F∃,×. This definition is not completely
formal, and hence cannot be used directly in mechanisations. It is, however,
formal enough to be accepted in scientific publications. We call it semi-formal.
Using this semi-formal definition we discuss arising boilerplate independent of
later choices, e.g. syntax representations. Second, we formalise the previous
semi-formal definition by bringing it into a shape that is suitable for mech-
anisation. Third, we discuss the mechanisation itself and conclude with an
overview of the remainder of this part.

5.1 Semi-formal Development

This section presents the semi-formal development of the language F∃,×, with
an emphasis on variable binding related concerns. Section 5.1.1 presents the
syntax of F∃,× and elaborates on needed variable binding boilerplate. Sub-
sequently, Section 5.1.2 presents the typing and evaluation relations and il-
lustrates the boilerplate lemmas they determine. Finally, Section 5.1.3 shows
where the boilerplate is used in the type safety proof of F∃,×.

5.1.1 Syntax

Like in Section 1.1.1, we define the syntax of F∃,× using an EBNF grammar.
On top of this grammar, we define a substitution operation. We particularly
pay attention to another concern related to variable binding, namely scoping
rules, which we define using a well-scopedness relation. This is more formal
and explicit than what is commonly found in textbooks.

Grammar Figure 5.1 shows the first part of the language specification: the
definition of the syntax of F∃,×, in a textbook-like manner.

5.1. SEMI-FORMAL DEVELOPMENT 113

α, β ::= type variable e ::= term
τ, σ ::= type | x term variable
| α type variable | λx : τ.e term abstraction
| σ → τ function type | e1 e2 term application
| ∀α.τ universal type | Λα.e type abstraction
| ∃α.τ existential type | e!τ type application
| σ × τ product type | {σ, e} as τ packing

x, y ::= term variable | let {α, x} = e1 in e2 unpacking
p ::= pattern | e1, e2 pair
| x variable pattern | case e1 of p→ e2 pattern binding
| p1, p2 pair pattern v ::= value

Γ,∆ ::= type context | λx : τ.e term abstraction
| ε empty context | Λα.e type abstraction
| Γ, α type binding | {σ, v} as τ existential value
| Γ, x : τ term binding | v1, v2 pair value

Figure 5.1: F∃,× syntax

The three main syntactic sorts of F∃,× are types, terms and patterns, and
there are auxiliary sorts for values, variables and typing contexts. Patterns
describe pattern matching for product types only and can be arbitrarily nested.
A pattern can therefore bind an arbitrary number of variables at once. For
simplicity, we keep matching on existentials separate from products. One level
of existentials can be packed via ({τ, e} as σ) and unpacked via (let {α, x} =
e1 in e2).

In this grammar, the scoping rules are left implicit as is common practice.
The intended rules are that in a universal (∀α.τ) and existential quantification
(∃α.τ) the type variable α scopes over the body τ , in a type abstraction (Λα.e)
and term abstraction (λx : τ.e) the variable α respectively x scopes over the
body e. In a pattern binding (case e1 of p → e2) the variables bound by the
pattern p scope over e2 but not e1, and in the unpacking of an existential
(let {α, x} = e1 in e2) the variables α and x scope over e2.

Term and type variables appear in two different modes in the productions
for terms and types. First, in the variable production of each sort. We call
this a variable use or variable reference. All other occurrences of term and
type variable are variable bindings.

114 CHAPTER 5. BACKGROUND

Γ `ty τ α ∈ Γ

Γ `ty α
WsVar

Γ `ty σ Γ `ty τ
Γ `ty σ → τ

WsFun

Γ , α `ty τ
Γ `ty ∀α.τ

WsAll
Γ , α `ty τ
Γ `ty ∃α.τ

WsEx
Γ `ty σ Γ `ty τ

Γ `ty σ × τ
WsProd

Figure 5.2: Well-scoping of types

Scoping We defined the scoping rules using prose above. We now give them
a formal treatment by defining well-scoping relations that encode the scoping
rules.

The well-scopedness relation for types Γ `ty τ is defined in Figure 5.2. This
relation takes a typing context Γ as an index to represent the set of variables
that are in scope and an index τ for types. It denotes that all type variables
in τ are bound either in τ itself or appear in Γ. The definition is completely
syntax-directed. The interesting rules are the ones for variables and for the
quantifiers. In the variable case, rule WsVar checks that a type variable
indeed appears in the typing context Γ. In the rules WsAll for universal
and WsEx for existential quantification, the bound variable is added to the
typing context in the premise for the bodies. Similar relations can be defined
for terms, patterns and typing contexts as well.

The definition of well-scoping relations follows a standard recipe and usu-
ally its definition is left out in pen-and-paper specifications. In mechanisations,
however, such a relation usually needs to be defined (unless it is not used in
the meta-theory) by the human prover. Therefore, this relation is an example
of syntax-related boilerplate that we want to derive generically. The structure
of the relation only depends on the syntax of types and their scoping rules.
But since the scoping rules are not reflected in the EBNF syntax of Figure 5.1
we need to add other pieces of essential information to the specification from
which we can derive boilerplate.

One option is to make the scoping relations like Γ `ty τ part of the spec-
ification and derive other boilerplate from it, but this relation repeats a lot
of information that is already given in the EBNF grammar. If possible, we
want to avoid that repetition in our specifications. The only new detail that
the well-scopedness relation adds explicitly, is that the type variables in the
quantifications scope over the bodies, which is highlighted in gray in Figure
5.2.

5.1. SEMI-FORMAL DEVELOPMENT 115

fv(τ)

fv(α) = {α}
fv(τ1 → τ2) = fv(τ1) ∪ fv(τ2)
fv(∀β.τ) = fv(τ) \ {β}
fv(∃β.τ) = fv(τ) \ {β}
fv(τ1 × τ2) = fv(τ1) ∪ fv(τ2)

bnd(p)

bnd(x) = {x}
bnd(p1, p2) = bnd(p1) ∪ bnd(p2)

fv(e)

fv(x) = {x}
fv(λx : τ.e) = fv(e) \ {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(Λα.e) = fv(e) \ {α}
fv(e!τ) = fv(e) ∪ fv(τ)
fv({σ, e} as τ) = fv(σ) ∪ fv(e) ∪ fv(τ)
fv(let {α, x} = e1 in e2) = fv(e1) ∪ (fv(e2) \ {α, x})
fv(e1, e2) = fv(e1) ∪ fv(e2)
fv(case e1 of p→ e2) = fv(e1) ∪ (fv(e2) \ bnd(p))

Figure 5.3: Free variables

These issues ask to develop a new formal and concise way to specify scoping
rules. We come back to this in Chapter 6 which presents our solution to the
problem: we develop a language of (abstract) syntax specifications that include
binding specifications for scoping.

Free Variables Figure 5.3 shows the definition of the calculations of free
variables of types and terms, i.e. reference occurrences of variables that are
not bound in the type or term itself. Free variables are used for the definition
of capture-avoiding substitution below.

The implementation is a recursive traversal that accumulates free variables
from the variable case leaves upward and removes variables when they are
found to be bound. For sorts like patterns that represent binders we define
an auxiliary function bnd(·) that calculates the set of bound variables. The
definition of the free variable function follows a standard recipe, which only
depends on the grammar and the scoping rules of the syntactic sorts, and is

116 CHAPTER 5. BACKGROUND

[α 7→ σ] τ

[α 7→ σ] α = σ
[α 7→ σ] β = β (α 6= β)
[α 7→ σ] (τ1 → τ2) = ([α 7→ σ] τ1)→ ([α 7→ σ] τ2)
[α 7→ σ] (∀β.τ) = ∀β.[α 7→ σ] τ (α 6= β ∧ β 6∈ fv(σ))
[α 7→ σ] (∃β.τ) = ∃β.[α 7→ σ] τ (α 6= β ∧ β 6∈ fv(σ))
[α 7→ σ] (τ1 × τ2) = ([α 7→ σ] τ1)× ([α 7→ σ] τ2)

Figure 5.4: Type in type substitutions

therefore boilerplate.

Substitution The typing and evaluation relations of F∃,× use type and term
variable substitution which we define now. We need to define 3 substitution
operators

[α 7→ σ] τ [α 7→ σ] e [x 7→ e1] e2

that correspond to substituting type variables in types and terms, and term
variables in terms.

A correct definition of substitution is subtle when it comes to specific names
of variables. A mere textual replacement is not sufficient. The following two
examples illustrate situations where we expect a different result than a textual
replacement:

[α 7→ σ] (Λα.α) 6= Λα.σ
[α 7→ (σ → β)] (Λβ.α) 6= Λβ.(σ → β)

In the first case, the type variable α is bound in a universal quantifica-
tion in the type (Λα.α) we operate on. It should not have been substituted.
The substitution should only substitute free variables. In the second case, we
substitute the free variable α but another issue arises. The variable β that
appears free in the substitute (σ → β) wrongly points to the β binder after
replacement. This is commonly called a variable capture.

Figure 5.4 contains a definition of a (capture-avoiding) substitution op-
erator that uses side-conditions to rule out the two problematic cases above.
However, it rules out certain inputs and therefore makes the operations partial.
This is widely accepted in semi-formal pen-and-paper proofs, but a stumbling
block for mechanisation.

The partiality can be addressed by taking into account the intuition that
the names of bound variables do not matter. For example, for our intended

5.1. SEMI-FORMAL DEVELOPMENT 117

semantics the terms λ(x : τ).x and λ(y : τ).y are essentially equivalent, i.e.
we consider terms that are equal up to consistent renaming of bound variables.
We can apply this in the definition of the substitution operators to replace
bound variables with fresh ones, i.e. variables that are not used elsewhere. In
other words, we perform α-conversion during substitution.

In pen-and-paper proofs, keeping track of α-conversions is onerous, detri-
mental to presentation, and utterly boring. Hence it is often assumed, that
that at any time, all bound variables are distinct from free variables and im-
plicitly renamed as needed. This is also called the Barendregt variable conven-
tion [Barendregt, 1984].

5.1.2 Semantics

The next step in the formalization is to develop the typical semantic relations
for the language of study. In the case of F∃,×, these comprise a typing rela-
tion for terms, a typing relation for patterns, and a small-step call-by-value
operational semantics.

Typing Figure 5.5 contains the rules for the term and pattern typing rela-
tions. The variable rule TVar of the term typing looks up a term variable x
with its associated type τ in the typing context Γ and rule TAbs deals with
abstractions over terms in terms which adds the binding (y : σ) to the typing
context for the premise of the body e. The rules TTApp for type-application
and TPack for packing existential types use a type-substitution operation
[α 7→ σ]τ that substitutes σ for α in τ . TTApp performs the substitution in
the conclusion while TPack does so in the premise. The remaining two rules,
TPair and TCase, of the term typing relation deal with products. In a case
expression the pattern p needs to have the same type σ as the scrutinee e1
and the variables ∆ bound by p are brought into scope in the body e2. This
environment ∆ is the output of the pattern typing relation Γ `p p : τ ; ∆, which
contains the typing information for all variables bound by p. This information
is concatenated in the rule PPair for pair patterns.

Evaluation The operational semantics is defined with 4 reduction rules
shown in Figure 5.6. We omitted further congruence rules that determine
the evaluation order. The reduction of the case construct uses an auxiliary
pattern-matching relation Match v p e1 e2 which denotes that when matching
the value v against the pattern p and applying the resulting variable substitu-
tion to e1 we get e2 as a result. All of the reduction rules directly or indirectly
use substitutions.

118 CHAPTER 5. BACKGROUND

Γ `tm e : τ x : τ ∈ Γ

Γ `tm x : τ
TVar

Γ, y : σ `tm e : τ

Γ `tm (λy : σ.e) : (σ → τ)
TAbs

Γ, α `tm e : τ

Γ `tm (Λα.e) : (∀α.τ)
TTAbs

Γ `tm e1 : σ → τ
Γ `tm e2 : σ

Γ `tm (e1 e2) : τ
TApp

Γ `tm e : ∀α.τ
Γ `tm (e!σ) : ([α 7→ σ]τ)

TTApp

Γ `tm e : ([α 7→ σ]τ)

Γ `tm ({σ, e} as ∃α.τ) : (∃α.τ)
TPack

Γ `tm e1 : τ1 Γ `tm e2 : τ2

Γ `tm (e1, e2) : (τ1 × τ2)
TPair

Γ `tm e1 : ∃α.τ Γ, α, x : τ `tm e2 : σ α /∈ fv(σ)

Γ `tm (let {α, x} = e1 in e2) : σ
TUnpack

Γ `tm e1 : σ Γ `p p : σ; ∆ Γ,∆ `tm e2 : τ

Γ `tm (case e1 of p→ e2) : τ
TCase

Γ `p p : τ ; ∆

Γ `p x : τ ; (ε, x : τ)
PVar

Γ `p p1 : τ1; ∆1 Γ,∆1 `p p2 : τ2; ∆2

Γ `p (p1, p2) : (τ1 × τ2); (∆1,∆2)
PPair

Figure 5.5: F∃,× typing rules

5.1.3 Meta-Theory

We conclude the semi-formal development by discussing the meta-theoretic
proof of type safety for F∃,×. We do not go into the details of the proof, but
focus instead on the variable binding related proof steps.

5.1. SEMI-FORMAL DEVELOPMENT 119

e −→ e

(λx.e) v −→ [x 7→ v]e (Λα.e)!τ −→ [α 7→ τ]e

let {α, x} = {σ, v} as τ in e −→ [α 7→ σ][x 7→ v]e

Match v p e1 e2

(case v of p→ e1) −→ e2

Match v p e1 e2

Match v x e ([x 7→ v]e)

Match v1 p1 e1 e2 Match v2 p2 e2 e3

Match (v1, v2) (p1, p2) e1 e3

Figure 5.6: F∃,× evaluation - selected rules

Substitution The interesting steps in the type preservation proof are the
preservations under the 4 reduction rules of the operational semantics. These
essentially boil down down to two substitution lemmas:

Γ `tm e1 : σ Γ, x : σ,∆ `tm e2 : τ

Γ,∆ `tm [x 7→ e1]e2 : τ
SubstTmTm

Γ, β,∆ `tm e : τ

Γ, [β 7→ σ]∆ `tm [β 7→ σ]e : [β 7→ σ]τ
SubstTyTm

For the proofs by induction of these lemmas to go through, we need to
prove them for all suffixes ∆, but only use the special case where ∆ = ε in
the preservation proof. For the inductive step for rule TTApp of the second
substitution lemma we have to prove the following

Γ′ = Γ, [β 7→ σ]∆ Γ′ `tm [β 7→ σ]e : ∀α.[β 7→ σ]τ

Γ′ `tm ([β 7→ σ]e)!([β 7→ σ]σ′) : [β 7→ σ][α 7→ σ′]τ

As the term in the conclusion remains a type application, we want to apply
rule TTApp again. However, the type in the conclusion does not have the

120 CHAPTER 5. BACKGROUND

appropriate form. We first need to commute the two substitutions with one of
the common interaction lemmas

[β 7→ σ][α 7→ σ′] = [α 7→ [β 7→ σ]σ′][β 7→ σ] (α 6= β) (5.1)

Progress The proof of progress proceeds similarly to that in Section 1.2.
The main difference, due to the presence of pattern matching, is that we
need to prove an auxiliary lemma stating that well-typed pattern matching
Match v p e1 e2 is always defined:

ε `tm v : σ ε `p p : σ; ∆ ∆ `tm e1 : τ ε `tm e2 : τ

Match v p e1 e2

On the whole, the proof of progress does not involve a lot of semantic variable
binding boilerplate.

Preservation The proof of preservation proceeds by induction on the typing
derivation Γ `tm e : σ and inversion of the evaluation relation e −→ e′. There
are two kinds of cases. Firstly, for evaluation steps that are congruence rules,
the proof follows immediately by applying the same rule again. Secondly, for
the reduction rules, which all involve substitution, the proof involves boiler-
plate substitution lemmas. Consider the case of reducing a term abstraction

(λ(x : σ).e1) e2 −→ [x 7→ e2] e1.

The proof obligation is

Γ `tm λ(x : σ).e1 : σ → τ Γ `tm e2 : σ

Γ `tm [x 7→ e2]e1 : τ

After inverting the first premise Γ `tm λ(x : σ).e1 : τ to get the typing deriva-
tion of e1 we can apply the boilerplate lemma for well-typed substitutions
SubstTmTm, with ∆ = ε, to finish the proof of this case.

Similarly, the cases of universal and existential quantification follow di-
rectly from the typing substitution lemmas. The case of a pattern match
additionally requires an induction over the matching relation Match v p e1 e2.
The boilerplate lemma SubstTmTm is used in the pattern variable case.

5.2 Formalization and Mechanisation

The next step is to rework the textbook-like specification from Section 5.1 into
a formal one, which can be mechanised in a proof assistant. In the following,

5.2. FORMALIZATION AND MECHANISATION 121

T ::= n | ∀ • .T E ::= ε
| T1 → T2 | ∃ • .T | Γ, •
| T1 × T2 | | Γ, • : T

q ::= • t ::= n | Λ • .t | t1, t2
| q1, q2 | λ• : T.t | t!T | case t1 of q → t2

| t1 t2 | {T1, t} as T2 | let {•, •} = t1 in t2

Figure 5.7: F∃,× de Bruijn representation

we will replace the syntax representation and discuss changes to the semantics
definitions. Finally, we discuss a mechanisation itself, and give a breakdown
of the different parts of the mechanisation to quantify the overall effort and
particularly the burden of variable binding boilerplate.

5.2.1 Syntax Representation

The first step in the mechanisation is to choose how to concretely represent
variables. Traditionally, one would represent variables using identifiers, but
as indicated in the previous section, capture-avoidance requires α-conversion
and keeping track of conversions is tedious. In the semi-formal development
we allowed ourselves the luxury of using the Barendregt variable convention.
However, the Barendregt convention comes with it own subtleties that can
even result in faulty reasoning [Urban et al., 2007; Pitts, 2003]. Hence, it
undermines our goal for rigorous, gapless, and machine-checked proofs.

Instead, the issue of α-conversion is handled by moving to a different rep-
resentations. Possible candidates for our formalization are de Bruijn index-
based [de Bruijn, 1972], locally nameless [Aydemir et al., 2008] or locally
named [Sato and Pollack, 2010; Pollack et al., 2012] representations that canon-
ically represent α-equivalent terms and thus eliminate α-conversion altogether.
An alternative is nominal abstract syntax [Pitts, 2003] that represents terms
using α-equivalance classes for which induction and recursion principles can
be defined. Higher-order abstract syntax (HOAS) [Pfenning and Elliott, 1988]
is a radically different approach that is using binders of the meta-language to
represent binders of an object language.

Our goal is not to develop a new approach to representing syntax with
variable binding nor to compare existing ones, but rather to scale the generic
treatment of a single approach. For this purpose, we choose de Bruijn represen-
tations [de Bruijn, 1972], motivated by two main reasons. First, reasoning with

122 CHAPTER 5. BACKGROUND

de Bruijn representations is well-understood and, in particular, the represen-
tation of pattern binding and scoping rules is also well-understood [de Bruijn,
1991; Keuchel and Jeuring, 2012]. Second, the functions related to variable
binding, the statements of properties of these functions and their proofs have
highly regular structures with respect to the abstract syntax and the scoping
rules of the language. This helps us in treating boilerplate generically and
automating proofs.

Figure 5.7 shows a term grammar for a de Bruijn representation of F∃,×.
A property of this representation is that binding occurrences of variables still
mark the binding but do not explictly name the bound variable anymore. For
this reason, we replace the variable names in binders uniformly with a bullet
• in the new grammar. Variables do not refer to their binding site by name
but by using positional information: A variable is represented by a natural
number n that denotes that the variable is bound by the nth enclosing binder
starting from 0.

Here are several examples of terms in both the named and the de Bruijn
representation:

λ(x : τ).x ⇒ (λ(• : T).0)
λ(x : τ).λ(y : σ).x ⇒ (λ(• : T).λ(• : S).1)
λ(x : τ1).λ(y : τ1 → τ2).(λ(z : τ1).y x) x ⇒

λ(• : T1).λ(• : T1 → T2).(λ(• : T1).2 0) 1

In the first example, λ(x : τ).x, the variable x refers to the immediately
enclosing binding and can therefore be represented with the index 0. Next, in
λ(x : τ).λ(y : σ).x, we need to skip the y binding and therefore represent the
occurrence of x with 1. In the third example, the variable x is once represented
using the index 1 and once using the index 2. This shows that the indices of a
variable are not constant but depend on the context the variable appears in.

Finally, we use different namespaces for term and type variables and treat
indices for variables from distinct namespaces independently, as illustrated by
the following examples:

λ(x : τ).Λα.x!α ⇒ λ(• : τ).Λ • .0!0
Λα.λ(x : τ).x!α ⇒ Λ • .λ(• : τ).0!0
Λα.Λβ.λ(x : α).λ(y : β).x ⇒ Λ • .Λ • .λ(• : 1).λ(• : 0).1

As a consequence, when resolving a term variable index we do not take
type variable binders into account and vice versa.

5.2. FORMALIZATION AND MECHANISATION 123

5.2.2 Well-scopedness

In the semi-formal specification we have defined a well-scopedness relation
solely for the purpose to make the scoping rules explicit. Of course, we only
ever want to consider well-scoped terms which is implicitly assumed in the
semi-formal development. In a proper formalization and mechanisation, how-
ever, this introduces obligation to actually prove terms to be well-scoped. For
instance, we need to prove that that all syntactic operations, like substitution,
preserve well-scopedness.

The well-scopedness of de Bruijn terms is a syntactic concern. It is com-
mon practice to define well-scopedness with respect to a type context like we
did in Section 5.1.1 : a term is well-scoped iff all its free variables are bound
in the context. The context is extended when going under binders. For exam-
ple, when going under the binder of a type-annotated lambda abstraction the
conventional rule is:

Γ, x : τ `tm e

Γ `tm λx : τ.e

The rule follows the intention that the term variable should be of the
given type. In this style, well-scopedness comprises a lightweight type system.
However, in general it is impossible to come up with the intended typing or,
more generally, establish what the associated data in the extended context
should be. Furthermore, we allow the user to define different contexts with
potentially incompatible associated data. To avoid this issue, we define well-
scopedness by using domains of contexts instead. In fact, this is all we need
to establish well-scopedness.

In a de Bruijn approach the domain is traditionally represented by a natural
number that denotes the number of bound variables. Instead, we use heteroge-
neous numbers h – a refinement of natural numbers – defined in Figure 5.8 to
deal with heterogeneous contexts: each successor is tagged with a namespace
to keep track of the number and order of variables of different namespaces.
This also allows us to model languages with heterogeneous binders, i.e. that
bind variables of different namespaces at the same time, for which reorder-
ing the bindings is undesirable. In the following, we abbreviate units such
as 1ty := Sty 0, use the obvious extension of addition from natural numbers
to heterogeneous numbers and implicitly use its associativity property. In
contrast to naturals, addition is not commutative. We mirror the convention
of extending contexts to the right at the level of h and will always add new
variables on the right-hand side.

Figure 5.8 also defines the calculation dom of domains of typing contexts,
a well-scopedness predicate h `tm n for term indices, which corresponds to

124 CHAPTER 5. BACKGROUND

h ::= 0 | Sty h | Stm h

dom : E → h dom ε = 0
dom (E , •) = dom E + 1ty
dom (E , • : T) = dom E + 1tm

h `vartm n

Stm h `vartm 0
WsnTmZero

h `vartm n

Stm h `vartm S n
WsnTmTm

h `vartm n

Sty h `vartm n
WsnTmTy

h `tm t h `vartm n

h `tm n
WsVar

h `tm t1 h+ 1ty + 1tm `tm t2

h `tm (let {•, •} = t1 in t2)
WsUnpack

h ` E h ` E h+ dom E ` T
h ` E, • : T

WseTm

Figure 5.8: Well-Scopedness of Terms (selected rules)

n < h when only term successors are counted, and a selection of rules for
well-scopedness of terms h `tm t and well-scopedness of typing environments
h ` E.

5.2.3 Substitutions

The operational semantics and typing relations of F∃,× require boilerplate
definitions for the de Bruijn representation: substitution of type variables in
types, terms and type contexts, and of term variables in terms. We also need
to define four auxiliary boilerplate shifting functions that adapt indices of free
variables when going under binders, or, put differently, when inserting new

5.2. FORMALIZATION AND MECHANISATION 125

shifttm : h → n → n

shifttm 0 n = S n
shifttm (Stm h) 0 = 0
shifttm (Stm h) (S n) = S (shifttm h n)
shifttm (Sty h) n = shifttm h n

shifttm : h → t → t

shifttm h (Λ • .t) = Λ • .(shifttm (Sty h) t)
shifttm h (t1, t2) = (shifttm h t1), (shifttm h t2)
shifttm h (λ• : T.t) = λ• : T.(shifttm (Stm h) t)
shifttm h (t!T) = (shifttm h t)!T
shifttm h (case t1 of q → t2) =

case (shifttm h t1) of q → (shifttm (h+ bnd(q)) t2)
shifttm h (t1 t2) = (shifttm h t1) (shifttm h t2)
shifttm h ({T1, t} as T2) = {T1, shifttm h t} as T2
shifttm h (let {•, •} = t1 in t2) =

let {•, •} = (shifttm h t1) in (shifttm (h + 1ty + 1tm) t2)

shiftty : h → E → E

shiftty h ε = ε
shiftty h (E , •) = (shiftty h E), •
shiftty h (E , • : T) = (shiftty h E), • : (shiftty (h + dom E) T)

Figure 5.9: Shifting functions

variables in the context.

Shifting Shifting is an operation that adapts indices in terms when the con-
text is extended with new variables, e.g. when recursing under a binder during
substitution. For example, when going under a term or a type abstraction we
need to transport the substitutes along the following context changes:

Γ ` e Γ, x ` e and Γ ` e Γ, α ` e.

To implement shiftings, we need to generalize them first, so that variables
can be inserted in the middle of the context, i.e. operations that correspond
to the context changes

Γ,∆ ` e Γ, x ,∆ ` e and Γ,∆ ` e Γ, α,∆ ` e.

126 CHAPTER 5. BACKGROUND

Only indices for variables in Γ need to be adapted. For this purpose the
shifting functions take a cut-off parameter that represents the domain of ∆.
Only indices “above” the cut-off are adapted. We overload the name of type
variable shifting and hence use the following four shift functions:

shifttm : h → t → t shiftty : h → E → E

shiftty : h → t → t shiftty : h → T → T

Figure 5.9 defines selected shiftings: shifting of term variables on terms
and term indices, and of type variables in typing environments.

Instead of using the traditional arithmetical implementation

if n < c then n else n + 1

for the shifting of indices, we use an equivalent recursive definition that in-
serts the successor constructor at the right place. This follows the inductive
structure of ∆ which facilitates inductive proofs on ∆.

The shiftings can be iterated to get weakenings of multiple variables at
once. In the essential meta-theoretic lemmas we will only use this form of
weakening and will call it lifting, i.e. we can define functions

lift : t → h → t lift : T → h → T lift : E → h → E

that represent the weakenings

h ` t
h, h+ ` lift t h+

h ` T
h, h+ ` lift T h+

h ` E′

h, h+ ` lift E ′ h+

Substitution Next, we define substitution of a single variable x for a term
e in some other term e ′ generically. In the literature, two commonly used
variants can be found.

1. The first variant keeps the invariant that e and e ′ are in the same context
and immediately weakens e when passing under a binder while traversing
e ′ to keep this invariant. It corresponds to the substition lemma

Γ,∆ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ,∆ ` {x 7→ e } e ′ : τ

2. The second variant keeps the invariant that e ′ is in a weaker context
than e. It defers weakening of e until the variable positions are reached

5.2. FORMALIZATION AND MECHANISATION 127

to keep the invariant and performs shifting if the variable is substituted.
It corresponds to the substitution lemma

Γ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ,∆ ` [x 7→ e] e ′ : τ

Both variants were already present in de Bruijn’s seminal paper [de Bruijn,
1972], but the first variant has enjoyed more widespread use. However, we will
use the second variant because it has the following advantages:

1. It supports the more general case of languages with a dependent context:

Γ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ, [x 7→ e] ∆ ` [x 7→ e] e ′ : [x 7→ e] τ

2. The parameter e is constant while recursing into e ′ and hence it can also
be moved outside of inductions on the structure of e. Proofs become
slightly simpler because we do not need to reason about any changes to
s when going under binders.

We use substitution functions which keep the substitute in its original con-
text and perform (multi-place) shifting when reaching the variable positions.
This behaviour corresponds to the structure of the substitution lemmas Sub-
stTmTm and SubstTyTm. Hence, the index to be substituted is represented
by the domain of the suffix ∆ to have enough information for the shifting.

substtm : h → t → t → t substty : h → T → T → T

substty : h → T → t → t substty : h → T → E → E

5.2.4 Semantic Representation

The semantic typing relation from Figure 5.1 translates almost directly to
a relation on the de Bruijn representation. One important aspect that is
ignored in Figure 5.1 is to ensure that all rule components are well-scoped.
This requires including additional well-scopedness premises in the rules. The
rules that need an additional premise are shown in Figure 5.10 and the new
premises have been highlighted.

We want to ensure that all appearing terms are well-scoped. For this it
suffices to know that the objects represented by meta-variables are well-scoped.
For instance, the meta-variables S, T and t in the TAbs rule. However, we

128 CHAPTER 5. BACKGROUND

E `tm t : T

E `ty S E, • : S `tm t : T

E `tm (λ• : S.t) : (S → T)
TAbs

E `tm t : ∀ • .T E `ty S
E `tm (e!S) : (substty 0 S T)

TTApp

E `tm t1 : ∃ • .T E, •, • : T `tm e2 : S E `ty S
E `tm (let {α, x} = e1 in e2) : S

TUnpack

E `p q : T ;D
E `ty T

E `p • : T ; (ε, • : T)
PVar

Figure 5.10: F∃,× typing rules (de Bruijn, selected rules)

only included an explicit premise for S. The well-scopedness of T and t follows
from two boilerplate lemmas:

0 ` E E `tm t : T

E `tm t
TypingScopeTm

` E E `tm t : T

E `ty T
TypingScopeTy

These lemmas express that well-typed terms are also well-scoped with a well-
scoped type. More generally, we require that all semantic relations imply well-
scoping of their indices. If the well-scoping of a meta-variable is not implied
by a premise, an explicit well-scoping requirement needs to be added.

5.2.5 Meta-Theory

The essential meta-theoretic lemmas are only slightly affected by the changes
to the syntax and semantics: the specific statements have to be adapted to
the changed representation and some premises need additional premises, e.g.
context well-formedness, but the structure of their proofs, i.e. the specific
proof steps, remain the same. We therefore focus on the boilerplate lemmas,
of which there are two kinds: syntactic related boilerplate and semantic related

5.2. FORMALIZATION AND MECHANISATION 129

boilerplate.

Syntactic Boilerplate

The principle syntactic operations that we use in the development are

• concatenate two context,

• calculate the domain of contexts,

• shifting in types, terms and contexts,

• and substitution in types, terms and contexts.

The syntactic boilerplate lemmas concern these syntactic operations. As
already discussed we need to show that they preserve well-scopedness, but we
also need to prove interaction lemmas between two or more of these operations.
In Section 5.1.3 we briefly mentioned one instance of an interaction lemma:
the commutation of two type-variable substitutions. Similarly, we need to
prove commutation of e.g. shifting types and substituting terms, calculation
of the domain of shifted contexts, commute substitution over a concatenation
of contexts, etc. Moreover, there is a plethora of trivial lemmas, like the
associativity of context concatenation, that are also interaction lemma. The
interaction lemmas are all small but come in large numbers.

Semantic Boilerplate

The semantic boilerplate concerns the semantic relations. Only lemmas about
the typing relation are needed. These are the two well-scoping lemmas we
discussed in Section 5.2.4

` E E `tm t : T

E `tm t

` E E `tm t : T

E `ty T

two shifting lemmas

E `tm t : T

E, • : T ′ `tm (shifttm 0 t) : T

E `tm t : T

E, • `tm (shiftty 0 t) : (shiftty 0 T)

130 CHAPTER 5. BACKGROUND

Useful Boilerplate

Specification 123 (13.3%) 164 (17.8%)

Syntax Theory 0 (0.0%) 365 (39.6%)

Semantics Theory 101 (11.0%) 187 (20.3%)

Total 224 (24.3%) 716 (77.7%)

Table 5.1: Lines of Coq code for the F∃,× meta-theory mechanisation.

and two substitution lemmas

0 ` E E `tm t1 : T1 E, • : T1 `tm t2 : T2

E `tm (substtm 0 t1 t2) : T2

0 ` E dom E ` T1 E, • `tm t2 : T2

E `tm (substty 0 T1 t2) : (substty 0 T1 T2)

For the induction, the shifting and substitution lemmas need to be gener-
alized to work with under arbitrary suffix ∆ and require extensive use of the
interaction lemmas.

5.2.6 Mechanisation

Table 5.1 summarizes the effort required to mechanise F∃,× in the Coq proof
assistant in terms of the de Bruijn representation. It lists the lines of Coq code
for different parts divided in binder-related boilerplate and other useful code.
The specification row shows the code necessary to fully specify the syntax
and semantics. The boilerplate that arises in this part are the shifting and
substitution functions, context lookups and well-scopedness predicates that
are necessary to define typing and operational semantics. The syntax-related
theory consists of boilerplate lemmas like the commutation lemma (5.1) for
type-substitutions. The useful semantics-related theory are canonical forms,
typing inversion, progress and preservation lemmas. The boilerplate in this
part are the well-scopedness, shifting and substitution lemmas for the typing
relation of Section 5.2.

Summary Table 5.1 clearly shows that the boilerplate constitutes the ma-
jor part of the effort. Similar boilerplate arises in the formalization of other
languages where it constitutes a similar large part of the whole formalization.

5.3. OUR APPROACH 131

5.3 Our Approach

As we illustrated in this chapter, the variable binding boilerplate puts a do-
lorous burden on formal mechanised meta-theory of languages. Fortunately,
there is much regularity to the boilerplate: it follows the structure of the lan-
guage’s syntax, its scoping rules and the structure of expressions in rules of
the semantic relations. This fact has already been exploited by many earlier
works to derive syntax-related boilerplate functions and lemmas.

The aim of this thesis is to considerably extend the support for binder
boilerplate in language mechanizations on two accounts. First, we go beyond
simple single variable binders and tackle complex binding structures, like the
nested pattern matches of F∃,×, sequentially scoped binders, mutually recur-
sive binders, heterogeneous binders, etc. Secondly, we cover a larger extent
of the boilerplate than earlier works, specifically catering to contexts, context
lookups and well-scopedness relations.

Our approach consists of a specification language, called Knot, that allows
concise and natural specifications of abstract syntax of programming languages
together with their scoping rules and of semantic relations on top of the syntax.
We complement Knot with a code generator, called Needle, that specializes
the generic definitions and lemmas for the variable binding boilerplate and
allows manual customization and extension.

5.3.1 Scientific Output

The first stage in the development of Knot and Needle concerned itself with
the abstract syntax only and was published in the article

Keuchel, S., Weirich, S., and Schrijvers, T. (2016). Needle
& Knot: Binder Boilerplate Tied Up. In Programming Lan-
guages and Systems: 25th European Symposium on Program-
ming, ESOP ’16, pages 419–445. Springer.

The framework was subsequently extended with the support for inductive re-
lations, which also includes the symbolic expressions. This part is contained
in the article

Keuchel, S., Schrijvers, T., and Weirich, S. (2016). Needle &
Knot: Boilerplate Bound Tighter. Unpublished draft.

The remainder of the second part of this thesis presents the contents of the
two articles.

132 CHAPTER 5. BACKGROUND

Chapter 6
The Knot Specification
Language

This chapter presents Knot, a language for specifying programming lan-
guages. The language semantics, elaboration of boilerplate and the imple-
mentation are discussed in later chapters. We introduce Knot by example
first in Section 6.1 and formally in Sections 6.3, 6.4 and 6.5.

Section 6.3 deals with the specification of abstract syntax of programmning
languages and their scoping rules. In Section 6.4 we look at symbolic expres-
sions that are used in the specification of inductive relations. The latter are
presented in Section 6.5.

We discuss design choices and ensuing restrictions in Section 6.6 and con-
clude with our contributions in Section 6.8.

6.1 Knot by Example

In this section we showcase Knot by porting the semi-formal specification of
their F∃,× calculus from Chapter 5. Section 6.1.1 discusses the Knot specifi-
cation of the abstract syntax of F∃,× and Section 6.1.2 its typing relation.

6.1.1 Abstract Syntax Specifications

Figure 6.1 contains the Knot specification of F∃,×’s abstract syntax, which
corresponds to EBNF grammar specification in Figure 5.1.

133

134 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

namespace Tyv : Ty
namespace Tmv : Tm

sort Ty := sort Pat :=

+ tvar (X @Tyv) |pvar (x : Tmv)
| tarr (T1 : Ty) (T2 : Ty) |ppair (p1 : Pat) ([bind p1]p2 : Pat)
| tall (X : Tyv) ([X]T : Ty) fun bind : Pat → [Tmv] :=
| tprod (T1 : Ty) (T2 : Ty) |pvar x → x
| texist (X : Tyv) ([X]T : Ty) |pprod p1 p2 → bind p1, bind p2

sort Tm :=

+ var (x@Tmv)
|abs (x : Tmv) (T : Ty) ([x]t : Tm)
|app (t1 : Tm) (t2 : Tm)
| tabs (X : Tyv) ([X]t : Tm)
| tapp (t : Tm) (T : Ty)
|pair (t1 : Tm) (t2 : Tm)
| case (t1 : Tm) (p : Pat) ([bind p]t2 : Tm)
|pack (T1 : Ty) (t : Tm) (T2 : Ty)
|unpack (t1 : Tm) (X : Tyv) (x : Tmv) ([X , x]t2 : Tm)

env Env :=

+ empty
| evar : Tmv -> Ty : Typing
| etvar : Tyv ->

Figure 6.1: Knot specification of F∃,× (part 1)

While it is not apparent in the EBNF grammar in Figure 5.1, the two sorts
for variables and the one for typing contexts have a special purpose that is
related to variable binding. Knot makes the distinction between these and
the other sorts explicit and uses different declarations forms to introduce them.
Specifically, Knot distinguishes between namespaces, (regular syntactic) sorts
and environments which we discuss in turn.

Namespaces Figure 6.1 starts with the declaration of two namespaces. The
line namespace Tyv : Ty introduces the namespace Tyv (short for type vari-
ables) and declares that it is a namespace for the sort Ty , which represents
F∃,× types and which is defined elsewhere in the figure. Similarly, we declare

6.1. KNOT BY EXAMPLE 135

Tmv to be a namespace for terms Tm.

Regular Syntactic Sorts Three sorts are introduced next: types Ty , terms
Tm and patterns Pat using an established notation in functional program-
ming for algebraic datatype declarations. Each sort is defined by a list of
constructors of which there are two kinds: variable constructors and regular
constructors.

Variable constructors are introduced with a plus sign. In the example, the
line

+ tvar (X @Tyv)

declares the variable constructor tvar for types. It holds a single variable
reference of the namespace Tyv for type variables.

Regular constructors are declared using the vertical bar and can have an
arbitrary number of fields. The line

| tall (X : Tyv) ([X] T : Ty)

declares the regular constructor tall , which represents universally quantified
types. All fields are explicitly named. The first field declaration (X : Tyv)
introduces the field (named) X , which is a binding for a variable of namespace
Tyv . The second field declaration ([X] T : Ty) introduces the field T for
a subterm of sort Ty . It is prefixed by the binding specification [X] which
stipulates that X is brought into scope in the subterm T . This is exactly the
essential scoping information that we highlighted in Figure 5.2. In contrast to
Figure 5.2 we do not explicitly model (the domain of) the typing context; all
variables that are in scope at the point of the tall constructor are implicitly
also in scope in all subterms.

Multiple variables can be brought into scope together. For example, the
binding specification for the body t2 of the unpack constructor brings both the
type variable X and the term variable x into scope.

Binders The sort Pat for patterns is special in the sense that it represents
a sort of binders. The function bind specifies which variables are bound by a
pattern, similar to the bnd(·) function in Figure 5.3. The function declaration
for bind in Figure 6.1 consists of a signature and a body. The signature
specifies that patterns bind variables of namespace Tmv , and the body defines
bind by means of an exhaustive one-level pattern match. Functions can be
used in binding specifications. The term constructor case for nested pattern
matching uses bind to specify that the variables bound by the pattern p are
simultaneously brought into scope in the body t2.

136 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

The constructor ppair also uses bind in a binding specification of the right
component, even though patterns themselves do not contain terms or term
variable references. However, since bind concatenates the bound variables
of p1 and p2, the binding specification denotes that the variables of p2 are
considered bound after the variables of p1. This is used in the scope checking
of Knot specifications which is explained in Section 6.3.1.

Environments The last declaration defines typing environments. The plus
sign indicates the base case with constructor empty . All other cases associate
information with variables of a namespace. The constructor evar declares that
it represents a mapping of term variables Tmv to types Ty . It also states that
the term variable clause is substitutable for judgements of the typing relation
Typing . We discuss this below where we define Typing . The constructor etvar
is not associating any information with type variables.

6.1.2 Inductive Relation Specifications

Figure 6.2 contains the second part of Knot specification for F∃,×: the typing
relations Typing for terms and PTyping for patterns.

The first line of a relation declaration fixes the signature of a relation. For
Typing , the declaration stipulates that it makes use of the typing environment
Env and has two indices: terms Tm and types Ty . The remainder of a relation
declaration consists of rules. Like for sorts, the are two kinds of rules for
relations: variable rules and, regular rules. Both kinds use notation commonly
found for generalized algebraic data-types.

Variable rules Similarly to the abstract syntax, the variable rules are in-
troduced with a plus sign. Parameters in braces define lookups, e.g. the
parameter {x → T } of Tvar represents a lookup of the term variable x in
the implicit typing environment. We require that each variable rule consists of
exactly one lookup which corresponds exactly to the signature of the relation
that is being defined and is consistent with the declaration of the environment.

Regular rules The regular rule Tabs specifies the typing of term abstrac-
tions. In square brackets before a field, we can add rule binding specifications
that allow us to change the implicit environment for this field. In this case, we
extend the implicit typing context with a binding for the λ-bound variable x .

In this rule, the domain type T2 changes scope. In the semi-formal typing
relation in Figure 5.5, the meta-variable τ , that corresponds to T2, appears

6.1. KNOT BY EXAMPLE 137

relation [Env] Typing Tm Ty :=

+ Tvar : {x → T } → Typing (var x) T
| Tabs : [x → T1] Typing t (weaken T2 x)→

Typing (abs x T1 t) (tarr T1 T2)
| Tapp : Typing t1 (tarr T1 T2)→ Typing t2 T1 → Typing (app t1 t2) T2

| Ttabs : [X →] Typing t T → Typing (tabs X t) (tall X T)
| Ttapp : Typing t1 (tall X T12)→ Typing (tapp t1 T2) (subst X T2 T12)
| Tpack : Typing t2 (subst X U T2)→

Typing (pack U t2 (texist X T2)) (texist X T2)
| Tunpack : Typing t1 (texist X T12)→

[X →, x → T12] Typing t2 (weaken T2 [X , x])→
Typing (unpack t1 X x t2) T2

| Tpair : Typing t1 T1 → Typing t2 T2 → Typing (prod t1 t2) (tprod T1 T2)
| Tcase : Typing t1 T1 → (wtp : PTyping p T1)→

[bind wtp] Typing t2 (weaken T2 (bind p))→ Typing (case t1 p t2) T2

relation [Env] PTyping Pat Ty :=

| Pvar : PTyping (pvar x) T ; bind = x → T
| Pprod : (wtp1 : PTyping (pvar x) T1)→

(wtp2 : [bind wtp1] PTyping p2 (weaken T2 (bind p1)))→
PTyping (ppair p1 p2) (tprod T1 T2);

bind = bind wtp1, bind wtp2

Figure 6.2: Typing relation for F∃,×

in the context Γ, y : σ in the premise and in Γ in the conclusion. The scope
change in the semi-formal development is implicit and is only possible because
of language specific (non-)subordination information, i.e. the term variable y
cannot appear in the type τ . In Knot the scope change has to be explicitly
indicated by weakening T2 in the premise. Similarly, in the semi-formal devel-
opment, the subordination information is insufficient for σ in the TUnpack
rule. The rule uses the additional side-condition α /∈ fv(σ) to allow σ to be
well-scoped in both Γ, α, x : τ and Γ. In the Knot specification, the T2 is
explicitly weakened by the type variable X , which corresponding to α, and
the term variable x . In contrast, in the rule Ttabs the body of the universal
quantification is under a binder in the conclusion and it does not change its
scope so no weakening is performed.

The rule for type applications Ttapp shows the use of symbolic substitution
(subst X T2 T12) in the conclusion and the rule Tpack for packing existentials
shows symbolic substitution in the premise. Finally, in the rule Tunpack we

138 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

need to weaken the type T2 explicitly with the type variable X and the term
variable x for the typing judgement of the body t2.

Relation outputs The typing of patterns can be similarly translated from
the semi-formal specification in Section 5.1.2. The additional concern is the
definition of the relation output that defines the typing context extension for
the variables bound by the pattern, or more precisely defined to be bound by
the bind function on patterns. In Figure 6.2 this output is explicitly referred
to by reusing the function name bind . After each rule, we include a clause that
defines bind for this rule. For this purpose, we also allow naming the fields of
rules. Calling bind on a field gives access to its output.

6.2 Key Design Choices

This section discusses concepts, that influenced the design of Knot, which
makes it easier to understand the specification of Knot in the next section
and motivate some of the made choices. Section 6.2.1 explain requirements
that Knot puts on sorts to guarantee that boilerplate lemmas for them can
be automatically generated. Knot has two different kinds of meta-variables.
The intuition behind them and their treatment are discussed in Section 6.2.2.
Section 6.2.3 extends the requirements of Section 6.2.1 from sorts to relations
to ensure that their boilerplate is derivable.

6.2.1 Free Monadic Presentations

One of the remaining questions is for which class of languages is the substitu-
tion boilerplate derivable? To find the answer to this question, observe that
it is folklore that the syntax of lambda calculi has a monadic structure: We
can for example model well-scoped terms of the untyped lambda calculus as
an ordinary monad on sets using nested datatypes [Bird and Paterson, 1999;
Altenkirch and Reus, 1999], or well-scoped and well-typed terms of the simply-
typed lambda calculus using a generalization of monads [Altenkirch and Reus,
1999; Altenkirch et al., 2010, 2014]. In these cases, the variable construc-
tor represents the unit (also called return) of the monad and (simultaneous)
substitution of all variables the bind.

However, the syntax of lambda calculi not only has a monadic structure,
but it even has a structure that is similar to free monads. This is very fortunate
since the monadic operations of free monads are derivable from a base functor.

6.2. KEY DESIGN CHOICES 139

We use this in the design of Knot and require that all sorts with variables
follow this structure to make substitutions generically derivable.

We will briefly revise the free monads and their generic construction in
Haskell. Subsequently, we present a Haskell definition of well-scoped terms
of the untyped lambda calculus and relate it to the generic definition of free
monads. Finally, we discuss the design implications for the Knot specification
language.

Free Monads on Sets in Haskell

Consider the monad of leafy binary trees Tree.
data Tree a = Leaf a | Fork (Tree a) (Tree a)

instance Monad Tree where
return = Leaf
Leaf a >>= m = m a
Fork l r >>= m = Fork (l >>= m) (r >>= m)

The return of the monad is given by constructing a leaf from a value and the
monadic bind replaces a leaf by a new tree depending on which value the leaf
contained. Or put differently, the bind encodes a simultaneous substitution
of leaves by trees. The tree datatype has a particular structure: The Leaf
constructor that forms the return of the monad is the only one that contains
a value of the parameter type. Such monads are free monads and can be
generically constructed from a base pattern functor.

Figure 6.3 shows the generic free monad construction. FreeSet constructs
a free monad for a given pattern functor. The effect on variables is completely
defined in the instance and we only need to traverse f -structures to get to the
variable cases. Consequently, the Monad instance only requires functoriality
of f .

We can then alternatively define Tree using FreeSet and inherit the generic
Monad instance for free:

type Tree ′ = Free (,)

Well-scoped Lambda Terms

We can define the well-scoped terms of the untyped lambda calculus using
generalized algebraic datatypes (GADTs). This representation is also known
as intrinsically well-scoped de Bruijn terms[Benton et al., 2012]. Figure 6.4
shows the construction. We use natural numbers to denote the number of
variables that are in scope and bounded naturals Fin d to represent variables.
In essence, Fin d corresponds to the well-scopedness predicates on variables

140 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

data FreeSet f a where
ReturnSet :: a → FreeSet f a
StepSet :: f (FreeSet f a)→ FreeSet f a

instance Functor f ⇒ Monad (FreeSet f) where
return = ReturnSet

t >>= f = case t of
ReturnSet a → f a
FreeSet x → FreeSet (fmap (>>=f) x)

Figure 6.3: Free Monads in Haskell

data Nat = Z | S Nat

data Fin (d :: Nat) where
FZ :: Fin (S d)
FS :: Fin d → Fin (S d)

data Lam (d :: Nat) where
Var :: Fin d → Lam d
App :: Lam d → Lam d → Lam d
Abs :: Lam (S d)→ Lam d

substLam :: Lam d1 → (Fin d1 → Lam d2)→ Lam d2

substLam (Var x) m = m x
substLam (App t1 t2) m = App (substLam t1 m) (substLam t2 m)
substLam (Abs t) m = Abs (substLam t (upSubLam m))

upSubLam :: (Fin d1 → Lam d2)→ (Fin (S d1)→ Lam (S d2))
upSubLam m FZ = Var FZ
upSubLam m (FS x) = substLam (m x) (Var ◦ FS)

Figure 6.4: Intrinsically Well-Scoped de Brujn terms

d `vartm n in Figure 5.8 with the term-level index n removed. The Lam type
encodes the well-scoped lambda terms. The parameter d encodes the free
variables that can potentially appear. In the case of an abstraction its incre-
mented to account for the new lambda-bound variable. Figure 6.4 also defined
a simultaneous substitution operator substLam . A substitution is represented
using functions of type Fin d1 → Lam d2 that substitutes all d1-variables by
lambda terms with free variables in d2. When going under a lambda binder
during the substitution needs to be adjusted for the introduced variable which

6.2. KEY DESIGN CHOICES 141

is handled by upSubLam
1. Lam together with its simultaneous substitutions

form a Kleisli triple in the sense of [Altenkirch and Reus, 1999] and a monad
relative on Fin in the sense of [Altenkirch et al., 2010, 2014].

Notice, that similar to the bind of the Tree datatype, the substitution
operator of Lam only applies the substitution in the variable case and otherwise
passes it through unchanged or extended. This suggests, that we may copy
the construction of a free monad on sets to functors on Nat → Set . This
generic construction2 and a generic definition of simultaneous substitution can
be found in Section A.1 of the appendix. Also shown in the appendix is an
instantiation of Lam from a base functor.

Design Implications

We want substitution boilerplate to be derivable for all Knot specifications
and hence apply the insights of this section by enforcing a free monadic shape
on syntactic sorts with variables. As already indicated in the example speci-
fication in Section 6.1, we always treat the variable case separately from the
other cases. Furthermore, we require that there is exactly one one distin-
guished variable constructor per namespace which has a reference occurrence
as its only argument. All other constructors only contain binding occurrences
and subterms. This rules out languages for normal forms, but as they require
custom behavior (renormalization) during substitution [Sabry and Felleisen,
1993; Watkins et al., 2004] their substitution boilerplate cannot be derived
generically anyway.

Our interpretation of Knot specifications using de Bruijn terms and our
implementations differ from the presentation in this Section. We use tra-
ditional algrbraic datatypes for our term representation and extrinsic well-
scoping predicates instead of the intrinsically well-scoped representation of
this section. Both representations are equivalent and this choice does not
impact the derivability of the boilerplate. We use single place shifting and
substitution instead of simultaneous renaming and substitution to make the
generalization to multiple namespaces easier. This is not a restriction since
all (well-scoped) simultaneous substitutions can be written as a sequence of
single place shifting and substitution [Schäfer et al., 2015a; Keuchel, 2016].

1See [Altenkirch and Reus, 1999] for a termination argument for the mutually recursively
defined substLam and upSubLam .

2We have not shown that this construction is indeed free in any formal sense.

142 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

6.2.2 Local and Global Variables

In the variable rule of F∃,×

x : τ ∈ Γ

Γ `tm x : τ
TVar

the variable x is used as a reference and is bound in the context Γ.
On the other hand, in the judgement

Γ `tm (λy : τ.y) : τ → τ .

the variable y appears in both, a binding position and a reference position. The
reference use of y has to refer to the enclosing binding and not to a binding in
the context Γ.

Following the literature on locally nameless [Aydemir et al., 2008] and
locally named [Sato and Pollack, 2010] representations we call y a locally bound
variable (aka locally scoped variables [Pitts et al., 2015]), or more concisely a
local variable, and x a global or free variable.

The distinction between local and global variables goes back to at least
Frege [1879] and representations such as locally nameless and locally named
have internalized this distinction. These concepts do not commit us to a
particular representation of variable binding, such as a locally nameless repre-
sentation. Rather, these notions arise naturally in meta-languages.

Frege characterizes global variables as variables that can possibly stand for
anything while local variables stand for something very specific. Indeed, the
variable rule is parameterized over the global (meta-)variable which can refer
to any variable in the typing context. As previously mentioned, y can only
possibly refer to the enclosing binder. This distinction is also visible in the
de Bruijn representation: The variable rule is parameterized over an index for
variable x. A local reference, however, is always statically determined. For
instance, the index for y in the judgement above is necessarily 0.

The type-substitutions in the rules TTApp for type-application and TPack
for packing existential types operate on local variables only. For reasons, that
are explained in Section 6.2.3 below, we enforce substitutions in the definition
of relations to only operate on local variables.

We adopt the Barendregt variable convention in Knot at the meta-level.
Two locally bound meta-variables that have distinct names are considered to
represent distinct object-variables, or, put differently, distinct local variables
cannot be aliased. However, global meta-variables with distinct names can be
aliased, i.e. represent the same object-variable.

6.3. KNOT SYNTAX 143

6.2.3 Context Parametricity

The variable rule is special in the sense that it is the only rule where a global
variable is used. The variable rule performs a lookup of the type in the implicit
typing context. More generally, Knot implicitly assumes that any global
variable, independent of an explicit lookup, is bound in the context. As a
consequence, the use of a global variable inspects the context.

We call a rule not context parametric, iff it makes any assumptions about
the context, e.g. through inspection with a global variable. The variable rule
of F∃,×’s typing relation is the only not context parametric rule. The other
rules either pass the context through unchanged to the premises, or pass an
extended context to the premises without inspecting the prefix. We call these
rules context parametric.

Context parametricity is important for the automatic derivation of boiler-
plate. For instance, for the semi-formal substitution lemma of F∃,×’s typing
relation in Section 5.1.3, the inductive step of each regular rule consists of
applying the same rule again modulo commutation of substitutions. Indepen-
dent of the language at hand, this is automatically possible for any context
parametric rule.

To understand this, note that the substitution lemma encodes a context
change that states the preservation of typing when substituting a global vari-
able. Context parametric rules do not make assumptions about the context,
hence they are compatible with any changes to the context as long as the
change can be properly reflected in the indices. This raises the question
whether this is always possible, even if the rule uses syntactic operations, like
for example the type application rule of F∃,× which uses a type substitution
and hence requires the commutation of two substitutions. However, this will
always be a substitution of a global variable, i.e. our context change, and a
local variable substitution. Intuitively, such a commutation is always possible.

6.3 Knot Syntax

Figure 6.5 shows the grammar of Knot. A Knot language specification spec
consists of variable namespace declarations namedecl , syntactic sort declara-
tions sortdecl , function declarations fundecl , environment declarations envdecl
and relation declarations reldecl . We defer explaining relation declarations un-
til Section 6.5.

A namespace declaration namespace α : S introduces the namespace α and
associates it with the syntactic sort S. This expresses that variables of names-

144 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

Labels

α, β, γ Namespace label s, t Sort meta-variable
b Binding meta-variable f Function label
g Global meta-variable E Env label
S, T Sort label R Relation label
K Constructor label r Rule label

Declarations and definitions

spec ::= decl Specification
decl ::= namedecl | sortdecl | fundecl Declaration

| envdecl | reldecl
namedecl ::= namespaceα :S Namespace

sortdecl ::= sortS := condecl Sort
condecl ::= +K (g @α) Constr. decl.

| |K (b :α) ([bs]s:S)

bs ::= bsi Binding spec.
bsi ::= b | fs Bind. spec. item

fundecl ::= fun f:S -> [α] := funclause Function

funclause ::= K b s -> bs Function clause

envdecl ::= envE := envclause Environment
envclause ::= +K Empty env.

| |K : α -> S : R Env. clause

Figure 6.5: The Syntax of Knot

pace α can be substituted for terms of sort S. While most languages feature at
most one namespace per sort, it is nevertheless possible to associate multiple
namespaces with a single sort. This can be used, e.g., in languages with linear
type systems to distinguish linearly bound from unrestricted variables.

A declaration of sort S comes with two kinds of constructor declarations
condecl . Variable constructors +K (g @α) hold a variable reference g in the
namespace α. These are the only constructors where variables are used as ref-
erences. The global variable reference g signifies that the reference is free when
considering a variable constructor in isolation. In larger symbolic expressions,
also binding variables may appear in variable constructors.

Regular constructorsK (b : α) (s : S) contain named variable bindings (b : α)
and named subterms (s : S). For the sake of presentation we assume that the

6.3. KNOT SYNTAX 145

variable bindings precede subterms.

Every subterm s is preceded by a binding specification bs that stipulates
which variable bindings are brought in scope of s. The binding specification
consists of a list of items bsi . An item is either a singleton variable binding
b of the constructor or the invocation of a function f , that computes which
variables in siblings or the same subterm are brought in scope of s. Functions
serve in particular to specify multi-binders in binding specifications. In regular
programming languages the binding specifications of most subterms are empty;
to avoid clutter we omit empty binding specifications [] in the concrete syntax
of Knot.

Functions are defined by function declarations fundecl . The type signature
f : S → [α] denotes that function f operates on terms of sort S and yields
variables in namespaces α. The function itself is defined by exhaustive case
analysis on a term of sort S. A crucial requirement is that functions cannot
be defined for sorts that have variables. Otherwise it would be possible to
change the set of variables that a pattern binds with a substitution. The
specification of the output type α is used by Needle to derive subordination-
based strengthening lemmas [Keuchel et al., 2016]. For simplicity we ignore
the output type of functions and any other subordination related information
in the remainder of this thesis.

Environments E represent a mapping from variables in scope to additional
data such as typing information. To this end, an environment declaration
envdecl consists of named clauses K : (α -> S : R) that stipulate that variables
in namespace α are mapped to terms of sorts S. Additionally, we specify that
this clause can be substituted for judgement of relation R. If the relation R is
omitted, then it defaults to well-scopedness of the data. We elaborate on this,
together with the syntax of inductive relations, in Section 6.5.

6.3.1 Well-Formed Knot Specifications

This section defines which Knot specifications are well-formed. To simplify
the explanation of well-formedness and of the semantics of Knot specifica-
tions, we disregard both function declarations and only consider single-variable
binding for the rest of this section and the following. See the technical appendix
for the extended formalization.

Figure 6.6 defines the well-formedness relation ` spec for Knot specifica-
tions. The single rule WfSpec expresses that a specification is well-formed
if each of the constructor declarations inside the sort declarations is and the
meta-environment V contains exactly the declared namespaces.

146 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

V ::= α : S L ::= ([bs]b : α), (g@α)

` spec

V = α : T `S condecl

` namespace α : T sort S:=condecl
WfSpec

`S condecl

α : S ∈ V
`S K (g@α)

WfVar

L = ([bsb]b : α)

L; ε ` bsb L; ε ` bst

`S K (b : α) ([bst]t : T)
WfReg

L; bs ` bs

L; bs ` ε
WfNil

([bs]b : β) ∈ L L; bs, b ` bs ′

L; bs ` b, bs ′
WfSng

Figure 6.6: Well-formed specifications

The auxiliary well-sorting relation `S condecl denotes that constructor dec-
laration condecl has sort S. There is one rule for each constructor form. Rule
WfVar requires that the associated sort of the variable namespace matches
the sort of the constructor. Rule WfReg handles regular constructors. It
builds a constructor-local meta-environment L for binding fields ([bsb]b : α).
The binding specification bsb of a binding b denotes the local scope into which
the corresponding object-variable is introduced. The local scope is left implicit
in the syntax; hence, it needs to be inferred in this rule. The binding spec-
ifications of fields are checked against L. Also, we check clauses of function
declarations as part of this rule. We use the notation f (K b′ t′) = bs ′ to look
up the clause of f for constructor K. After proper renaming, the right-hand
side of each functional clause has to be consistent with L.

The relation L; bs1 ` bs2 in Figure 6.6 denotes that binding specification
bs2 is well-formed with respect to the scope bs1. The relation ensures that the
order of different binding items has is consistent across all binding specifica-
tions and there are no gaps. For instance, if one of the binding specifications
is [b0, b1, b2] then another field of the same constructor cannot have the bind-
ing specification [b0, b2, b1] or [b0, b2]. This restriction prevents the user from
relying on a structural exchange property of environments when specifying

6.4. SYMBOLIC EXPRESSIONS 147

sym ::= s | K b sym | weaken sym bs Symbolic exp.
| K g | K b | subst b sym sym

L; bs ` sym : S

K : ([bsb]b : α)→ ([bst]t : T)→ S

([{b 7→ b′}bsb]b′ : α) ∈ L L; bs, {b 7→ b′}bst ` sym : T

L; bs ` K b′ sym : S
SymReg

[bs]s : S ∈ L
L; bs ` s : S

SymVar

K : α→ S
(g@α) ∈ L
L; bs ` K g : S

SymGbl

K : α→ S
([bs]b : α) ∈ L

L; bs, b, bs ′ ` K b : S
SymLcl

L; bs ` sym : S

L; bs, bs ′ ` weaken sym bs ′ : S
SymWeaken

([bs]x : α) ∈ L
(α : T) ∈ V L; bs ` sym1 : T L; bs, x ` sym2 : S

L; bs ` subst x sym1 sym2 : S
SymSubst

Figure 6.7: Symbolic expressions and their well-formedness

inductive relations which in turn enables us to deal with environment well-
scopedness generically in the derivation of judgement well-scopedness lemmas.

Rule WfNil regulates the base case of an empty binding specification that
is always well-scoped. By rule WfSng a singleton binding is well-scoped if
the local scope bs is consistent with the information in the local environment
L and it checks the tail bs ′ in the extended scope bs, b.

Including function calls in the binding specification requires checking them
for well-scopedness too which can be found in Appendix A. In short: For
calling a function (f : T → α) on a field ([bs]t : T), we require L; bs ` f t, i.e.
the local scope of the function call is the binding specification of s. However,
this is very restrictive in general since it rules out scoping constructs such as
recursive scoping. We come back to this issue in the concluding discussion of
this chapter in Section 6.6.

148 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

6.4 Symbolic Expressions

This section defines symbolic expressions on top of specification declarations.
These are needed for the declaration of inductive relations on sorts. The gen-
eral idea is that we extend sort terms with meta-variables and with symbolic
constructs for meta-operations such as substitution. These meta-variables are
distinct from the object-language variables. We can for example have a meta-
variable for a term of a sort that has no namespaces.

Figure 6.7 (top) contains the grammar for symbolic expressions. An ex-
pression is a meta-variable s or a regular constructor applied to variable bind-
ings and other symbolic expressions (K b sym). For variable constructors
we need to make a distinction between global (K g) and local references
(K b). Furthermore, a symbolic expression can also be a reified substitu-
tion (subst b sym1 sym2), that denotes a substitution of sym1 for b in sym2.
We only allow substitution of locally bound variables to ensure context para-
metricity. The last expression former is a reified weakening (weaken sym bs)
that makes context changes explicit. For example consider η-reduction for
F∃,×:

abs x T (app (weaken t x) (var x)) −→η t .

Here the term t is assumed to be in the outer context of the whole expression
and is explicitly weakened under the abstraction. The symbolic weakening im-
plies and replaces freshness conditions. We discuss larger examples of symbolic
expressions after introducing inductive relations in Section 6.5.

6.4.1 Expression Well-formedness

When using symbolic expressions we also want to ensure that these are well-
sorted and well-scoped with respect to the specification and scoping rules that
are defined by the binding specifications of the sorts. Symbolic expressions can
themselves introduce new bindings and local references have to be checked to
be locally bound. Therefore, we need to keep track of all local bindings that
are in scope. We reuse the representation of binding specifications bs to also
represent local scopes.

The checking is complicated by the fact that arbitrary expressions may
appear in a term constructor that contains a binding specification with func-
tion calls. So to define well-scopedness of expressions, we first have to define
symbolic evaluation of functions on expressions. This evaluation normalizes
function calls f sym down to ordinary binding specifications that only con-
tain function calls on meta-variables f s. During evaluation we need to pat-
tern match regular term constructions against function clauses. This pattern

6.5. INDUCTIVE RELATIONS 149

j ::= Judgement var.

reldecl ::= relation [E]RS := ruledecl Relation decl.

| relationRS := ruledecl

ruledecl ::= +r : lookup -> jmt | |r : fml -> jmt ; f = rbs Rule decl.
fml ::= lookup | [rbs] j : jmt Formula
lookup ::= {x -> sym} Lookup
jmt ::= R sym Judgement

rbs ::= rbsi Rule binding spec.
rbsi ::= b -> sym | f j Rule bind. spec. item

Figure 6.8: Syntax for relations

matching yields a symbolic environment θ that maps binding meta-variables
to new names and sort meta-variables to expressions. Symbolic environments
θ are defined in Figure 6.7 (top).

Well-formedness Finally, Figure 6.7 (bottom) shows the definition of well-
formedness of symbolic expressions. The relation L; bs ` sym : S denotes that
the symbolic expression sym has sort S and is well-formed in scope bs under
the local environment L.

The rule SymVar looks up the sort and scope of a meta-variable for a sort
term in L. Variable constructors are handled by two rules. Rule SymLcl is
used in case the variable is bound locally and bs ′ represents the difference to
the scope of the binding. Global variables are handled by rule SymGbl. The
case of a regular constructor is handled by rule SymReg. For each of the fields
[bst]t : T the binding specification bst the corresponding symbolic expression
sym is checked in the extended scope (bs, {b 7→ b′}bst) where {b 7→ b′} denotes
simultaneous renaming of the bindings b to b′. Rule SymWeaken strengthens
the scope bs, bs ′ of a symbolic weakening (weaken sym bs ′). The symbolic
expression sym is checked in the stronger scope bs. Finally, rule SymSubst
takes care of single variable substitutions. The expression sym2 lives in the
extended scope bs, b. Hence, only substitution of the last introduced binding
is allowed. The sort and scope of the substitute sym1 have to agree with that
of b.

150 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

6.5 Inductive Relations

Figure 6.8 shows the grammar for specification of relations. A relation decla-
ration reldecl introduces a new relation R with an optional environment index
E and indices S. For the purpose of variable binding, we regard the first sort
index to be classified by the remaining ones. The environment E itself is left
implicit in the rules; only environment changes are explicitly stated. Each
reldecl contains a list of named rules r of which there are two kinds. Regular
rules |r : fml -> jmt ; f = rbs contain a list of formulas as premises and con-
clude in a judgement which is simply a relation between symbolic expressions.
We also allow the definition of function counterparts at the level of relations,
but instead of having a separate declaration form, we declare them inline with
relations.

A formula is either a variable lookup in the environment, that gives access
to the associated data, or a judgement that can be named with judgement
variables. Similar to binding specification of sort fields, judgements are pre-
fixed with rule binding specifications rbs that alter the implicit environment.
These consist of a list of items: either singleton binding variables mapped to
associated data sym or function calls (f j) on judgements. The second kind
of rules are variable rules +r : lookup -> jmt that only contain a single lookup
as a premise.

Note that allowing lookups in regular rules is a departure from our free-
monadic view on syntax. Furthermore, we do not require that variable rules
are declared for each environment clause. The reason is that relations that do
not fit into this view are quite common, e.g. most algorithmic type systems
require renormalization during substitution. Hence, we provide support for
these relations and leave proof obligations for the user in order to generate
substitution lemmas. Each regular rule that makes use of lookups gives rise to
an obligation. If there is no explicit variable rule for an environment clause,
the corresponding derived rule needs to be proven.

6.5.1 Relation Well-formedness

Finally, we define the well-formedness of relation specifications in Figure 6.9.
We make use of a global meta-environment R that contains the environment
and sort types of relations. The meta-relation ` reldecl delegates the well-
formedness checking of relation declarations to `E?,R,S

ruledecl which checks

the individual rules with respect to the given names E?, R, S. In case of a
variable rule RuleVar, the relation needs to have an environment E and the
clause for the namespace α of the free variable g needs to be substitutable by

6.5. INDUCTIVE RELATIONS 151

E? ::= E | • Optional Env. R ::= R : E? × S Relation meta-env.

` reldecl `E,R,S ruledecl

` relation [E] R S := ruledecl
WfRelEnv

`•,R,S ruledecl

` relation R S := ruledecl
WfRelNoEnv

`E?,R,S
ruledecl

K : α→ S (K′ : α -> T : R) ∈ E
`E,R,(S,T) +r : {g 7→ t} → R (K g) t

RuleVar

L `E? fml L; ε ` sym : S

`E?,R,S
|r : fml → R sym

RuleReg

L `E? fml

(R : E? × T) ∈ R ∨ (R : • × T) ∈ R L `E? rbs ⇓ bs

([bs]j : R sym) ∈ L L; bs ` sym : T

L `E? [rbs]j : R sym
FmlJmt

(K′ : α -> T) ∈ E (g@α) ∈ L L; ε ` sym : T

L `E {g 7→ sym}
FmlLookup

L `E? rbs ⇓ bs

L `E? ε ⇓ ε
RbsNil

L `E rbs ⇓ bs

([bs]b : β) ∈ L (K′ : β -> T) ∈ E L; bs ` sym : T

L `E rbs, b -> sym ⇓ bs, b
RbsSng

Figure 6.9: Well-formed relations

the relation R. The relation of the conclusion is R and the first index is the
variable constructor for namespace α with the lookup variable. The remaining
indices are sort meta-variables and the arity and order is exactly the data of

152 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

the lookup. This form ensures that we can always wrap a lookup of the clause
in the variable rule.

Regular rules are handled by RuleReg. Again, the relation of the judge-
ment in the conclusion is R. Each regular rule has a local-environment L
that is inferred. We check the well-formedness of the symbolic expression in
the conclusion against the empty local scope ε. This encodes the assump-
tion that all indices are in the same scope and there is no binding between
them. The definitions of the functions are checked by the “flattening” relation
L `E?

rbs ⇓ bs. The output bs is ignored. An additional (implicit) require-
ment is that r has a function definition for each function that is declared on
the R’s first index sort.

The well-formedness of the formulas of the premise is delegated to the rela-
tion L `E?

fml . For lookups, the rule FmlLookup checks that an environment
E is given and that the data of the lookup is well-formed with the sorts of the
corresponding clause of E. In case of a judgement, we get the environment
and sort types of the judgement’s relation R from R. R’s environment is either
the same as that of the enclosing relation or R does not have an environment.
The rule binding specification rbs is flattened to a local scope bs which has to
match the scope declared in L. The indices sym are checked against bs.

Finally, the flattening relation L `E?
rbs ⇓ bs calculates the local scope bs

that is induced by a rule binding specification rbs. The nil case is straightfor-
ward. In cases of a non-empty rbs we need to have an implicit environment E.
Rule RbsSng flattens a singleton rule binding b -> sym to b and checks the
symbolic expressions against the prefix bs and the sort types T of the environ-
ment clause. A function call f j is handled by rule RbsCall. Its flattening
is symbolic evaluation of f on the first index sym. Also, the local scope bs of
j is checked to be identical to the flattening of the prefix rbs.

6.6 Discussion

Not all programming languages and scoping rules can be specified in Knot.
Some restrictions are imposed by deliberate simplifications to reduce the com-
plexity while other constructs have not been in the targeted scope of Knot.
We discuss several importing restrictions, their relevance and future work to
lift these restrictions.

Multiple Input Scopes Specification of type systems often use multiple
environments, for instance, to split type variables from term variables, or to

6.6. DISCUSSION 153

have a separate global environment with information about datatypes or top-
level bindings. To simplify recursion and induction Knot however only allows
a single sequentially scoped input environment. At the level of terms this
means that there is always exactly one input domain that defines the variables
in scope. As a result, the user is forced to always share the environment for
all namespaces and has to account for all namespaces when reasoning.

For type safety proofs this is rarely an issue, but it may complicate other
meta-theoretic proofs. For instance, this unnecessarily burdens the proof of
strong normalization of System F via logic relations [Girard et al., 1989].

There is nothing that fundamentally forbids us to support multiple scopes
in the future and also allow recursively instead of sequentially scoped global
environments. The recursion over terms and relations then however depends
on the dependency structure between multiple scopes, which adds a new di-
mension of complexity into the boilerplate elaboration.

Scope Delimitation Once names are introduced, they are universally vis-
ible in all sub-terms3. Some languages do however limit the visibility. For
instance, imperative languages often allow labels on loops which can be used
as the target of a break or continue statement. Generally, these labels are
only visible inside the same function, but for example not in the body of any
nested functions or lambda expressions. With the support of multiple input
scopes, we can encode the scope restriction by for example allowing scopes of
subterms to be closed. Another application would be the distinction between
stack allocated local variables and heap allocated closure variables that have
a similar scoping restriction.

Recursive Scoping The first version of the framework, as presented in
[Keuchel et al., 2016], uses a more lenient well-formedness relation for binding
specifications than the one presented in Figure 6.6. This alternative version
allowed for recursive scoping to be specified using cyclic binding specifications
which Figure 6.6 rules out. This is a trade-off between expressivity and sim-
plicity.

To illustrate this, consider a hypothetical typing judgement for a mutual
recursive declarations list ds that binds ∆ variables with their types. The
well-scopedness lemma for terms of such a language require us to proof the
following derivation:

3Disregarding any kind of shadowing in a nominal interpretation

154 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

Γ,∆ `decls ds : ∆

Γ,∆ ` ds ∧ Γ ` ∆

However, the well-scopedness hypothesis only gives us Γ,∆ ` ∆. The usual
step is to argue that ∆ only has term variable bindings and terms do not ap-
pear in typing contexts or in types. Therefore, we can use subordination based
strengthening to get Γ,∆ ` ∆. Knot provides enough information to allow
Needle to derive such lemmas. However, the cyclicity of such specifications
adds unnecessary complexity to the checking and elaboration of symbolic ex-
pressions. Furthermore, this approach does not scale to richer type theories
that allow inductive-recursive or inductive-inductive declarations, for which
the subordination used above is not valid.

Instead of pushing the shortcut over subordination information, we plan to
solve the problem in a more principled manner in future work by allowing mul-
tiple (potentially circular, but not cyclic) input scopes. Recursive constructs
can then be checked with two scopes: one for declaration heads and one for
declaration bodies.

Symbolic Substitution Checking the scopes of expressions for language
that define scoping functions, requires such functions to be symbolically eval-
uated on expressions. These definitions can be found in the technical appendix
A.

Notably absent from the symbolic evaluation are rules for symbolic substi-
tutions and weakenings. The de Bruijn representation admits for example the
rule

f(sym2) ⇓ bs ′

f(subst x sym1 sym2) ⇓ bs ′ .

which expresses that the variables bound by sym2 remain invariant under sub-
stitution and this rule is also used in our elaboration of boilerplate lemmas for
the de Bruijn representation (cf. Section 8.1.2). Yet, adding this rule to the
specification language would break subject reduction of symbolic evaluation.
The reason is that the typing of bs in Figure 6.7 (bottom) is not strong enough
to keep track of the scope when performing substitutions or weakenings. In
essence, the result cannot be bs ′ but has to be “bs ′ without x”. Tracking
scopes during substitutions or other user-defined functions is the focus of re-
search on binding safe programming [Pouillard and Pottier, 2010; Stansifer
and Wand, 2014]. In the framework of [Pouillard and Pottier, 2010], bs ′ in
the premise and conclusion of the above rule are two distinct (chains of) weak

6.6. DISCUSSION 155

links with distinct types, which are in a commutative relationship with the
world inclusion induced by the substitution.

We side-step the issue by sticking to the simple scope checking of Figure
6.7 (bottom) and effectively disallow symbolic substitutions and weakenings to
appear in positions that are accessed by functions. Another consequence is that
substitution and weakening are only allowed “at the end of the context”. These
restrictions are usually met by relations for typing and operational semantics,
but useful examples that violate this restriction exists.

To see this, consider extending the patterns of F∃,× with matching on
existentials. The adapted sort for patterns may look something like this:

sort Pat :=

|pvar (x : Tmv) (T : Ty)
|ppair (p1 : Pat) (p2 : Pat)
|pexist (X : Tyv) ([X]p : Pat)
fun bind : Pat → [Tmv] :=
|pvar x → x
|pprod p1 p2 → bind p1, bind p2

|pexist X p → X , bind p2

Note that in comparison to Figure 6.1 we have added an additional typing
annotation in pvar and omitted the binding specification of p2 in the ppair
constructor. The latter is necessary to faithfully encode the scoping rules:
type-variables of p1 should not be brought into scope in p2. However, bind
still concatenates the recursive results since variables from both sub-patterns
should be brought into scope in the body of the match. In relations defined on
top of patterns, we can now force write a symbolic expression well-scoped in
bind p2 that needs to be transported to scope bind p1, bind p2 which however
needs weakening at depth bind p2. The restriction comes already into play in
the definition of bind : the case for ppair is ill-typed.

In future work we would like to extend the scope checking to correctly
handle substitutions and weakenings in the middle of the context. Prelim-
inary experimentation suggests that this requires an explicit representation
of bindings that have been commuted with substitutions or weakenings and
non-trivial equalities that are reminiscent of the equational theory of the σ-
calculus [Abadi et al., 1991a]. We also hope to introduce first-class substitu-
tions and develop the scope checking for them.

Heterogeneously Scoped Relations Indices of relations in Knot are im-
plicitly assumed to be well-scoped in the domain of the implicit environment.
For some relations involving binders however, an index may refer to addi-

156 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

tional variables bound by another index. Consider a pattern matching rela-
tion Match p v t1 t2 that denotes that successfully matching pattern p against
value v and applying the resulting substitutions to t1 results in t2. In this case,
the variables of p need to be in scope in t1 which currently is not expressible in
Knot. This is only a moderate extension and should be considered an over-
sight in the design of Knot rather than a fundamental problem. Similarly, the
classifiers of a variable in an environment are assumed to be homogeneously
scoped, which can also be extended.

Computational Functions The biggest restrictions of Knot lie in the ex-
pressivity of symbolic expressions for relation declarations. Knot only allows
constructor applications and symbolic operations. Computational functions
can be specified in a relational style. In practice, defining recursive functions
is more convenient and supporting computational function calls in expression
is very useful. Supporting and scope checking recursive functions and gener-
ically deriving their boilerplate is within Knot’s grasp, since the complexity
is similar to that of relations. The major difference is that we need to support
elimination in addition to introduction forms in expression which come with
termination concerns.

Dependent types Constraint on sub-terms are often encoded by using uni-
versal quantification, implications and functions on sub-terms. Fundamental
support for these constructions is not a problem as long as any syntactic sorts
and relations that contain variable cases are only used in positive positions.
Unfortunately, this is not always the case. For instance, Vouillon’s solution
to the POPLmark challenge [Vouillon, 2012] defines recursive functions for
record label lookups and uses these to specify width and depth sub-typing.
Specifically, the subtyping rule for records universally quantifies over terms
and uses lookups and identity types in negative positions to encode label sub-
sets.

This encoding of a rule poses a major complication for weakening and
substitution lemmas. For each of the types used in negative positions, we have
to prove that we can undo a substitution. In other words, these types need to
have a substitution lemma which is in fact a natural isomorphism.

In summary, extending Knot in the future with better support for logical
primitives is possible but extremely challenging.

6.7. RELATED WORK 157

6.7 Related Work

Knot grew out of the Ott specification language [Sewell et al., 2010] which
allows the specification of concrete syntax of languages, including binding spec-
ifications, and of inductive relations on terms. However, in contrast to Knot,
well-scoping of relations is left unchecked in Ott. The Ott code generator
produces code for various proof assistants, including Coq. While Ott only
generates datatype and function definitions for syntax and relations, support
for lemmas is provided by the additional LNGen [Aydemir and Weirich, 2010]
tool which generates syntax-related boilerplate for locally-nameless represen-
tations but does not tackle any boilerplate for semantic relations.

Romeo [Stansifer and Wand, 2014] is a programming language that checks
for safe handling of variables in programs. Romeo’s specification language is
based on the concept of attribute grammars [Knuth, 1968] with a single im-
plicit inherited and synthesized attribute. In this view, Knot also has a single
implicit inherited attribute and binding specification functions represent syn-
thesized attributes. Moreover, Knot allows multiple functions over the same
sort. However, Romeo is a full-fledged programming language while Knot
only allows the definition of functions for the purpose of binding specification.
Romeo has a deduction system that rules out unsafe usage of binders but is
not targeting mechanizations of meta-theory.

Logical frameworks like Abella [Gacek, 2008], Twelf [Pfenning and Schürmann,
1999] and Beluga [Pientka and Dunfield, 2010] are specifically designed to rea-
son about logics and programming languages. Their specialized meta-logic
encourages the use of higher-order abstract syntax (HOAS) to represent object-
level variable binding with meta-variable bindings, i.e. datatype declarations
in these frameworks already serve as specifications of syntax including binding.
However, generally only direct support for single variable binding is provided
and other binders have to be encoded by transforming the object language.
These systems also allow the use of higher-order judgements which is used to
model bindings at the level of relations.

6.8 Contributions

Knot contributes several insights into the design of specification languages.
The possibility of boilerplate derivation for freely generated syntax is folklore.
However, this work extends the idea to relation defined on top of syntax.

A critical ingredient is the identification of local and global variables as
part of the meta-language itself instead of being a purely representational

158 CHAPTER 6. THE KNOT SPECIFICATION LANGUAGE

artifact. This notion is for instance not explicitly represented in Ott [Sewell
et al., 2010] or in Nominal Isabelle [Urban and Tasson, 2005]. The splitting
of these two kind of variables then further allows us to distinguish allows
context parametric from non-parametric parametric rules which is the decisive
requirement for automatic derivation of substitution lemmas.

Another contribution is the design of a scope-checking system for expres-
sions. This is directly related to binding safe programming. Languages like
FreshML [Shinwell et al., 2003] and Romeo [Stansifer and Wand, 2014] can
clearly represent and check more sophisticated expressions, but to the best
of our knowledge, Knot is the first language to adapt this in a mechanized
setting and derive well-scopedness proofs.

Chapter 7
Semantics

The previous chapter has introduced the Knot specification language for ab-
stract syntax. This chapter generically defines the semantics of Knot in terms
of a de Bruijn representation. We assume a given and fixed well-formed specifi-
cation spec in the rest of this chapter. The discussion follows these consecutive
steps:

Section 7.1 declares de Bruijn syntax terms for Knot’s abstract syntax
declarations of the given specification and specifies which are well-sorted and
well-scoped with respect to the specification. It also defines the semantics
of binding specifications by means of evaluation. Evaluation of expressions
is the topic of Section 7.2. A dependency of evaluation is the definition of
boilerplate shiftings and substitutions function that operate on terms. These
are also defined in Section 7.2. The interpretation of relation specifications is
discussed in Section 7.3 including boilerplate environment lookup relations.

7.1 Syntax terms

This section generically defines the semantics of Knot in terms of a de Bruijn
representation. The goal is to fully define what well-scoped object language
terms are with respect to a specification. We therefore start with the defi-
nition of de Bruijn terms in Section 7.1.1 and their well-sortedness. Section
7.1.2 follows with the evaluation of binding specification of well-sorted terms.
Finally, Section 7.1.3 discusses the well-scopedness judgement for de Bruijn
terms.

159

160 CHAPTER 7. SEMANTICS

n,m ::= 0 | S n de Bruijn index
u, v, w ::= K n | K u de Bruijn term
h, c ::= 0 | Sα h Het. number

ϑ ::= g 7→ n, t 7→ u, (f, j) 7→ u Value env.

Figure 7.1: Knot semantics: key definitions

` u : S

K : α→ S

` K n : S
SortedVar

K : x : α→ [bs]t : T → S
` ui : Ti (∀i)
` K u : S

SortedCtor

` u : E

K : E

` K : E
SortedNil

K : E → α→ T → E ` v : E
` ui : Ti (∀i)
` K v u : E

SortedCons

Figure 7.2: Well-sortedness of terms

7.1.1 Raw Terms

Figure 7.1 contains a term grammar for raw terms u. A de Bruijn term consists
of either a term constructor applied to a de Bruijn index or a term constructor
applied to other terms, which model Knot’s variable respectively regular
constructors. Figure 7.2 contains the well-sortedness relations ` u : S for raw
sort terms and ` u : E for raw environment terms.

There are two rules for sort terms both of which check the sort information
given by the specification. Note that in the rule for regular constructors, the
names of bindings are dropped in the representation. There are also two rules
for environment terms, one for an empty environment and one for extending
an environment with a new association. In the latter, the binding is dropped
from the representation.

7.1.2 Binding Specification Evaluation

The binding specification [bs] t for a particular subterm t of a given term
constructor K defines the variables that are brought into scope in t . These

7.1. SYNTAX TERMS 161

J K : bs → ϑ→ h

J ε Kϑ = 0
J bs, xα Kϑ = J bs Kϑ + 1α
J bs, f t Kϑ = J bs Kϑ + J f K(ϑ t)

J K() : f → u → h

J f K(K u) = J bs Kt 7→u

where f (K x t) = bs

dom : u → h

dom K = 0
where K : E

dom (K v u) = dom v + 1α
where K : E → α→ T → E

Figure 7.3: Binding specification evaluation

can consists of single variable or function calls. Hence, we need to define an
interpretation of binding specifications and functions. This is a prerequisite
for defining well-scopedness of terms and other boilerplate.

Figure 7.3 defines the interpretation J bs Kϑ of a binding specification bs as
a meta-level evaluation. Interpretation is always performed in the context of a
particular constructor K. This is taken into account in the interpretation func-
tion: the parameter ϑ represents a constructor local value environment which
assigns values to meta-variables that are used in K, i.e. it maps field labels
for sub-terms to concrete de Brujin terms and global variables to concrete de
Bruijn indices. We implicitly assume that all terms in ϑ are well-sortedness. In
this section, we only use the subterm part of value environments. The global
variable part is needed in the semantics of expressions and relations.

The result of the evaluation is a heterogeneous number h. Like in Sec-
tion 5.2.2, we use 1α as abbreviation for (Sα 0) and make use of addition. In
case the binding specification item is a single-variable binding, the result is a
one with the correct tag. In the interesting case of a function call (f ti), the
evaluation pattern matches on the corresponding subterm (ϑ ti) and interprets

162 CHAPTER 7. SEMANTICS

h `α n

Sα h `α 0
WsZero

h `α n
Sα h `α S n

WsHom

α 6= β
h `α n

Sβ h `α n
WsHet

h ` u : S

h `α n K : α→ S

K n : S
WsVar

K : x : α→ [bs]t : T → S
ϑ = t 7→ u

h+ J bs i Kϑ ` ui : Ti (∀i)
h ` K u : S

WsCtor

h ` u : E

K : E

h ` K : E
WsNil

K : E → α→ T → E h ` v : E
h+ dom v ` ui : Ti (∀i)

h ` K v u : E
WsCons

Figure 7.4: Well-scopedness of terms

the right-hand side of the appropriate function clause with respect to the new
subterms. Note that we have ruled out function definitions for variable con-
structors. Thus, we do not need to handle that case here. The evaluation is
well-defined since function declarations are required to be exhaustive and we
only evaluate functions on well-sorted terms.

7.1.3 Well-scopedness

We now come to the definition of well-scoping for de Brujin terms. Figure
7.4 defines well-scopedness relations for de Bruijn indices, sort terms, and
environment terms. The relation h `α n denotes that n is a well-scoped de
Bruijn index for namespace α with respect to the variables in h. Rule WsHom
which strips away one successor in the homogeneous case and rule WsHet that
simply skips successors in the heterogeneous case. Rule WsZero forms the
base case for n = 0 which requires that h has a successor tagged with α.
This is a straightforward generalization of the well-scopedness relations that
we defined for the F∃,× calculus in Section 5.8.

Rule WsVar delegates well-scopedness of variable constructors to the well-

7.2. EXPRESSION SEMANTICS 163

scopedness of the index in the appropriate namespace. In rule WsCtor, the
heterogeneous variable list h is extended for each subterm ui with the result
of evaluating its binding specification bs i .

The relation h ` u : E defines the well-scopedness of environment terms
with respect to previously existing variables h. We will also write ` u : E as
short-hand for 0 ` u : E. Note in particular that rule WsCons extends h with
the dom of the prefix when checking the well-scopedness of associated data.

7.2 Expression Semantics

The semantics of expressions is an evaluation: given an assignment ϑ to all
appearing meta-variables, we can evaluate an expression sym to a de Bruijn
term u. Expressions can contain weakenings and substitutions and we have to
give a proper interpretation for them in terms of the de Bruijn representation.
These are boilerplate definitions that we define generically in Sections 7.2.1
and 7.2.2 before coming back to evaluation in Section 7.2.3.

7.2.1 Shifting and Weakening

Shifting adapts indices when a variable x is inserted into the context which is
generically defined in Figure 7.5. The shift function is parameterized over the
namespace α of variable x in which the shift is performed and the sort S of the
term that the function operates on. In case of a variable constructor K : α→
S, the index is shifted using the shiftα,N function, which implements shifting
indices for namespace α. For variable constructors of other namespaces, we
keep the index unchanged. In the case of a regular constructor, we need to
calculate the cut-offs for the recursive calls. This is done by evaluating the
binding specification bs and weakening the cut-off c accordingly.

To avoid clutter, the definition presented here does not take subordination
into account, i.e. for F∃,× a shifting of term variables inside a term will also
recurse into types. Since types do not contain term variables this is effectively
the identity function. This can of course be optimized. The paper [Keuchel
et al., 2016] contains this optimized version.

Weakening Weakening is the transportation of a sort term to a bigger con-
text where variables are only added at the end. Figure 7.5 shows the imple-
mentation of weakenS that iterates the 1-place shiftα,S function. Its second
parameter h represents the domain of the context extension.

164 CHAPTER 7. SEMANTICS

shiftα,N : c → n → n

shiftα,N 0 n = S n

shiftα,N (Sα c) 0 = 0

shiftα,N (Sα c) (S n) = S (shiftα,N c n)

shiftα,N (Sβ c) n = shiftα,N c n

where α 6= β

shiftα,S : c → u → u

shiftα,S c (K n) = if K : α→ S then K (shiftα,N c n) else K n

shiftα,S c (K u) = K shiftα,T (c + J bs Kϑ) u

where

K : b : β → ([bs] t : T)→ S
ϑ = t 7→ u

weakenS : u → h → u

weakenS u 0 = u
weakenS u (Sα h) = shiftα,S 0 (weakenS u h)

Figure 7.5: Shifting of terms

7.2.2 Substitution

Figure 7.6 also contains the definition of substitution. Like for shift, we define
substitution by two functions. The function substα,N c v n defines the opera-
tion for namespace α on indices by recursing on c and case distinction on n. If
the index and the cut-off match, then the result is the term v . If the index n
is strictly smaller or strictly larger than the cut-off c, then substα,N constructs
a term using the variable constructor for α. In the recursive cases, substα,N
performs the necessary weakenings when coming out of the recursion in the
same order in which the binders have been crossed. This avoids a multiplace
weaken on terms. The substitution substα,S traverses terms to the variable
positions and weakens the trace according to the binding specification. As
previously discussed v remains unchanged.

Like for shifting we can use subordination information to avoid recursing
into sub-terms for which we statically know that they do not contain variables.
The paper [Keuchel et al., 2016] also contains this optimized version.

7.2. EXPRESSION SEMANTICS 165

substα,N : c → v → n → u

substα,N 0 v 0 = v
substα,N 0 v (S n) = K n

where K : α→ T
substα,N (Sα x) v 0 = K 0

where K : α→ T
substα,N (Sα c) v (S n) = weakenS (substα,N c v n) 1α
substα,N (Sβ c) v n = weakenS (substα,N c v n) 1β

substα,S : c → v → u → u

substα,S c v (K n) = if K : α→ S then substα,N c v n else K n

substα,S c v (K u) = K substα,T (c + J bs Kϑ) v u
where

K : b : β → ([bs] t : T)→ S
ϑ = t 7→ u

Figure 7.6: Substitution of terms

7.2.3 Evaluation

We now define the semantics of symbolic expressions as an evaluation to con-
crete de Bruijn terms. Figure 7.7 contains the definition. The evaluation
function takes as inputs a symbolic expression sym, the local scope bs of sym
and a value environment ϑ for global and sort meta-variables.

Sort variables t are looked up in ϑ. We assume that these terms are in the
same scope as t and hence they do not need to be adjusted. Global reference
variables g are also looked up in ϑ but need to be adjusted by weakening
with the interpretation of the current local scope bs. For variable constructors
with locally bound variables b we determine the index by interpreting the
difference bs ′ of the current scope and the scope where b was introduced.
For regular constructors we recursively evaluate each expression for the sort
fields in the local scope respectively extended with the symbolically evaluated
binding specifications of the fields. Bindings b of regular constructors are
dropped.

Symbolic syntactic operations are replaced by applications of the concrete
versions. In case of symbolic weakening we need to evaluate the expression ar-

166 CHAPTER 7. SEMANTICS

evalS : bs → sym → ϑ→ u

evalS bs t ϑ = ϑ t
evalS bs (K g) ϑ = K (ϑ g + J bs Kϑ)
evalS (bs, b, bs ′) (K b) ϑ = K (0 + J bs ′ Kϑ)

evalS bs (K b sym) ϑ =

K evalT (bs, {b′ 7→ b} bs ′) sym ϑ

where K : (b′ : α)→ ([bs ′] s : S)→ T
evalS (bs, bs ′) (weaken sym bs ′) ϑ =

weakenS (evalS bs sym ϑ) J bs ′ Kϑ
evalS bs (subst b sym1 sym2) ϑ =

substα,S 0 (evalT bs sym1 ϑ) (evalS (bs, b) sym2 ϑ)
where K : α→ T

Figure 7.7: Expression evaluation

gument in the smaller scope bs and weaken it with the interpretation of bs ′ for
which we use the concrete multi-place weakening weakenS . We restricted sym-
bolic substitution to only allow substituting the last introduced variable and
hence always substitute the index 0. The expression arguments of substitution
need to be evaluated in their respective local scopes.

7.3 Relation Semantics

In this section we define the semantics of relations. A prerequisite is interpre-
tation of environment lookups. This the paramount boilerplate operation on
environments that we define generically in Section 7.3.1. Premises of rules can
contain rule binding specifications which we need to interpret. They define
the environment extensions for the corresponding premise. In Section 7.3.2
we show how to evaluate rule binding specifications to concrete environment
terms that represent the extensions. Finally, Section 7.3.3 discusses the inter-
pretation of relations as derivation trees.

7.3. RELATION SEMANTICS 167

(n : u) ∈α,E v

dom v ` ui : S (∀i) K : E → α→ S → E

(0 : weakenS u 1α) ∈α,E (K v u)
InHere

(n : u) ∈α,E v
K : E → α→ S → E K ′ : E → β → T → E

(weakenα n 1β : weakenS u 1β) ∈α,E (K ′ v u ′)
InThere

Figure 7.8: Environment lookup

7.3.1 Environment lookups

Lookup is a partial function. For that reason, we define it as a relation (n :
u) ∈α,E V that witnesses that looking up the index n of namespace α in
the environment term V is valid and that u is the associated data. Figure 7.8
contains the definition.

Rule InHere forms the base case where n = 0. In this case the environment
term needs to be a cons for namespace α. Note that well-scopedness of the
associated data is included as a premise. This reflects common practice of
annotating variable cases with with well-scopedness conditions. By moving
it into the lookup itself, we free the user from dealing with this obligation
explicitly. We need to weaken the result of the lookup to account for the
binding.

Rule InThere encodes the case that the lookup is not the last cons of
the environment. The rule handles both the homogeneous α = β and the
heterogeneous case α 6= β by means of weakening the index n. The associated
data is also weakened to account for the new β binding.

7.3.2 Rule Binding Specifications

Similar to evaluation of binding specifications of sorts, we define the semantics
of rule binding specifications of relations as an evaluation. The result in this
case are environment terms instead of domains.

In case of a new single variable binding b → sym with a binding variable
b of namespace α we construct the environment term using the constructor K
of E , the result (evalE,L,ϑ rbs) of recursively evaluating the prefix rule bind-
ing specification, and the evaluated associated data. The associated data are
expressions which need to be evaluated also. We get the local scope bs for the

168 CHAPTER 7. SEMANTICS

evalE,L,ϑ : rbs → u

evalE,L,ϑ ε = 0

evalE,L,ϑ (rbs, b → sym) = K (evalE,L,ϑ rbs) (evalS bs sym ϑ)
where (b : α) ∈ L

K : E → α→ T → E
L `E rbs ⇓ bs

evalE,L,ϑ (rbs, f j) = appendE (evalE,L,ϑ rbs) (ϑ (f , j))

Figure 7.9: Evaluation of rule binding specifications

evaluation of expressions by flattening the prefix of the rule binding specifi-
cation. For a function call on a judgement j , we look up the corresponding
environment term in the local value environment ϑ and append it to the result
of recursively evaluating the prefix.

7.3.3 Derivations

Semantics of relations are derivation trees of judgements. However, for the
purpose of deriving boilerplate lemmas the interesting structure lies primar-
ily in the symbolic expressions used to define the rules of the relations. For
example, none of the elaborations for boilerplate lemmas make use of repre-
sentations of derivations. The lemmas need to induct over derivations but we
leave this aspect to the concrete implementation. Therefore, we only introduce
declaration heads as notation for use in subsequent sections.

Relations are generically modelled by judgements of the form

uE? |=R ut;uf

where uE is an optional environment term and ut are the sort indices of the
relations. Rather than interpreting binding functions as computations over
derivation trees, we include the results as indices uf of the judgements. To
further simplify the presentation in the subsequent chapters, we assume that
all relations have an environment E and ignore outputs of functions, i.e. we
only consider judgements of the form

uE |=R ut .

Chapter 8
Elaboration

For the meta-theoretical formalization of programming language we need prop-
erties of the semantical definitions. For instance, for proofs of type-safety we
generally need substitution properties of the typing relation, among other boil-
erplate properties.

There are multiple ways to prove the boilerplate lemmas for use in mech-
anizations. We can develop a code generator that produces code for a proof-
assistant. Alternatively, we can develop a datatype-generic library inside a
proof-assistant. Both approaches have different trade-offs.

Code Generators A code generator can parse textual Knot specifications
and generate definitions and proofs for use in a proof-assistant.

In terms of usability, this approach has clear advantages. The generated
definitions of datatypes and functions can be close to what a human prover
would write manually. Hence, the user can inspect the code to better un-
derstand the provided functionality. Moreover, since the code generator can
specialize the statements of lemmas to the given specification, it is much easier
for the user to look at the provided proofs and for proof automation to apply
the provided proofs.

The main downside of a code generator is that we do not know whether the
correct code is generated in all cases. As a consequence, the proof assistant
still has to check the generated code.

Coq enables a particular staged approach to code generation that leverages
its proof automation facilities. The idea is that the code generator does not

169

170 CHAPTER 8. ELABORATION

directly generate custom proof terms, but instead generates an invocation of
a Coq proof script. When this proof script is run, it builds the actual custom
proof term. This reduces the development effort, because the generator does
not have to implement its own proof generation. Moreover, the approach is
more flexible because we can change the definitions of the scripts without
changing the generator. However, generic proof scripts tend to be brittle and
can take a long time to execute. Furthermore, reasoning about the correctness
of the code generator not only involves the language of the proof assistant, but
also that of the scripting system.

Generic Library Alternatively, we can develop a datatype-generic library
with (well-formed) Knot specifications as the codes of a generic universe.
The main benefit of such a library is, that its code, including all proofs, can be
checked once and for all, and independently of a concrete specification. Hence,
instantiating the library is guaranteed to yield valid theorems for all specifica-
tions. Moreover, it shows that Knot embodies all necessary information and
constraints to derive the boilerplate.

There are several downsides to this approach. For usability, it is important
to hide the internals of the library and its complexity, since the user should not
have expert knowledge about datatype-generic programming to use the library.
Yet, there are several ways in which the implementation and its complexity
may be exposed. Firstly, the simplification of boilerplate functions may reveal
the generic implementation. Secondly, the provided induction principle over
generically defined datatypes is (usually) not the one the user would expect.
The above problems are usually mitigated in datatype-generic programming by
working with user-defined types instead, and by writing isomorphisms to the
generic representation. This means however, that some definitions like well-
scopedness predicates, which are clearly boilerplate, have to be user-defined as
well, which defeats the purpose of a generic solution to this kind of boilerplate.
Luckily, it is possible to make the interface of datatype-generic libraries aware
of isomorphisms so that the user is spared from applying the isomorphisms
manually.

Automation of proofs may also be impaired when using lemmas of a generic
library in comparison to manually proved or generated lemmas. For instance,
the statement of a generic lemma may not unify with all goals it applies to
before it has been properly specialized to a given specification. This impacts
automatic proof search, in particular for user-defined relations, which can have
arbitrary arities. Related to that is the problem of proof discovery. If the user
wants to look at the lemmas a library provides, he sees only the generic lemmas

171

instead of the ones specialized for his specification. Conceptually, this should
not pose a problem since in theory a proof assistant could specialize the types
of lemmas when instantiating the generic code for a specification. However,
currently none of the available proof assistants provide such functionality.

Finally, developing a datatype-generic library for Knot is technically highly
challenging. Constraints like well-formedness of binding specifications and ex-
pressions needs to be part of the universe code. Looking up meta-variables can
potentially introduce partiality which needs to be dealt with. Furthermore,
there is little research on writing datatype-generic libraries at this scale: not
only is datatype-generic programming more established than datatype-generic
proving, but also, research on generic proofs usually deals with universes of
algebraic datatypes and does not extend to user-defined relations which are
part of Knot specifications.

Hybrid Approaches The main trade-off of the above two approaches is
between the confidence in the correctness and the usability. Ideally, we could
combine both approaches in order to get the best of both worlds, and to
mitigate the respective disadvantages.

The obvious hybrid approach is to develop a generic library and address the
usability problems by developing a user-friendly code generator around it. The
code generator can instantiate the library with a user-defined specification and
specialize the generic definitions and lemmas as much as possible. However,
the technical challenges to develop a generic library remain. To ensure that
all generic definitions are hidden, we need to generate specialized definitions
for every generic definition that appears in the user facing interface. This
ranges from obvious user-defined datatype declarations for sorts, environments
and relations to generically derived inductive definitions like domains, well-
scopedness relations and environment look-ups. However, the specialization
adds duplication between the code generator and the generic implementation.

An alternative hybrid approach, is to use a code-generator as the principle
implementation and to transfer as much confidence in correctness as possible
from the generic approach. This is the path that we take and the remainder of
this chapter outlines our methodology to do so. To bolster our confidence in
code generation we have first built Loom, a datatype-generic library in Coq,
and then transferred its proof term generation to Needle, a code generator
in Haskell that produces Coq code.

Methodology Loom defines de Bruijn interpretation of Knot specification
generically and also implemented boilerplate functions and lemmas generically.

172 CHAPTER 8. ELABORATION

Elaborating datatype and function definitions in Needle is comparably easy.
The main obstacle, that we need to solve, is how to turn a generic proof of
Loom into an elaboration function in Needle. One can aim to implement an
elaboration that follows the same strategy as the generic proof. However, the
question remains if this is a faithful implementation of the same proof and if
it indeed is correct in all cases, especially when proof scripts are used.

We solve this problem by factoring the generic proofs of Loom into elab-
oration proofs. The first part are elaborations that produce for any given
specification specialized proofs and the second part are formal verifications of
the correctness of the elaborations.

Since the internals of the proofs assistant are not directly accessible for
elaboration or formal verification, and the language of the proof assistant is
too big, we choose a different target for the elaboration: namely intermediate
domain-specific witness languages. For each class of lemmas we develop a new
witness language specific for that class.

After developing the elaboration functions, their formal verification can be
divided into three different parts, which together represent alternatives to the
generic proofs:

1. A formal semantics of the witness language.

2. The correctness of the elaboration, i.e. the produced witness indeed
encodes a proof of the desired lemma w.r.t. the chosen semantics.

3. A soundness proof of the semantics of the witness language, e.g. the
statement that a witness proves w.r.t. to the chosen semantics is valid
(in our meta-language).

Subsequently, we can implement the same elaborations in the code genera-
tor Needle. However, this does not establish formal correctness of Needle.
The confidence in the correctness of Needle still relies on some factors.

1. The elaboration functions from Knot specifications to the witness lan-
guages is correctly ported from Coq to Haskell. The elaborations are
recursive and pure functions1 over algebraic dataypes which both Coq
and Haskell support. Therefore, we port the elaboration code by literal
translation from Coq to Haskell. In fact, most Haskell elaboration
functions were derived by a copy & paste of the Coq code.

2. The elaboration of the witness language into the language of the target
proof-assistant is correctly implemented. For our witness languages, this

1In reality, the elaboration functions are exclusively folds.

8.1. INTERACTION LEMMAS 173

translation is straightforward, it is compositional and each witness prim-
itive is either implemented by an application of a lemma or a rule.

3. The formal elaborations target only very specific parts of the boilerplate
lemmas. For instance, our formal proof elaborations exclusively deal
with inductive steps of induction proofs. Setting up the induction itself
is done in unchecked glue code. However, in comparison this glue code
is less fragile.

Overview There are too many lemmas to give an exhaustive account of all
the necessary elaborations. Instead we concentrate on representative and key
lemmas.

The first sections in this chapter show how the witness language methodol-
ogy is applied to several classes of boilerplate lemmas. Section 8.1.1 discusses
common interaction lemmas between syntactic operations. Section 8.2 deals
with the well-scopedness lemmas that we discussed in Section 5.2.4 and 5.2.5,
i.e. lemmas that prove that indices of relations are always well-scoped. Section
8.3 covers shifting and substitution lemmas for relations. Each of the Sections
looks at the class of lemmas that is being discussed, the domain-specific wit-
ness language for that class, an elaboration for a representative lemma, and
the verification of the correctness of the elaboration.

Section 8.4 discusses the generic library implementation Loom of Knot in
Coq, and Section 8.5 covers the implementation of our code generator Nee-
dle. We look at related work in Section 8.6 and finally conclude in Section 8.7
with our contributions.

8.1 Interaction Lemmas

Formalizations involve a number of interaction boilerplate lemmas between
shift , weaken and subst . These lemmas are for example needed in weakening
and substitution lemmas for typing relations.

In this Section, we develop an syntax-directed elaboration for these lem-
mas. Since this class of lemmas state the equality of different applications of
operations, we develop a witness language for term equality of our de Bruijn
representation.

We discuss the two types of interaction lemmas in Section 8.1.1 and develop
a semi-formal induction proof for one of them in Section 8.1.2. The formal
witness language is developed in Section 8.1.3. Finally, the elaboration is
presented in Section 8.1.4.

174 CHAPTER 8. ELABORATION

8.1.1 Overview

There are two distinct types of interaction lemmas: commutation lemmas and
a cancelation lemma.

Commutation

Two operation always commute when they are operating on different variables.
For instance, weakening of terms by introducing two distinct variables x and
y

Γ,∆1,∆2 Γ, x,∆1, y,∆2

can be implemented by 2 consecutive shifts. The order of these shifts is irrele-
vant, which we have to prove, i.e. we have the following commuting diagram:

Γ,∆1,∆2

shiftβ h2
//

shiftα (h1+h2)

��

Γ,∆1, y ,∆2

shiftα (h1+1β+h2)

��

Γ, x ,∆1,∆2
shiftβ h2

// Γ, x ,∆1, y ,∆2

where h1 := dom ∆1 and h2 := dom ∆2, α is the namespace of x, and β the
namespace of y. Usually only the special case ∆2 ≡ ε of this lemma is used.
However, for the induction to go through the more general case needs to be
proved. Also the lemma can be homogenous, i.e. α = β, or heterogeneous, i.e.
α 6= β.

Lemma 9.

∀u, h1, h2.shiftα (h1 + 1β + h2) (shiftβ h2 u) = shiftβ h2 (shiftα (h1 + h2) u)

Similar lemmas hold for the commutation of a substitution and a shifting,
and two substitutions. Extra care needs to be taken when a substitution is
involved, since the substitute(s) may also need to be changed.

Cancelation

When operating on the same variable, an introduction of a variable with a
shift and cancels a subsequent substitution:

Γ,∆
shiftα h

//

id
((

Γ, x ,∆

substα h v

��

Γ,∆

8.1. INTERACTION LEMMAS 175

where h := dom ∆.

Lemma 10.

∀v, u, h.substα h v (shiftα h u) = u

8.1.2 Semi-formal Shift Commutation

In this section we present a proof of the shift commutation lemma 9 that dis-
cusses all necessary proof steps in detail, but that is not completely formal.
The proof of the lemma proceeds by induction over the structure of the term
u. The cut-offs of recursive calls are calculated using the defined binding spec-
ification, but for the outer shifts of the equation, the cut-off calculations are
performed on shifted terms and thus do not match the form of the induction
hypotheses. We first need to prove an auxiliary property of Knot’s de Bru-
jin interpretation, namely that evaluation of binding functions and binding
specifications remains stable under shifting and substitution.

Stability of Binding Specifications

This property can be seen as an enforcement of lexical scoping: syntactic
operations on (free) variables do not change the scoping structure of bound
variables. The stability is enforced in the design of Knot: by ruling out
functions over sorts with variables, function evaluation can never reach variable
cases and thus their results only depends on the parts of the structure that
are left unchanged by syntactic operations.

The following lemma states the stability property for function evaluation.

Lemma 11. For all terms t of sort S and all f : S → α the following holds:

1. ∀β, c.J f K(shiftβ c t) = J f K(t)

2. ∀β, s, c.J f K(substβ c s t) = J f K(t)

Proof. By induction over the structure of t . The variable case is ruled out for
the sort S , so we only need to consider the regular cases. For each regular
constructor K of S the goal follows by nested induction of the right-hand side
of f for K .

The nested induction of the lemma above deserves essentially proves that
evaluation of binding specifications is invariant under shifting and substitution.
This is a useful result of its own.

176 CHAPTER 8. ELABORATION

Corollary 12. Let bs be a binding specification and ϑ = ti 7→ ui
i

a local value

environment. For given cut-offs hi
i

and substitutes vi
i define the following

value environments

ϑ′(ti) := shiftα hi ui
ϑ′′(ti) := substα hi vi ui

The following holds

1. ∀bs.J bs Kϑ′ = J bs Kϑ,

2. ∀bs.J bs Kϑ′′ = J bs Kϑ.

Proof. By induction over bs and using Lemma 11 for function calls.

Shift Commutation

We now come to the proof of the shift commutation lemma itself. A prereq-
uisite is a proof of the lemma in the case of a variable. The variable case
lemma is largely independent of a concrete Knot specification, only the de-
clared namespaces are involved, but not the structure of user-defined sorts.
This allows a generic implementation of the variable case without the need of
a special elaboration. We therefore assume that the variable case is given.

Proof of Lemma 9. The proof of the lemma proceeds by induction over u. As
discussed the variable constructor is easy to handle. Hence, we focus on the
the inductive steps of the regular constructors.

For the regular case suppose that we need to show the statement for K u
with K : x : α→ [bs]t : T → S. Define the constructor local value environment
ϑ for the inner shift, and two value environments ϑ′ and ϑ′′ for the outer shifts
of the equation

ϑ(ti) := ui
ϑ′(ti) := shiftβ (h2 + J bs Kϑ) ui
ϑ′′(ti) := shiftα ((h1 + h2) + J bs Kϑ) ui

The lemma follows by applying the following equational reasoning to each
field u with binding specification bs:

8.1. INTERACTION LEMMAS 177

eqh ::= refl | sym eqh | trans eqh eqh | congSα eqh | cong+ eqh eqh
| assoc+ | shiftα f t

equ ::= refl | sym equ | trans equ equ | ih
| congshiftα

eqh equ

Figure 8.1: Equality Witness DSL

shiftα (((h1 + 1β) + h2) + J bs Kϑ′) (shiftβ (h2 + J bs Kϑ) u)
≡ By Lemma 12.

shiftα (((h1 + 1β) + h2) + J bs Kϑ) (shiftβ (h2 + J bs Kϑ) u)
≡ By associativity.

shiftα ((h1 + 1β) + (h2 + J bs Kϑ)) (shiftβ (h2 + J bs Kϑ) u)
≡ By the inductive hypothesis.

shiftβ (h2 + J bs Kϑ) (shiftα (h1 + (h2 + J bs Kϑ)) u)
≡ By associativity.

shiftβ (h2 + J bs Kϑ) (shiftα ((h1 + h2) + J bs Kϑ) u)
≡ By Lemma 12.

shiftβ (h2 + J bs Kϑ′′) (shiftα ((h1 + h2) + J bs Kϑ) u)

8.1.3 Term Equality Witnesses

We now come to the first ingredient of a formal proof of the shift commutation
lemma, a witness language that is the target of a formal elaboration. The
elaboration we develop covers the equational reasoning of the induction steps
of Lemma 9. Figure 8.1 shows a grammar for the witness language. There
are two sorts: eqh which encodes equalities between domains and equ that
encodes equalities between de Bruijn terms. Both sorts have productions for
refl , sym and trans that represent the reflexivity, symmetry and transitivity
of an equivalence relation.

The remaining productions encode additional equalities. The productions
for congSα respectively cong+ encode congruences for the successors and plus
functions, and assoc+ witnesses the associativity of plus. The stability of
evaluating a binding function f is added as the primitive shiftα f t . For
equality of terms we have congruence of shifting congshiftα

as an additional
equality, and ih that denotes the application of an induction hypothesis.

The interpretation of the domain equality witnesses is show in Figure 8.2.
The judgement |=ϑ eqh : h1 ≡ h2 denotes that eqh witnesses the equality of h1
and h2 under the value environment ϑ. The equivalence properties, congruence
rules and associativity are entirely standard. The interpretation of the shift

178 CHAPTER 8. ELABORATION

|=ϑ eqh : h ≡ h

|=ϑ refl : h ≡ h
EqhRefl

|=ϑ eqh : h1 ≡ h2
|=ϑ sym eqh : h2 ≡ h1

EqhSym

|=ϑ eqh1 : h1 ≡ h2 |=ϑ eqh2 : h2 ≡ h3
|=ϑ trans eqh1 eqh2 : h1 ≡ h3

EqhTrans

|=ϑ eqh : h1 ≡ h2
|=ϑ congSα eqh : Sα h1 ≡ Sα h2

EqhCongSucc

|=ϑ eqh1 : h1 ≡ h3 |=ϑ eqh2 : h2 ≡ h4
|=ϑ cong+ eqh1 eqh2 : h1 + h2 ≡ h3 + h4

EqhCongPlus

|=ϑ assoc+ : (h1 + h2) + h3 ≡ h1 + (h2 + h3)
EqhAssocPlus

|=ϑ shiftα f t : J f K(shiftα h (ϑ (t))) ≡ J f K(ϑ (t))
EqhFunShift

Figure 8.2: Interpretation of Domain Equality Witnesses

stability primitive shiftα f t is exactly the statement of the stability lemma
11.

The interpretation of the term equality witnesses is the relation v0 ≡ v1 |=ϑ

eqh : u0 ≡ u1 defined in Figure 8.3 which denotes that eqh witnesses the
equality of u0 ≡ u1 under the hypothesis v0 ≡ v1. The only interesting rule is
EquIH, which interprets ih by using the equality of the hypothesis.

A property that we have to prove is that the semantics of the witness
languages is soundness with respect to our meta-language.

Lemma 13 (Soundness). The domain and term equality witness languages
are sound:

|=ϑ eqh : h1 ≡ h2
h1 ≡ h2

v0 ≡ v1 |=ϑ equ : u1 ≡ u2 v0 ≡ v1
u1 ≡ u2

8.1. INTERACTION LEMMAS 179

u ≡ u |=ϑ eqh : u ≡ u

v0 ≡ v1 |=ϑ refl : u ≡ u
EquRefl

v0 ≡ v1 |=ϑ equ : u1 ≡ u2
v0 ≡ v1 |=ϑ sym equ : u2 ≡ u1

EquSym

v0 ≡ v1 |=ϑ equ1 : u1 ≡ u2 v0 ≡ v1 |=ϑ equ2 : u2 ≡ u3
v0 ≡ v1 |=ϑ trans equ1 equ2 : u1 ≡ u3

EquTrans

v0 ≡ v1 |=ϑ ih : v0 ≡ v1
EquIH

|=ϑ eqh : h1 ≡ h2 v0 ≡ v1 |=ϑ equ : u1 ≡ u2
v0 ≡ v1 |=ϑ congshiftα

eqh equ : shiftα h1 u1 ≡ shiftα h2 u2
EquCongShift

Figure 8.3: Interpretation of Term Equality Witnesses

8.1.4 Proof Elaboration

We can now turn into the formal elaboration into equality witnesses of the aux-
iliary shift-stability lemma and of the induction step of the shift commutation
lemma.

Elaboration of Stability

The elaboration function in Figure 8.4 produces an equality witness for Corol-
lary 12. The corollary is proven by induction over list-like binding specifica-
tions. The elaboration function follows the same recursive structure and is
a fold over binding specifications. When the binding specification contains a
function call, the stability axiom is used. Congruences are used to make sure
we are in the proper position.

It remains to proof that the elaboration function indeed produces a witness
for Corollary 12, which is done in the following lemma.

Lemma 14 (Correctness of Stability Elaboration). The elaboration for the
stability of binding specification evaluation under shifting is correct.

180 CHAPTER 8. ELABORATION

stableshiftα : bs → eqh
stableshiftα [] = refl
stableshiftα (bs, x) = congSβ (stableshiftα bs)

where x : β ∈ L
stableshiftα (bs, f t) = cong+ (stableshiftα bs) (shiftα f t)

Figure 8.4: Elaboration of Shift Stability

eqh = stableshiftα bs ϑ = ui
i ϑ′ = shiftα hi ui

i

|=ϑ eqh : J bs Kϑ′ ≡ J bs Kϑ

Elaboration of Shift Commutation

Figure 8.5 contains the elaboration function comm for the inductive step of
the shift commutation lemma. We split the semi-formal proof of Section 8.1.2
into three parts

1. the reasoning steps before the application of the induction hypothesis,
which are encoded by comm1,

2. the application of the induction hypothesis, and

3. the remaining reasoning steps, which are encoded by comm2.

The following lemma states that comm correctly elaborates the induction
step of Lemma 9 the defined abbreviations v0, v1 are exactly the term of the
equality given by the induction hypothesis in Lemma 9, and u0, u1 are the
terms of the goal.

Lemma 15 (Correctness of Shift Commutation Elaboration). The elaboration
for the shift commutation witness is correct.

equ = comm bs ϑ = ui
i

v0 = shiftα ((h1 + 1β) + (h2 + J bs Kϑ)) (shiftβ (h2 + J bs Kϑ) u)
v1 = shiftβ (h2 + J bs Kϑ) (shiftα (h1 + (h2 + J bs Kϑ)) u)

u0 = shiftα (((h1 + 1β) + h2) + J bs Kϑ′) (shiftβ (h2 + J bs Kϑ) u)
u1 = shiftβ (h2 + J bs Kϑ′′) (shiftα ((h1 + h2) + J bs Kϑ) u)

v0 ≡ v1 |=ϑ equ : u0 ≡ u1

8.2. WELL-SCOPEDNESS 181

comm1 : bs → equ
comm1 bs = congshiftα

(trans (cong+ refl (stableshiftβ bs)) assoc+)

refl

comm2 : bs → equ
comm2 bs = congshiftβ

(cong+ refl (stableshiftα bs))
(congshiftα

assoc+ refl)

comm : bs → equ
comm bs = trans (comm1 bs) (trans ih (sym (comm2 bs))

Figure 8.5: Elaboration of Shift Commutation

8.2 Well-Scopedness

In this section, we develop a proof elaboration of well-scopedness lemmas for
user defined relations. Similar to the previous section, we begin by giving a
semi-formal overview of the proof steps before developing a formal elaboration.

The well-scopedness lemmas state that indices of relations with environ-
ments are well-scoped in the domain of the environment. For example for the
formalized typing relation Γ `tm e : τ of F∃,× from the Overview Section 5.2
we want to prove the following two well-scopedness lemmas

` E E `tm t : T

E `tm t

` E E `tm t : T

E `ty T

Both lemmas are proved by induction of the typing derivation and the
induction steps basically boil down to proving that the expressions in the con-
clusion of a rule are well-scoped assuming that the expressions in the premises
are well-scoped. Consider the typing rule for type application of F∃,×

E `tm t : ∀ • .T E `ty S
E `tm (e!S) : (substty 0 S T)

TTApp

To prove that the type (substty 0 S T) of the conclusion is well-scoped
we have to use the substitution lemma for well-scopedness of types. This
still leaves us with the obligation to prove that the types represented by the

182 CHAPTER 8. ELABORATION

wn ::= hyp g α | local α bs | weaken wn bs | strengthen wn bs | varinv K ws
ws ::= hyp bs sym | var K wn | reg K ws | reginv K n ws

| weaken ws bs | strengthen ws bs | subst ws1 ws2
H ::= (g : α), ([bs]sym : S)

Figure 8.6: Well-Scopedness Witness DSL

meta-variables S and T are well-scoped. The well-scopedness of S is given by
the second premise. The induction hypothesis for the first premise gives us
the well-scopedness of (∀ • .T). By inversion of the well-scopedness rule for
universal quantification we can conclude that T is well-scoped.

The next two sections develop the formal elaboration of the inductive steps.
Section 8.2.1 presents the domain-specific witness language and Section 8.2.2
presents the elaboration function from symbolic expressions to witnesses.

8.2.1 Witnesses of Well-Scoping

Figure 8.6 defines the grammar of the witnesses for indices wn and for terms of
sorts ws which are mutually recursive. The interpretation witnesses is relative
to a fixed rule local environment L = (r@α), ([bsb]b : β), [bst]t : T and also a
fixed value environment ϑ = (r 7→ n), (t 7→ u). Furthermore, we use an envi-
ronment H to hold hypotheses, which is populated from both the induction
hypotheses of the rule and from well-scopedness premises. The witnesses de-
scribe the use of a hypothesis hyp, the well-scopedness of a local reference local ,
the application of a constructor rule var or reg , the inversion of a constructor
rule varinv or reginv , use of a weakening lemma weaken or of a strengthening
lemma strengthen (the inversion of weakening), or use of a substitution lemma
subst .

Figure 8.7 contains selected rules that define the intended meaning of the
proof terms with respect to the de Bruijn representation. (See Appendix A.2
for the remainder.) The relation (wn) |=ϑ (h `n α) denotes that wn witnesses
that n is a well-scoped de Bruijn index for namespace α with respect to h
and (ws) |=ϑ (h `S u) denotes that ws witnesses that u is a well-scoped
in the de Bruijn term of sort S with respect to h. These two relations are
mutually-recursive and completely syntax directed in wn respectively ws.

Also note, that both relations are parameterized by H,ϑ and h0, an addi-
tional parameter that represents the outer scope, i.e. the domain of the im-
plicit environment during the proof of the well-scopedness lemma. The binding

8.2. WELL-SCOPEDNESS 183

(wn) |=ϑ (h `α n)

(g : α) ∈ H
(hyp g α) |=ϑ (h0 `α ϑ g)

WnHyp

K : α→ S (ws) |=ϑ (h `S K n)

(varinv K ws) |=ϑ (h `α n)
WnVarInv

(ws) |=ϑ (h `S u)

K : α→ S (wn) |=ϑ (h `α n)

(var K wn) |=ϑ (h `S K n)
WsVar

(ws1) |=ϑ (h `S1
u1) (ws2) |=ϑ (Sα h `S2

u2)

(subst ws1 ws2) |=ϑ (h `S2
substα 0 u1 u2)

WsSubst

(ws) |=ϑ (h+ J bs Kϑ `S lift u J bs Kϑ)

(strengthen ws bs) |=ϑ (h `S u)
WsStrengthen

Figure 8.7: Well-scopedness proof terms

specification in the witness terms always denote the local scope relative to the
outer scope h0.

The rule WnHyp refers to hypotheses in H. The hypothesis for a global
variable g represents the assumption that the de Bruijn index ϑ g is well-scoped
in the outer scope h0. The remaining rules axiomatically encode properties
of well-scopedness relations. For example, rule WsVar corresponds to the
variable rule of semantic well-scoping and WnInvVar to its inversion, i.e. we
can establish the well-scopedness of a de Bruijn index from the well-scopedness
of a variable constructor. Rule WsSubst denotes the substitution lemma for
well-scoping, and WsStrength denotes the strengthening lemma, i.e. an
inversion of the weakening lemma.

Since the axiomatic rules of the witness language are backed by concreted
lemmas for well-scoping, we can establish soundness of the interpretation

Lemma 16 (Soundness). Let ϑ = (g 7→ n), (t 7→ u) and g′ ⊆ g. If the hy-
potheses H = (g′ : α), ([bs]sym : S) are valid, i.e. h0 `α ϑ g′ and
h0 + J bs Kϑ `S J bs | sym Kϑ, then

184 CHAPTER 8. ELABORATION

1.
(wn) |=ϑ (h `β n′)

h `β n′

2.
(ws) |=ϑ (h `T ′ u′)

h `T ′ u′

8.2.2 Proof Elaboration

We can split the proof of the induction steps of the lemma into two stages.
First, we establish well-scopedness of terms represented by sort and global
meta-variables of the conclusion, potentially by using inversion lemmas on the
induction hypotheses. Second, we use the rules of the well-scopedness relations
and derived rules to establish well-scopedness of the terms in the conclusion.
In short, this step amounts to using the fact that evaluation of well-scoped
symbolic expression in a well-scoped context yields well-scoped terms.

Similarly, we can also split the elaboration into two corresponding stages.
The first stage elaborates one-hole contexts [Huet, 1997] that describe invert-
ible paths to meta-variable in the premises into witnesses that use inversions
and hypotheses. We collect the result of the first stage into an environment
P ::= g : wn, s : ws that holds the proof terms for the meta-variables. The
second stage elaborates the expression in the conclusion into witness terms by
using P for occurring meta-variables.

We only present the formal elaboration of the second stage. Figure 8.8 con-
tains the elaboration function symws from symbolic expressions to witnesses
ws. The argument P is the proof term environment for sort and global meta-
variables, and the bs argument is the local scope of the symbolic expressions
that is elaborated.

In case of a sort meta-variable or a variable constructor with a global
variable we look up the proof term in P . For the global variable we need to
weaken to the local scope first and then wrap it in the variable constructor.
For a locally bound variable b the helper function symwnα first uses local
to witness the fact that b is well-scoped in bs, b and then weakens with the
difference bs ′ to create a proof term for well-scopedness in bs, b, bs ′2.

For a regular constructor K we symbolically evaluate the local scopes of
the sort fields and proceed recursively and wrap the results in reg . In case of

2For simplicity, the presented elaborations in Figure 8.8 have the wrong associativity
when weakening local and global meta-variables into the local scope. Loom and Needle
contain elaborations that deal with associativity correctly.

8.3. SHIFTING AND SUBSTITUTION 185

symwnα : bs → b → wn

symwnα (bs, b, bs ′) b = weaken (local α bs) bs ′

symws : P → bs → sym → ws

symws P bs s = ws where (s : ws) ∈ P
symws P bs (K g) = var K (weaken wn bs)

where (g : wn) ∈ P
symws P bs (K b) = var K (symwnα bs b)

where K : α→ S

symws P bs (K b′ sym) = reg K (symws P bs ′ sym)
where K : ([bsb]b : α)→ ([bst]t : T)→ S

[(b 7→ b′, t 7→ sym)]bst ⇓ bs ′

symws P (bs, bs ′) (weaken sym bs ′) =
weaken (symws P bs sym) bs ′

symws P bs (subst b sym1 sym2) =
subst (symws P bs sym1) (symws P (bs, b) sym2)

Figure 8.8: Well-scopedness of de Bruijn terms

a symbolic weakening we need to strip off the tail bs′ to get the local scope
for the recursive position. Finally, for subst b sym1 sym2 we recurse into
sym1 with the same local scope but account for the additional variable b when
recursing into sym2.

8.3 Shifting and Substitution

The last semantic boilerplate lemmas that we consider in this chapter are
shifting and substitution lemmas of user-defined relations. For formal proofs
we can apply the methodology of this chapter: elaboration into a sound witness
language. The witness language in this case also observe term equalities similar
to Section 8.1. We do not present the final elaboration but only present all the
necessary ingredients to develop it. We first discuss shifting lemmas in Section
8.3.1 and then substitution lemmas in Section 8.3.2.

186 CHAPTER 8. ELABORATION

8.3.1 Shifting

As in the previous sections, we first discuss the necessary proof steps semi-
formally and subsequently sketch the formal proof elaboration for shifting
lemmas.

Shifting introduces a new binding in the environment of a relation and
adapts the relation indices by term-level shifting. In its most generic form the
insertion happens between two parts u1 and u2 of the environment. In this
case, term-level shifting is done using the domain of u2 as cut-off. The proof
proceeds by induction on the derivation of a relation. For the inductive step of
each rule, be it a variable rule or a regular rule, we want to apply the same rule
again. This may require massaging the proof goal with commutation lemmas
of shifting and substitution, i.e. we have to push the global shifting into local
weakenings and local substitutions to recreate the symbolic structure of the
rule.

More specifically, for a rule with conclusion R sym and values ϑ the goal
of the induction step is to show

R shiftα c J ε | sym Kϑ.

To use rule r again, we need to match the same symbolic structure sym,
i.e. we have to find ϑ′ such that the following holds

shiftα c J ε | sym Kϑ = J ε | sym Kϑ′ . (8.1)

This is just ϑ′ = (r 7→ shiftα c (ϑ r)), (t 7→ shiftα (c+ J bst Kϑ) (ϑ t)) or in
other words: shifting commutes with symbolic evaluation.

Similar to Section 8.2, we can give a formal syntax-directed elaboration
for equation (8.1) from symbolic expressions into a domain-specific witness
language of term equalities. This is an extension of the language of Section
8.1 that additionally has primitives for the commutation lemmas. After using
rule r we are still left with it’s premises as proof goals. In case of a judgement,
we need to apply equality (8.1) in the opposite direction.

8.3.2 Substitution

Much of the reasoning is similar to shifting: for context-parametric regular
rules we need to commute substitution with symbolic evaluation, which is
done by elaboration to term equality witnesses. In the case of a homogenous
substitution, the lookup of a variable rule is replaced by a derivation tree of
the relation and in the case of a heterogeneous substitution, the lookup is

8.3. SHIFTING AND SUBSTITUTION 187

adapted and wrapped inside the variable rule again. Hence we only discuss
the problematic case of non-context parametric regular rules. As an example
consider the algorithmic transitivity rule of of System F with sub-typing :

(α <: σ) ∈ Γ Γ ` σ <: τ

Γ ` α <: τ .

In the inductive step of the type-variable substitution lemma, e.g. when
substitution a type-variable β for σ′, we cannot apply the same rule again,
because in the case α = β it has been substituted. However, we can substitute
the lookup by a derivation and use the induction hypothesis of the second
premise, i.e. it suffices to show

Γ′ ` [β 7→ σ′]α <: [β 7→ σ′]σ) Γ′ ` [β 7→ σ′]σ <: [β 7→ σ′]τ

Γ′ ` [β 7→ σ′]α <: [β 7→ σ′]τ

where Γ′ is the resulting context after substitution. In other words, we have
spliced in derivations for lookups not only in the case of a variable constructor,
but also for lookups in non-context parametric rules. We can finish the proof
of the induction step, if we can show that the declarative sub-typing rule is
admissible:

Γ ` ρ <: σ Γ ` σ <: τ

Γ ` ρ <: τ .

Unfortunately, the admissibility of this rule is a meta-theoretic property of
the sub-typing relation that has to be proved separately and that we cannot
establish automatically. As a consequence, for this sub-typing relation and
similar languages with non-context parametric rules we cannot establish the
substitution lemma generically.

However, the above gives us a recipe to automatically derive sufficient proof
obligations to establish the inductive step. Consider the substitution lemma
for namespace α of a relation R and let S be the sort for namespace α. For each
non-context parametric rule of R, we derive a proof obligation by replacing all
occurrences of global meta-variables g of namespace α with fresh sort meta-
variables sg of sort S and each lookup premise {g -> sym} with a judgement

premise ([ε]R (sg, [g 7→ sg]sym)). Note that [g 7→ sg] denotes a substitution at
the meta-level and not the object level or a symbolic substitution. This substi-
tution needs to ensure that well-scoping of symbolic expression is not violated:
each occurrence of g at local scope bs is in fact replaced by (weaken sg bs).

188 CHAPTER 8. ELABORATION

Global meta-variables of other namespaces and lookups of other clauses are
left unchanged except for the meta-substitution [g 7→ sg] in the lookup data.

8.4 The Loom Generic Library

We implemented the datatype-generic library Loom around Knot specifi-
cations that provides boilerplate functionality. Loom is only built for the
development of elaborations without end users in mind. Hence direct usability
is not a concern. The universe of the library covers generic representations of
sorts, environments and expressions, since these determine all of the interest-
ing elaborations. The universe does not deal with user-defined relations and
their derivation trees.

Following our free monad principle, we capture de Bruijn terms in a free
monadic structure similar to the one in Section 6.2.1. We use the universe
of finitary containers [Abbott et al., 2003; Gambino and Hyland, 2004; Jaske-
lioff and Rypacek, 2012; Moggi et al., 1999] to model the underlying pattern
functors of regular constructors of sorts, in order to deal with any positivity
and termination requirements. Finitary containers closely model our specifi-
cation language: a set of shapes (constructors) with a finite number of fields.
Each field is associated with a binding specification, all constraints for the
well-formedness of specifications and the well-scopedness of meta-variables are
encoded in the universe codes using strong intrinsic types [Benton et al., 2012].
Furthermore, we use an indexed [Altenkirch and Morris, 2009] version of fini-
tary containers to model mutually recursive types and use a higher-order pre-
sentation to obtain better induction principles for which we assume functional
extensionality 3.

The boilerplate lemmas implemented in the library follow the elaboration
methodology outlined in this chapter. In total, the library consists of about
4.3k lines of Coq code.

8.5 The Needle Code Generator

Needle is a Code generator written in about 11k lines of Haskell. Nee-
dle takes a Knot specification and generates Coq code for the representa-
tion of the syntactic sorts of an object language and its semantic relations.
Furthermore, it generates specialized language-specific non-generic boilerplate
definitions, lemmas and proofs.

3However, the code based on our generator Needle does not assume any axioms.

8.5. THE NEEDLE CODE GENERATOR 189

Knot KnotCore DB Core Coq

Figure 8.9: Needle Processing Stages

Needle processes Knot specifications in multiple stages which is pictured
in Figure 8.9.

The first stage is the parsing and checking of a textual Knot specifica-
tion, name-resolution, sort checking, scope inference and scope checking, and
grouping of mutually recursive sorts and functions. The result is a Knot-
Core specification that is enriched with the inferred information such as the
scope of binding meta-variables. Furthermore, information is also cached in
different parts of the specification for easy access. For instance, each symbolic
sub-expression is annotated with its scope.

The elaboration to Coq code is performed both, directly from Knot-
Core and via the intermediate representation DbCore. DbCore consists of
a generic representation of symbolic de Bruijn terms and the domain-specific
witness languages from this chapter. Needle first generates generic version
of boilerplate in DbCore, for example, of lemma statements. The specializa-
tion to the given concrete specification is then carried out by a simplifier in
DbCore. The simplification steps mainly consist of applying sub-ordination
information and partially evaluating the symbolic terms.

The elaborated proof terms tend to be very large. For almost all cases
simpler specialized proofs exists. For example, in the case of empty binding
specifications some proof steps are entirely unnecessary, however, they are still
part of the elaboration. To speed up the checking of the generated code Db-
Core’s simplifier also performs simplification of the domain-specific witness
terms. For that, it uses the group structure of equality proofs [Stump and
Tan, 2005] with transitivity as the group operation, reflexivity as the neutral
element and symmetry as the inversion. Furthermore, the simplifier performs
partial evaluation of lemmas that have been added as axioms to the witness
languages, e.g. EqhAssocPlus in Figure 8.24 The correctness of the proof
simplification has also been verified in Loom.

4In contrast to the witness languages presented in this chapter, DbCore’s representation
contains symbolic terms that exactly describe the left and right hand sides of the witnessed
equality. This extra information is needed for the partial evaluation.

190 CHAPTER 8. ELABORATION

The Coq code produced by Needle contains both, elaboration proof terms
and invocations of proof scripts that are implemented in an accompanying
library. To reduce the development effort, lemmas that do not directly depend
on the structure of user-defined sorts and relations are primarily implemented
via proof scripts, since for this kind of lemmas, proof scripts are sufficiently
robust. These include lemmas about domains, indices and contexts, but also
the variable cases of interaction lemmas which are always proven separately.
Lemmas that induct over sorts or relations directly depend on the user-defined
structure and are therefore more brittle. These are always implemented via
by proof term elaboration.

8.6 Related Work

There is plenty of existing work on derivation of variable binding boilerplate.
We focus only on related work that target mechanization of meta-theory in
proof-assistans.

The approaches to tackle the binding boilerplate in mechanizations gener-
ally fall in one of several categories: meta-languages with built-in support for
binding [Gacek, 2008; Pientka and Dunfield, 2010; Pfenning and Schürmann,
1999; Urban and Tasson, 2005] that also take care of boilerplate automatically,
code-generators that produce code for proof-assistants [Aydemir and Weirich,
2010; Polonowski, 2013], libraries that use reflection methods to derive code
[Schäfer et al., 2015b], datatype-generic programming libraries [Anand and
Rahli, 2014; Lee et al., 2012] that implement boilerplate for a generic universe
of datatypes or libraries of reusable tactics [Chlipala, 2008; Pottier, 2013].

Logical frameworks The advantage of logical frameworks based on higher-
order abstract syntax is that facts about α-equivalence and well-scoping and
structural properties for substitution, weakening and exchange are inherited
from the meta-language and thus do not need to be proved separately. Substi-
tution lemmas for semantical relations are also provided for free if the object-
language context admits exchange. If it does not admit exchange, there are
techniques like explicit contexts [Project, 2015; Lee et al., 2007; Pientka and
Dunfield, 2008] that can be used to model relations which then require a man-
ual proof of the substitution lemma while still reaping all the benefits for the
syntax. This is, for example, necessary to model dependently typed languages
and also for the POPLmark challenge to isolate a variable in the middle of the
context for narrowing. In comparison, our derivation of substitution lemmas
is independent of any exchange property of contexts.

8.6. RELATED WORK 191

Decision Procedures The authors of the AutoSubst library [Schäfer et al.,
2015b] have developed a language with symbolic expressions for two sorts:
de Bruijn terms and simultaneous de Bruijn substitutions with an axiomatic
equivalence [Schäfer et al., 2015a] based on the reduction rules of the σ-calculus
[Abadi et al., 1991a] which they show to coincide with the semantic equiva-
lence on de Bruijn terms. They have also developed a decision procedure, that
automatically decides the equivalence of two expressions. As a consequence,
frameworks based on simultaneous de Bruijn substitutions such as AutoSubst
can, in theory, derive all the necessary rewrites for the inductive steps of the
substitution lemma automatically. In contrast, we derive the rewrites using
syntax-directed elaboration. However, the decision procedure of [Schäfer et al.,
2015a] is applicable in instances other than substitution lemmas.

Traversal Abstraction Allais et al. [2017b] go beyond the definition of
syntactic traversals and look at the definition of a recursor on well-scoped
simply-typed λ-terms, which allows the scope-preserving definition of semantic
functions like CPS-transformation and evaluation. They prove generic simu-
lation and fusion laws for their recursor, but fall short of deriving interaction
lemmas. This work was subsequently extended by Kaiser et al. [2018] for
multi-variate languages.

Instead of abstracting over the structure of datatypes like Loom, it is also
possible to abstract at another level, for instance over the types themselves and
generic traversal functions. This is the approach taken by Pottier [2013] and
Keuchel [2016]. Boilerplate lemmas such as interaction lemmas are derived
generically from key properties of the traversal. The provided information
is however not sufficient to derive other types generically, such as for exam-
ple well-scoping predicates or symbolic expressions. The traversal properties
required by Keuchel [2016] are essentially the fusion and simulation laws of
[Allais et al., 2017b], albeit specialized to “syntactic semantics”.

DGP for abstract syntax The application of datatype-generic program-
ming techniques to represent abstract syntax with binding and provide generic
functionality is quite appealing and has been investigated before. Licata and
Harper [2009] and Keuchel and Jeuring [2012] define universes for datatypes
with binding in Agda using a well-scoped de Bruijn representations. Loom
and Keuchel and Jeuring [2012]’s index universe codes by namespaces and
syntactic sorts and interpret it as one big mutually recursive family of types.
However, the specification of bindings is different. Keuchel and Jeuring [2012]
use a set of abstraction primitives while Loom explicitly models expressions

192 CHAPTER 8. ELABORATION

for binding specifications.
Lee et al. [2012] develop the GMeta framework for first-order representa-

tions of variable binding in Coq that supports both locally nameless and de
Bruijn representations and generically implement boilerplate lemmas for use
in mechanizations. GMeta’s universe is based on regular tree types [Morris
et al., 2006]. For multi-sorted languages, the implementation of substitution
relies on checking for equal sort representations of a variable’s sort and a sub-
stitute’s sort. This check is necessary since subordinate sorts are modeled by
providing their full representation in recursive positions. In Loom, the index-
ing of universe codes by namespaces and sorts provides this information and a
simple index check is sufficient. As a result, Loom does not rely on decidable
equality of representations and avoids the adequacy issue in the admittedly
unlikely case that multiple sorts have equal representations.

Essentially, Loom includes more information of interest explicitly in its
codes, i.e. the direct access to recursive positions of subordinate sorts5 Loom’s
approach is akin to creating a multi-argument pattern functor for each sort
by abstracting over each subordinate sort with variables, or more precisely
abstracting over namespaces, and implementing substitutions using the generic
functorial map of the corresponding namespace. In GMeta, this information
is not explicit, i.e. the functorial abstraction is not possible, and is regained
during substitution by basically implementing dynamic typing using structure
representations [Abadi et al., 1991b; Weirich, 2006]6

Allais et al. [2017a] define a universe for languages with a single namespace.
Similar to Loom and GMeta, they look at the syntax freely generated by a
pattern functor, and adapt the universe of [Chapman et al., 2010] for the
functorial abstraction. They generically define a well-scoped recursor [Allais
et al., 2017b] and generically prove fusion and simulation laws for it.

Nominal Representations Nominal Isabelle [Urban and Tasson, 2005] is
an extension of the Isabelle/HOL framework based on nominal logic [Pitts,
2003] with support for nominal datatype terms which provides reasoning mod-
ulo α-equivalence for free. It is also possible to define and reason about seman-
tic relations but for reasoning modulo α-equivalence we first need to show that
the relations are equivariant. These equivariance proofs are very similar to the

5The access to variables of subordinate sorts is what we are actually interested in. But
the result of substituting a variable needs to be joined back in which in Knot always happens
at recursive positions.

6One can argue that Loom also implements dynamic typing by using type tags. Nev-
ertheless, the indexing of universe codes essentially means that indices live “one level up”
compared to structure representations, which grants Loom a more static feel.

8.7. CONTRIBUTIONS 193

proofs of shifting and substitution lemmas for relation in the de Bruijn repre-
sentation. We hence conjecture that, in a nominal interpretation of Knot, the
binding functions of Knot are equivariant, i.e. they are binding operators in
the sense of [de Amorim, 2016] and that we can generically derive equivariance
and substitution lemmas for semantical relations on nominal terms.

8.7 Contributions

The rigorous definition of elaborations and their formal verification in Loom
is a significant leap up from similar existing systems like LNGen [Aydemir
and Weirich, 2010] and DbGen [Polonowski, 2013], which rely on powerful but
brittle tactics to derive boilerplate lemmas.

Furthermore, our approach tackles more boilerplate than any other ap-
proach using a first-order representation. To the best of our knowledge, Nee-
dle is the first system that derives substitution lemmas for a class of semantic
relations.

194 CHAPTER 8. ELABORATION

Chapter 9
Evaluation

This chapter evaluates the benefits of the Knot approach for type-safety mech-
anizations with two complimentary evaluations. The first considers different
mechanizations for the same language (the POPLmark challenge) authored
by different people with different degrees of automation or tool support. The
second compares Knot against manual mechanizations (written by the same
author in a consistent and highly automated style) across different languages.

9.1 Comparison of Approaches

Because it is the most widely implemented benchmark for mechanizing metathe-
ory, we use parts 1A + 2A of the POPLmark challenge to compare our work
with that of others. These parts prove type-safety for System F<: with al-
gorithmic subtyping. As they involve only single-variable bindings, they are
manageable for most existing approaches. Figure 9.1 compares 10 different
solutions:

1. Charguéraud’s [Charguéraud, 2007] developments use the locally-nameless
representation and come with automation via proof tactics for this rep-
resentation.

2. Vouillon [Vouillon, 2012] presents a self-contained de Bruijn solution.
The solution only moderately uses automation and instead performs
proof steps explicitly for didactic purposes.

195

196 CHAPTER 9. EVALUATION

Charguera
ud

Vouillo
n
Manual

GMeta
dB

GMeta
LN

LNGen
Twelf

AutoSubst
Knot*

Knot

200

400

600
523 500 509

297

376
330

174
210

168
117

538
614

259

669

513

432 402

225

121
75

L
in

es
o
f

co
d
e

Spec
Proof

Figure 9.1: Sizes (in LoC) of POPLmark solutions

3. Our own more compact manual mechanization (see Section 9.2) based
on de Bruijn terms with more automation than Vouillon’s solution.

4–5. Two solution based on the GMeta [Lee et al., 2012] datatype-generic
library for de Bruijn and locally-nameless representations.

6. A mechanization in Coq using a locally-nameless representation and
boilerplate produced by the LNGen [Aydemir and Weirich, 2010] code
generator from an Ott specification.

7. A solution in the Twelf logical framework [Ashley-Rollmann et al.,
2005].

8. A solution using the Autosubst [Schäfer et al., 2015b] Coq library for
de Bruijn terms.

9. A Knot-based solution without generation of semantics-related boiler-
plate [Keuchel et al., 2016] (Knot*).

10. Our Knot-based solution (Knot) for both syntax and semantics.

The figure shows the code size separated into proof scripts and other
specification lines as generated by coqwc, except for the Twelf solution were
we made the distinction manually. We excluded both library code and gener-
ated code. The AutoSubst and Knot formalizations are significantly smaller

9.2. MANUAL VS. KNOT MECHANIZATIONS 197

than the others. Knot’s biggest savings compared to AutoSubst come from
the generic handling of well-scopedness predicates and semantic relations which
are not supported by AutoSubst. In comparison to the Knot-based solution
[Keuchel et al., 2016] without support for relations, we save relatively more
LoC in proofs than in specifications. In summary, the Knot solution is the
smallest solutions we are aware of.

9.2 Manual vs. Knot Mechanizations

The previous comparison only considers the type-safety proof for a single lan-
guage, and thus paints a rather one-sided picture of the savings to be had. For
this reason, our second comparison considers the savings across 11 languages.
As their mechanizations are not readily available across different tools and
systems, we here pit Knot & Needle only against our own manual mecha-
nizations. To yield representative results, all our manual mechanizations have
been written by the same author in a consistent and highly automated style.1

The 11 textbook calculi we consider are: 1) the simply typed lambda cal-
culus λ, 2) λ extended with products, 3) System F, 4) F with products, 5)
F with existentials, 6) F with existentials and products, 7) F with sequential
lets, 8) F<: as in the POPLmark challenge 1A + 2A of Section 9.1, 9) F<:

with products, 10) λ with type-operators, and 11) F with type-operators.
For each language, we have two Coq formalizations: one developed without

tool support and one that uses Needle’s generated code. Table 9.1 gives a
detailed overview of the code sizes (LoC) of different parts of the formalizations
and the total and relative amount of boilerplate. It also shows the ∆Needle
savings due to Needle’s new support for relations.

The Specification column comprises the language specifications. For the
manual approach, it is split into an essential part (Ess.) and a boilerplate
part (Bpl.). The former comprises the abstract syntax declarations (including
binding specifications), the evaluation rules, typing contexts and typing rules;
this part is also expressed (slightly more concisely) in the Knot specification
(Ndl). The boilerplate part consists of lookups for the variable rules and
shifting and substitution functions, that are necessary to define β-reduction on
terms and, where applicable, on types; this boilerplate is generated by Needle
and thus not counted towards the size of the Knot-based mechanization.

The Metatheory column shows the effort to establish type-safety of the lan-
guages. The essential lemmas are canonical forms, typing inversion, progress

1 E.g., compare our manual solution against Vouillon’s in Figure 9.1: it is smaller due to
more automation and simpler definitions that are more amenable to proof search.

198
C

H
A

P
T

E
R

9.
E

V
A

L
U

A
T

IO
N

Specification Metatheory Total

Ess. Bpl. Ndl Ess. Syn. Sem. Ndl Man. Ndl ∆Needle

1) λ 41 39 36 23 22 23 19 148 55 (37.2%) 28 (18.9%)
2) λ× 82 67 75 32 61 72 75 314 150 (47.8%) 48 (15.3%)
3) F 51 102 46 185 79 30 30 447 76 (17.0%) 42 (9.4%)
4) F× 90 150 85 230 126 79 87 675 172 (25.5%) 97 (14.4%)
5) F∃ 71 114 66 266 86 44 43 581 109 (18.8%) 79 (13.6%)
6) F∃,× 123 164 103 365 172 98 101 922 204 (22.1%) 106 (11.5%)
7) Fseq 99 165 88 249 162 49 70 724 158 (21.8%) 89 (12.3%)
8) F<: 66 117 57 264 150 163 138 760 195 (25.7%) 94 (12.4%)
9) F<:,× 110 155 92 311 212 256 235 1044 327 (31.3%) 149 (14.3%)

10) λω 97 88 75 202 141 251 268 779 343 (44.0%) 161 (15.4%)
11) Fω 120 98 92 204 141 311 330 874 422 (48.3%) 160 (15.3%)

Table 9.1: Size statistics of the meta-theory mechanizations.

9.2. MANUAL VS. KNOT MECHANIZATIONS 199

and preservation and where applicable this also includes: pattern-matching
definedness, reflexivity and transitivity of subtyping and the Church-Rosser
property for type reductions.

There are two classes of binder boilerplate in the metatheory:

1. Syntax-related boilerplate (Syn.) that consists of interaction lemmas,
weakening and substitution lemmas for well-scopedness predicates. The
code size for these lemmas depends mainly on the number of namespaces,
the number of syntactic sorts and the dependency structure between
them, which is roughly the same for these languages. Needle derives
this boilerplate completely automatically.

2. The semantics-related boilerplate (Sem.) are well-scoping, shifting and
substitution lemmas for user-defined semantic relations. The size of these
lemmas depends on the number of namespaces and the size of the se-
mantics relations.

We defined λω and Fω using algorithmic type equality with reflexivity
only on type-variables, not on types. For the substitution lemmas of
these calculi, Needle generates a proof obligation for the admissibility
of reflexivity of types. Similarly, F<:and F<:,×use algorithmic subtyping
and both, the type-variable reflexivity and type-variable transitivity rule,
give rise to a proof obligation. Furthermore, neither of these two rules
meets the restrictions of Section 6.5.1 for variable rules, and thus deriving
a variable rule yields another proof obligation.

The final column group contrasts the total sizes of the manual (Man.)
and Knot based formalizations (Ndl). The last column ∆Needle shows
the difference between Knot-based solutions with and without generation of
semantics-related boilerplate.

Summary Table 9.1 clearly shows that Needle provides substantial sav-
ings in each of the language formalizations. On average, Needle-based so-
lutions are 71% smaller than the manual solutions (100% − Ndl/Man.), the
generation of semantics-related boilerplate saves ∼14% of the manual approach
(∆Needle/Man.) and∼33% of the Needle-assisted approach (∆Needle/Ndl).

200 CHAPTER 9. EVALUATION

Chapter 10
Conclusion

In this concluding chapter we revisit the research question, summarize the re-
sults of this thesis and evaluate the contributions in the context of the research
question. Furthermore, we highlight opportunities for future work and spec-
ulate about how the contributions of this thesis can benefit the programming
language research community at large in the future.

10.1 Research Question

Widespread formalization and mechanization of programming language meta-
theory is hindered by the large development costs. For further adoption, re-
ducing the costs is crucial. This leads us back to the research question laid
out at the start of this thesis:

How can we reduce the cost of mechanising the formal
meta-theory of programming languages?

This thesis promotes reuse as a way to reduce the mechanization effort of
programming language meta-theory and investigates the two principled ap-
proaches modularity and genericity to reuse in general, and the application of
these approaches to programming language theory in particular.

201

202 CHAPTER 10. CONCLUSION

10.2 Summary

This section gives and overview of the thesis and its most important results.
We discuss the two parts of the thesis in turn.

10.2.1 Modularity

Part I pursues the modularity approach and universal method for modular-
ization of functional programs on inductive datatypes and modularization of
induction proofs for properties of these programs. Specifically, this thesis has
contributed new results for the modular representation of datatypes and for
reducing feature interaction in effectful semantics. Both contributions have
been evaluated with case studies. We discuss both contributions and the case
studies below.

Modular Representation

Modularizing proofs is particularly challenging since the proof-assistant set-
tings imposes several restrictions for logical consistency. This challenge is
addressed in work prior to this thesis in the Meta-Theory à la Carte (MTC)
[Delaware et al., 2013] framework which uses Church encodings to represent
inductive datatypes and families. This thesis develops an alternative approach,
using datatype-generic representations, that improves upon MTC in terms of
adequacy, convenience and compatibility with classical logic.

Feature Interaction

A concern in modularization is the interaction between two or more features.
Each new feature that is integrated potentially interacts with all previous ones.
As a result, extending existing developments exhibits a quadratic increase in
effort. This is not a problem that is specific to a modular approach, but applies
to software development in general. However, it is an obstacle to modularity
if the interaction involves the complete set of features instead of an isolated
subset, e.g. two features.

Problematic feature interactions appear in the semantics of programming
languages with effectful features. To cut down this particular kind of interac-
tion, we developed a denotational semantics based on monad transformers and
corresponding algebraic laws. This semantics has allowed us to to formulate
and prove a general type-soundness theorem in a modular way that enables the
modular reuse of language feature proofs and reduce the interaction between
effectful language features to the interaction between their effects.

10.2. SUMMARY 203

Case Studies

We have performed two case studies to evaluate our contributions. The first
case study is a port of the MTC case study to the container based modu-
lar representation. It consists of continuity and type-safety proofs for seven
language features and six language compositions. In contrast to MTC, the
preservation of the universal properties is not necessary for induction which
makes the approach conceptually simpler. This is reflected in the case study:
sigma types and its projections are removed from lemmas and proofs, and
language features and their (proof) algebras are on average 240 LoC (25%)
smaller. The final language compositions are slightly larger by about 6 LoC
(7%), but are short in comparison to the feature specific code.

The second case study demonstrates the 3MT framework. It consists of five
reusable language features: pure boolean and arithmetic features and effectful
features for references, errors and lambda abstractions. The study builds 28
different combinations of the features. Each language feature has its own
reusable feature theorem and each of the six effect combinations its own effect
theorem. Effect theorems are only reusable for languages with the specific set
of effects. Like in the first case study, the feature and effect theorems outweigh
the final language compositions.

10.2.2 Genericity

Part II examines the genericity approach for a specific use case: variable bind-
ing boilerplate in mechanizations. A key ingredient of reduction-based se-
mantics of programming languages is substitiution. Meta-theoretic proofs us-
ing these semantics usually involve a large number of burdensome boilerplate
proofs about substitutions which distracts a human semanticist from essential
theorems when mechanising her proofs. This thesis develops a generic solution
to the boilerplate lemmas based on a novel specification language Knot for
programming languages and a code generator Needle that produces boiler-
plate code. We summarize and discuss the contributions.

Specification Language

Knot allows the specification of abstract syntax, with explicit specifications
of binding, and of semantical relations between syntax terms. Relations are
defined using arbitrary expressions built from a language’s abstract syntax.
Knot employs a novel type system that checks that all expressions, including
substitutions that may appear in them, are always well-scoped.

204 CHAPTER 10. CONCLUSION

Free Monadic Structure A central contribution of this thesis is the iden-
tification of a large class of syntaxes for which boilerplate is completely gener-
ically derivable: syntactic sorts that have a free monad-like structure. For re-
lations this translates to context parametricity of regular (non-variable) rules.

Principled Elaboration Needle produces specialized definitions for a given
Knot specification in the Coq proof assistant and produces code for boiler-
plate functions and boilerplate lemmas. We employ a principled approach to
elaboration of boilerplate code that gives us confidence in the correctness of
our code generator: we have developed and formally verified elaborations in
the Coq proof assistant using our datatype-generic implementation Loom of
Knot.

Case Study Our case study compares our generic approach against fully
manual mechanizations of type safety proofs of 10 lambda calculi. It shows
substantial savings in the mechanization for all 10 calculi with the largest
savings being about 74% reduction in code size for System F. This case study
indicates that replacing manual variable binding boilerplate by reusable generic
solutions is indeed an effective means of reducing the mechanization effort.

10.3 Future Work

This section presents possible directions for further research. We group the
ideas around the two parts of the thesis and also discuss the combination of
the two parts.

10.3.1 Modularity

We have achieved modular reuse of structurally recursive functions and struc-
tural induction proofs. This is a crucial first step towards reducing mech-
anization effort using the modularity methodology. However, the focus was
on feasibility. Further research is necessary to make the approach more con-
venient and practical. Furthermore we targeted a specific class of languages
(simply-typed and effectful lambda calculi), specific semantics ((monadic) de-
notational semantics) and specific meta-theoretic properties (type safety). Of
course the scope can be extended in either of these directions. We discuss the
most promising ideas for increasing the convenience and scope below.

10.3. FUTURE WORK 205

Convenience

Our case study contains a substantial amount of bookkeeping of the relation-
ship of final and intermediate compositions of datatypes, relations, algebras
and proof algebras and similarly between the final and intermediate compo-
sitions of effects for our monadic denotational semantics. Most of this is of
course boilerplate code that should be taken care of automatically.

Immediate and easy is to provide better specialized proof automation, for
instance for type class derivations and algebra dispatch proof steps. Further-
more, a lot of the repetitive abstractions over super functors and algebras
can be dealt using with available modularity features in proof assistants like
modular, module functors and canonical substructures.

Ultimately, the support for modular induction proofs can be built into
proof assistants to make this method practical on a larger scale. Concepts like
proof algebras presented in this thesis can be turned into first-class primitives
of the proof-assistant’s language. The generic universe implementation of the
first part can be used as a basis for an elaboration into a core calculus.

Scope

As previously discussed, our case studies covered type safety proofs for simply-
typed lambda calculi with a (monadic) denotational semantics. We discuss
different possible extensions.

An obvious extension would be to investigate the modularizability and fea-
ture interaction of richer language, be it with more expressive type systems,
e.g. involving qualified types, polymorphism, dependent types or sub-typing,
with more complex language features like datatypes or modules, or with a
different principal programming paradigm like object-oriented or logical pro-
gramming language calculi.

Another extension of our work, is to modularize other meta-theoretic proofs
than type safety. As laid out in the introduction of the thesis, an important
direction is verified compilation of programs. This can be combined with the
modularity methodology: write compilers that are modular in the source – or
even source and target language – and modularly verify semantically correct
compilation.

Other interesting proofs are logical relation-based proofs of type safety,
strong normalization, parametricity or full-abstraction. Logical relations are
defined by structural recursion on the type structure of languages and should
therefore be easy to modularize. However, feature interactions in the proofs

206 CHAPTER 10. CONCLUSION

still depend on the language features and it remains to be seen how easy it is
to modularize the interactions.

Semantics In our case studies we modularized type safety proofs and re-
duced non-modular feature interaction between effectful features using a monadic
denotational semantics. Monads are, however, not the only approach to model
side-effects and it would be interesting to see how modularizable alternative
approaches are. Since our monadic typing rules with explicit continuations are
reminiscent of algebraic effects and handlers [Bauer and Pretnar, 2015; Plotkin
and Pretnar, 2009; Kammar et al., 2012], this is one particularly promising al-
ternative to model effects. Furthermore, since algebraic effect handlers have
better composability properties than monads, they potentially allow further
reduction of feature interaction.

10.3.2 Genericity

Scope

There are multiple possibilities to grow the Knot specification language to
handle more object languages. For instance, we can extend Knot with sup-
port for programming and let the user write functions. These functions could
then also be used in the definition of relations by extending the expression
language accordingly. Additionally, we can import more concepts like GADTs
and derive boilerplate for intrinsically well-typed syntax and include dependent
types in the expression language.

Furthermore, we can integrate more variable binding like concepts into
Knot, for instance, first-class substitutions. This will also require us to im-
prove Knot scope-checking type system.

The Needle code generator can be scaled to include the above extensions.
However, Needle can also be scaled independently. Currently, the code is
geared towards type safety proofs, but other meta-theoretic proofs may require
different boilerplate that could be generated by Needle. Furthermore, Knot
itself is independent of a particular representation. Hence, we can imagine gen-
erating boilerplate for different representations like a nominal, locally-named
or locally-nameless representation.

Mathematical Foundations

Last but not least, it would be interesting to explore the mathematical foun-
dations that underly Knot. Categorical models exist for syntax with variable

10.3. FUTURE WORK 207

binding, but Knot’s features exceed what can be described in these models.
For instance, the usual limitation is that only one namespace is assumed.

A promising area is the modelling of well-scoped terms as a generalization of
relative monads. This is all the more interesting, since there is already research
available that models semantic relations as modules over relative monads.

208 CHAPTER 10. CONCLUSION

Appendices

209

Appendix A
Needle & Knot

A.1 Free Monadic Well-Scoped Terms

The datatype FreeStx in Figure A.1 shows the generic construction of free
monadic well-scoped terms from a base functor. Notice that the representation
of variables is not fixed to be Fin but turned into a parameter for uniformity
with FreeSet .

One of the problems is how to represent morphisms between two families
v w :: Nat → ∗ when functorially mapping f v d → f w d . In general, we
cannot lift a function of type v d1 → w d2 to a function of type v (S d1) →
w (S d2). We side-step this issue by abstracting away over the representation
m of such morphisms and require an interpretation function ∀d1 d2.m d1 d2 →
v d1 → w d2 [Keuchel, 2016].

Simultaneous substitutions, i.e. mapping variables to terms, is generically
defined in Figure A.2.

211

212 APPENDIX A. NEEDLE & KNOT

data FreeStx (f :: (Nat → ∗)→ (Nat → ∗)) v d where
ReturnStx :: v d → FreeStx f v d
StepStx :: f (FreeStx f v) d → FreeStx f v d

class FunctorStx (f :: (Nat → ∗)→ (Nat → ∗)) where
fmapStx :: ∀v :: Nat → ∗ (w :: Nat → ∗) (m :: Nat → Nat → ∗).

(∀d1 d2.m d1 d2 → m (S d1) (S d2))→
(∀d1 d2.m d1 d2 → v d1 → w d2)→
∀d1 d2.
m d1 d2 → f v d1 → f w d2

class MonadStx (f :: (Nat → ∗)→ (Nat → ∗)) where
returnStx :: v d → f v d
bind :: ∀v :: Nat → ∗ (w :: Nat → ∗) (m :: Nat → Nat → ∗).

(∀d1 d2.m d1 d2 → m (S d1) (S d2))→
(∀d1 d2.m d1 d2 → v d1 → f w d2)→
∀d1 d2.
f v d1 → m d1 d2 → f w d2

instance FunctorStx f ⇒ MonadStx (FreeStx f) where
returnStx = ReturnStx

bind up int t f = case t of
ReturnStx x → int f x
StepStx x → StepStx (fmapStx up (flip (bind up int)) f x)

Figure A.1: Free Monads for Well-Scoped Terms

newtype Sub (f :: (Nat → ∗)→ (Nat → ∗)) d1 d2 where
Sub :: {fromSub :: Fin d1 → f Fin d2} → Sub f d1 d2

upSub :: MonadStx f ⇒ Sub f d1 d2 → Sub f (S d1) (S d2)
upSub (Sub m) = Sub $ λx → case x of

FZ → returnStx FZ
FS x → subst (m x) (returnStx ◦ FS)

subst :: MonadStx f ⇒ f Fin d1 → (Fin d1 → f Fin d2)→ f Fin d2

subst t = bind upSub fromSub t ◦ Sub

Figure A.2: Generic Simultaneous Substitution

A.1. FREE MONADIC WELL-SCOPED TERMS 213

data LamF (v :: Nat → ∗) (d :: Nat) where
AppF :: v d → v d → LamF v d
AbsF :: v (S d)→ LamF v d

instance FunctorStx LamF where
fmapStx up int f t = case t of

AppF t t → AppF (int f t) (int f t)
AbsF t → AbsF (int (up f) t)

type Lam ′ = FreeStx LamF Fin

substLam ′ :: Lam ′ d1 → (Fin d1 → Lam ′ d2)→ Lam ′ d2

substLam ′ = subst

Figure A.3: Free Monad Instantiation

214 APPENDIX A. NEEDLE & KNOT

A.2 Well-scoped Evaluation

Figure A.4 gives the full interpretation of well-scoping proof terms.

Lemma 17. The syntax-directed elaboration is correct, i.e.

L; bs ` sym : S (wn) |=ϑ (h0 `α n)

(ws) |=ϑ (h0 + J bst Kϑ `T u) P = (r : wn), (t : ws)

(symws P bs sym) |=ϑ (h0 + J bs Kϑ `S J bs | sym Kϑ)

Corollary 18 (Well-scoped evaluation).

L; bs ` sym : S h0 ` n : α h0 + J bst Kϑ ` u : T

h0 + J bs Kϑ ` J bs | sym Kϑ : S

A.2. WELL-SCOPED EVALUATION 215

(wn) |=ϑ (h `α n) (g : α) ∈ H
(hyp g α) |=ϑ (h0 `α ϑ g)

WnHyp

(zero α bs) |=ϑ (Sα(h0 + J bs Kϑ) `α 0)
WnZero

(wn) |=ϑ (h `α n)

(weaken wn bs) |=ϑ (h+ J bs Kϑ `α wkα n J bs Kϑ)
WnWeaken

(wn) |=ϑ (h+ J bs Kϑ `α wkα n J bs Kϑ)

(strengthen wn bs) |=ϑ (h `α n)
WnStrengthen

K : α→ S (ws) |=ϑ (h `S K n)

(varinv K ws) |=ϑ (h `α n)
WnInvVar

(ws) |=ϑ (h `S u)

([bs]sym : S) ∈ H
(hyp bs sym) |=ϑ (h0 + J bs Kϑ `S evalsym bs sym ϑ)

WsHyp

K : α→ S (wn) |=ϑ (h `α n)

(var K wn) |=ϑ (h `S K n)
WsVar

K : b : α→ [bs]t : T → S ϑ′ = t 7→ u
(wsi) |=ϑ (h+ J bsi Kϑ′ `Ti ui) (∀i)

(reg K ws) |=ϑ (h `S K u)
WsReg

K : b : α→ [bs]t : T → S ϑ′ = t 7→ u
(ws) |=ϑ (h `S K u)

(reginv K n ws) |=ϑ (h+ J bsi Kϑ′ `Ti ui)
WsRegInv

(ws) |=ϑ (h `S u)

(weaken ws bs) |=ϑ (h+ J bs Kϑ `S wk u J bs Kϑ)
WsWeaken

(ws) |=ϑ (h+ J bs Kϑ `S wk u J bs Kϑ)

(strengthen ws bs) |=ϑ (h `S u)
WsStrengthen

(ws1) |=ϑ (h `S1 u1) (ws2) |=ϑ (Sα h `S2 u2)

(subst ws1 ws2) |=ϑ (h `S2 suα 0 u1 u2)
WsSubst

Figure A.4: Well-scoping proof term interpretation

216 APPENDIX A. NEEDLE & KNOT

qt ::= qrf bs sym S | qsm qt | qtr qt qt
| qcn K qt | qhw bs |qhu |quw | quu

Figure A.5: Grammar of term equality witnesses

shsym : bs → sym → qt

shsym bs s = qrf bs s
shsym bs (K r) = qrf bs (K r)
shsym bs (K b) = qrf bs (K b)

shsym bs (K b sym) =

qcn K shsym (bs, bs ′) sym

where K : b′ : alpha → ([bs ′] t : T)→ S
shsym bs (weaken s bs ′) = qhh bs s bs ′

shsym bs (subst b sym s) = qhu bs sym s

Figure A.6: Shift commutation elaboration

A.3 Relation Shift Elaboration

The shifting lemma for relations require a proof that the global shifting com-
mutes with the local evaluation of expressions. Figure A.5 contains the lan-
guage of equality witnesses that we are using, Figure A.7 their interpreta-
tion, and Figure A.6 shows the elaboration function for the shift commutation
lemma.

The relation qt |=L,h0,c,ϑ (h ` u = v : S) interprets equality witnesses for
the purpose of proving commutation of symbolic evaluation with shifting only.
Hence only proof term formers relevant to this lemma are interpreted. The
cutoff c and the value environment ϑ are parameters to this relation.

Lemma 19 (Soundness).

eqt |=L,h0,c,ϑ (h ` u = v : S)

u = v

Lemma 20 (Elaboration correctness). The elaboration for the shift commu-

A.3. RELATION SHIFT ELABORATION 217

tation is correct.

L; bs ` sym : S eqt = shsym bs sym
h = J bs Kϑ u = sh (c+ h) J bs | sym Kϑ v = J bs | sym K(shL (c+h) ϑ)

eqt |=L,h0,c,ϑ (h0 + h ` u = v : S)

Corollary 21.

L; bs ` sym : S h = J bs Kϑ
sh (c+ h) J bs | sym Kϑ = J bs | sym K(shL c ϑ)

Lookup premise We still need to prove that the premises of rule r hold. A
lookup premise {x -> sym} for an environment clause α -> S gives rise to the
proof obligation

(n : J bs | sym ′ Kϑ) ∈ Γ

(sh c n : J bs | sym ′ KshL c ϑ) ∈ Γ

which we get from Corollary 21 and by proving

(n : u) ∈ Γ,∆ c = dom ∆

(sh c n : sh c u) ∈ Γ, v,∆

by induction over ∆.

Judgement premise A judgement premise rbs jmt sym gives rise to the
proof obligation

Γ, v,∆, J ε | rbs KshL c ϑ `R J brbsc | sym KshL c ϑ

which we get from the induction hypothesis

Γ, v,∆, sh c J ε | rbs Kϑ `R sh (c+ J brbsc Kϑ) J brbsc | sym Kϑ

and Corollary 21.

218 APPENDIX A. NEEDLE & KNOT

qt |=L,h,c,ϑ (h ` u = u : S)

h = J bs Kϑ u = sh c J bs | sym Kϑ = J bs | sym K(shL c ϑ)

(qrf bs sym S) |=L,h0,c,ϑ (h0 + h ` u = u : S)
Refl

qt |=L,h0,c,ϑ (h ` u = v : S)

(qsm qt) |=L,h0,c,ϑ (h ` v = u : S)
Sym

qt1 |=L,h0,c,ϑ (h ` u = v : S) qt2 |=L,h0,c,ϑ (h ` v = w : S)

(qtr qt1 qt2) |=L,h0,c,ϑ (h ` u = w : S)
Trans

K : ([bsb]b : α)→ ([bst]t : T)→ S
ϑ′ = t 7→ u

qt |=L,h0,c,ϑ (h+ J bst Kϑ′ ` u = v : T)

(qcn K qt) |=L,h0,c,ϑ (h ` K u = K v : S)
Reg

h′ = J bs Kϑ qt |=L,h0,c,ϑ (h ` u = v : S)

qcw qt bs |=L,h0,c,ϑ (h+ h′ ` wk u h′ = wk v h′ : S)
CongWeaken

h1 = J bs1 Kϑ h2 = J bs2 Kϑ
c1 = c+ h1

u1 = shα (sh∗ c1 h2) (sh∗ u h2) u2 = sh∗ (shα c1 u) h2

qhw bs1 bs2 |=L,h0,c,ϑ (h0 + h1 + h2 ` u1 = u2 : S)
ShiftWeaken

h = J bs Kϑ
u1 = shα c (suβ 0 u v)

u2 = suβ 0 (shα c u) (shα (c+ 1β) v)

qhu bs |=L,h0,c,ϑ (h0 + h ` u1 = u2 : S)
ShiftSubst

Figure A.7: Term equality semantics

Bibliography

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J. J. (1991a). Explicit sub-
stitutions. Journal of Functional Programming, 1(4):375–416. ↑155, ↑191

Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. (1991b). Dynamic Typ-
ing in a Statically Typed Language. ACM Trans. Program. Lang. Syst.,
13(2):237–268. ↑192

Abbott, M., Altenkirch, T., and Ghani, N. (2003). Categories of Containers.
In Gordon, A. D., editor, Foundations of Software Science and Computation
Structures, FoSSaCS’03, pages 23–38. Springer. ↑64, ↑76, ↑188

Abbott, M., Altenkirch, T., and Ghani, N. (2005). Containers: Constructing
strictly positive types. Theoretical Computer Science, 342(1):3–27. ↑34, ↑56

Abel, A. (2010). MiniAgda: Integrating Sized and Dependent Types. In Bove,
A., Komendantskaya, E., and Niqui, M., editors, Workshop on Partiality
And Recursion in Interative Theorem Provers (PAR 2010), Satellite Work-
shop of ITP’10 at FLoC 2010. ↑35

Allais, G., Atkey, R., Chapman, J., McBride, C., and McKinna, J. (2017a). A
type and scope safe universe of syntaxes with binding, their semantics and
proofs. ↑192

Allais, G., Chapman, J., McBride, C., and McKinna, J. (2017b). Type-and-
scope Safe Programs and Their Proofs. In Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, pages
195–207. ACM. ↑191, ↑192

219

220 BIBLIOGRAPHY

Altenkirch, T., Chapman, J., and Uustalu, T. (2010). Monads Need Not
Be Endofunctors. In Ong, L., editor, Foundations of Software Science and
Computational Structures, FoSSaCS’10, pages 297–311. Springer. ↑138, ↑141

Altenkirch, T., Chapman, J., and Uustalu, T. (2014). Relative Monads For-
malised. Journal of Formalized Reasoning, 7(1):1–43. ↑138, ↑141

Altenkirch, T. and McBride, C. (2003). Generic Programming within De-
pendently Typed Programming. In Gibbons, J. and Jeuring, J., editors,
Generic Programming: IFIP TC2 / WG2.1 Working Conference Program-
ming, pages 1–20. Springer. ↑55, ↑73

Altenkirch, T., McBride, C., and Morris, P. (2007). Generic Programming
with Dependent Types. In Backhouse, R., Gibbons, J., Hinze, R., and
Jeuring, J., editors, Datatype-Generic Programming, SSDGP’06, pages 209–
257. Springer. ↑55

Altenkirch, T. and Morris, P. (2009). Indexed Containers. In Logic In Com-
puter Science, LICS’09, pages 277–285. IEEE Computer Society Press. ↑61,
↑73, ↑188

Altenkirch, T. and Reus, B. (1999). Monadic Presentations of Lambda Terms
Using Generalized Inductive Types. In Flum, J. and Rodriguez-Artalejo,
M., editors, Computer Science Logic, volume 1683 of LNCS, pages 453–468.
Springer. ↑138, ↑141

Amin, N. and Tate, R. (2016). Java and Scala’s Type Systems are Unsound:
The Existential Crisis of Null Pointers. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2016, pages 838–848. ACM.
↑3, ↑14

Anand, A. and Rahli, V. (2014). A Generic Approach to Proofs about Sub-
stitution. In Proceedings of the 2014 International Workshop on Logical
Frameworks and Meta-languages: Theory and Practice, LFMTP ’14. ACM.
↑190

Ashley-Rollmann, M., Crary, K., and Harper, R. (2005). CMU’s solution to the
POPLmark challenge. https://www.seas.upenn.edu/~plclub/poplmark/
cmu.html. Accessed: 2018-01-10. ↑196

https://www.seas.upenn.edu/~plclub/poplmark/cmu.html
https://www.seas.upenn.edu/~plclub/poplmark/cmu.html

BIBLIOGRAPHY 221

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R., and Weirich, S.
(2008). Engineering Formal Metatheory. In Proceedings of the 35th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, pages 3–15. ACM. ↑121, ↑142

Aydemir, B. and Weirich, S. (2010). LNgen: Tool support for locally nameless
representations. Technical Report MS-CIS-10-24, University of Pennsylva-
nia, Department of Computer and Information Science. ↑157, ↑190, ↑193,
↑196

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C.,
Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., and Zdancewic, S.
(2005). Mechanized Metatheory for the Masses: The PoplMark Challenge.
In Hurd, J. and Melham, T., editors, Theorem Proving in Higher Order
Logics, pages 50–65. Springer. ↑23

Bahr, P. and Hvitved, T. (2011). Compositional Data Types. In Proceedings of
the Seventh ACM SIGPLAN Workshop on Generic Programming, WGP’11,
pages 83–94. ACM. ↑105

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in logic and the foundations of mathematics. North-
Holland. ↑117

Batory, D., Höfner, P., and Kim, J. (2011). Feature Interactions, Products,
and Composition. In Proceedings of the 10th ACM International Conference
on Generative Programming and Component Engineering, GPCE’11, pages
13–22. ACM. ↑91

Bauer, A. and Pretnar, M. (2015). Programming with Algebraic Effects
and Handlers. Journal of Logical and Algebraic Methods in Programming,
84(1):108–123. ↑104, ↑206

Benke, M., Dybjer, P., and Jansson, P. (2003). Universes for Generic Programs
and Proofs in Dependent Type Theory. Nordic J. of Computing, 10(4):265–
289. ↑46, ↑55, ↑58, ↑73, ↑76

Benton, N., Hur, C.-K., Kennedy, A. J., and McBride, C. (2012). Strongly
Typed Term Representations in Coq. Journal of Automated Reasoning,
49(2):141–159. ↑139, ↑188

Bird, R. S. and Paterson, R. (1999). De Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–91. ↑138

222 BIBLIOGRAPHY

Böhm, C. and Berarducci, A. (1985). Automatic synthesis of typed -programs
on term algebras. Theoretical Computer Science, 39(0):135–154. ↑35, ↑36,
↑43

Cameron, N., Drossopoulou, S., and Ernst, E. (2008). A Model for Java with
Wildcards. In Vitek, J., editor, ECOOP 2008 – Object-Oriented Program-
ming, pages 2–26. Springer. ↑3

Cenciarelli, P. and Moggi, E. (1993). A Syntactic Approach to Modularity
in Denotational Semantics. In Proceedings of the Conference on Category
Theory and Computer Science, CCTCS’93. ↑103

Chakravarty, M. M. T., Ditu, G. C., and Leshchinskiy, R. (2009). Instant
Generics: Fast and Easy. Unpublished Draft. ↑73

Chapman, J., Dagand, P.-É., McBride, C., and Morris, P. (2010). The Gentle
Art of Levitation. In Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP’10, pages 3–14. ACM. ↑75,
↑192

Charguéraud, A. (2007). http://www.chargueraud.org/softs/ln/. Ac-
cessed: 2015-07-02. ↑195

Cheney, J. and Hinze, R. (2002). A lightweight implementation of generics and
dynamics. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell,
Haskell’02, pages 90–104. ACM. ↑73

Chlipala, A. (2008). Parametric higher-order abstract syntax for mechanized
semantics. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’08, pages 143–156. ACM. ↑96,
↑190

Chlipala, A. (2013). Certified Programming with Dependent Types: A Prag-
matic Introduction to the Coq Proof Assistant. MIT Press. ↑34

Clément, D., Despeyroux, T., Kahn, G., and Despeyroux, J. (1986). A Simple
Applicative Language: Mini-ML. In Proceedings of the 1986 ACM Confer-
ence on LISP and Functional Programming, LFP’86, pages 13–27. ACM.
↑100

Coquand, T., Huet, G., et al. (1984). The Coq Proof Assistant. http://coq.
inria.fr. ↑14, ↑15

http://www.chargueraud.org/softs/ln/
http://coq.inria.fr
http://coq.inria.fr

BIBLIOGRAPHY 223

Curry, H. B. (1934). Functionality in Combinatory Logic. Proceedings of the
National Academy of Sciences, 20(11):584–590. ↑32

de Amorim, A. A. (2016). Binding Operators for Nominal Sets. Elec-
tronic Notes in Theoretical Computer Science, 325:3–27. The Thirty-second
Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXII). ↑193

de Bruijn, N. (1991). Telescopic mappings in typed lambda calculus. Infor-
mation and Computation. ↑122

de Bruijn, N. G. (1972). Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae, 75(5):381–392. ↑121, ↑127

Delaware, B., Oliveira, B. C. d. S., and Schrijvers, T. (2013). Meta-Theory
à la Carte. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’13, pages 207–
218. ACM. ↑24, ↑35, ↑41, ↑68, ↑75, ↑101, ↑202

Filinski, A. (1999). Representing Layered Monads. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’99, pages 175–188. ACM. ↑103

Filinski, A. (2007). On the relations between monadic semantics. Theoretical
Computer Science, 375(1):41–75. ↑104

Filinski, A. (2010). Monads in action. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’10, pages 483–494. ACM. ↑104

Frege, G. (1879). Begriffsschrift: Eine Der Arithmetische Nachgebildete
Formelsprache des Reinen Denkens. L. Nebert. ↑142

Gacek, A. (2008). The Abella Interactive Theorem Prover. In Armando, A.,
Baumgartner, P., and Dowek, G., editors, Automated Reasoning, volume
5195 of LNCS, pages 154–161. Springer. ↑14, ↑157, ↑190

Gambino, N. and Hyland, M. (2004). Wellfounded Trees and Dependent Poly-
nomial Functors. In Berardi, S., Coppo, M., and Damiani, F., editors, Types
for Proofs and Programs, volume 3085 of LNCS, pages 210–225. Springer.
↑64, ↑188

224 BIBLIOGRAPHY

Gentzen, G. (1935). Untersuchungen über das logische Schließen. I. Mathe-
matische Zeitschrift, 39(1):176–210. ↑7

Gibbons, J. and Hinze, R. (2011). Just Do It: Simple Monadic Equational
Reasoning. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’11, pages 2–14. ACM. ↑78, ↑82,
↑106

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press. ↑153

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. (1977).
Initial Algebra Semantics and Continuous Algebras. Journal of the ACM,
24(1):68–95. ↑37

Huet, G. (1997). The Zipper. Journal of Functional Programming, 7(5):549–
554. ↑184

Huffman, B. (2012). Formal Verification of Monad Transformers. In Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP’12, pages 15–16. ACM. ↑106

Hughes, J. (2000). Generalising monads to arrows. Science of Computer
Programming, 37(1):67–111. ↑105

Hutton, G. and Fulger, D. (2008). Reasoning About Effects: Seeing the Wood
Through the Trees. In Proceedings of the Ninth Symposium on Trends in
Functional Programming. ↑105

Igarashi, A., Pierce, B. C., and Wadler, P. (2001). Featherweight Java: A Min-
imal Core Calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(3):396–450. ↑3

Jansson, P. and Jeuring, J. (1997). PolyP – a polytypic programming language
extension. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL’97, pages 470–482. ACM.
↑63, ↑73, ↑76

Jaskelioff, M. (2011). Monatron: An Extensible Monad Transformer Library.
In Scholz, S.-B. and Chitil, O., editors, Implementation and Application of
Functional Languages, volume 5836 of Lecture Notes in Computer Science,
pages 233–248. Springer. ↑103

BIBLIOGRAPHY 225

Jaskelioff, M., Ghani, N., and Hutton, G. (2011). Modularity and Implementa-
tion of Mathematical Operational Semantics. In McBride, C. and Capretta,
V., editors, Proceedings of the Second Workshop on Mathematically Struc-
tured Functional Programming, MSFP’08, volume 229 of Electronic Notes
in Theoretical Computer Science, pages 75–95. ↑105

Jaskelioff, M. and Rypacek, O. (2012). An Investigation of the Laws of
Traversals. In Chapman, J. and Levy, P. B., editors, Proceedings of the
Fourth Workshop on Mathematically Structured Functional Programming,
MSFP’12, volume 76 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 40–49. Open Publishing Association. ↑64, ↑188

Jones, M. P. and Duponcheel, L. (1993). Composing monads. Research Report
YALEU/DCS/RR-1004, Yale University. ↑103

Kaiser, J., Schäfer, S., and Stark, K. (2018). Binder Aware Recursion over
Well-scoped De Bruijn Syntax. In Proceedings of the 7th ACM SIGPLAN In-
ternational Conference on Certified Programs and Proofs, CPP 2018, pages
293–306. ACM. ↑191

Kammar, O., Lindley, S., and Oury, N. (2012). Handlers in action. In The
1st ACM SIGPLAN Workshop on Higher-Order Programming with Effects,
HOPE ’12. ↑104, ↑206

Keuchel, S. (2016). Unidb. https://github.com/skeuchel/unidb-coq.
↑141, ↑191, ↑211

Keuchel, S. and Jeuring, J. T. (2012). Generic conversions of abstract syn-
tax representations. In Proceedings of the 8th ACM SIGPLAN workshop on
Generic programming, WGP ’12, pages 57–68. ACM. Copenhagen, Den-
mark, September 12, 2012. ↑122, ↑191

Keuchel, S. and Schrijvers, T. (2012). Modular monadic reasoning, a (co-)
routine. Unpublished. ↑106

Keuchel, S., Weirich, S., and Schrijvers, T. (2016). Needle & Knot: Binder
Boilerplate Tied Up. In Thiemann, P., editor, Proceedings of the 25th Euro-
pean Symposium on Programming, ESOP’16, volume 9632 of Lecture Notes
in Computer Science, pages 419–445. Springer. Eindhoven, The Nether-
lands, April 2–8, 2016. ↑145, ↑153, ↑163, ↑164, ↑196, ↑197

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical sys-
tems theory, 2(2):127–145. ↑157

https://github.com/skeuchel/unidb-coq

226 BIBLIOGRAPHY

Lämmel, R. and Jones, S. P. (2003). Scrap your boilerplate: a practical de-
sign pattern for generic programming. In Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages design and imple-
mentation, TLDI ’03, pages 26–37. ACM. ↑73

Lee, D. K., Crary, K., and Harper, R. (2007). Towards a Mechanized Metathe-
ory of Standard ML. POPL ’07, pages 173–184. ↑190

Lee, G., Oliveira, B. C. d. S., Cho, S., and Yi, K. (2012). GMeta: A Generic
Formal Metatheory Framework for First-Order Representations. In Seidl,
H., editor, Programming Languages and Systems, volume 7211 of Lecture
Notes in Computer Science, pages 436–455. Springer. ↑75, ↑190, ↑192, ↑196

Leroy, X. (2009). A Formally Verified Compiler Back-end. Journal of Auto-
mated Reasoning, 43(4):363. ↑15

Levy, P. B. (2006). Monads and adjunctions for global exceptions. Electronic
Notes in Theoretical Computer Science, 158:261–287. ↑104

Liang, S. and Hudak, P. (1996). Modular denotational semantics for compiler
construction. In Proceedings of the 6th European Symposium on Program-
ming Languages and Systems, ESOP ’96, pages 219–234. Springer-Verlag.
↑106

Liang, S., Hudak, P., and Jones, M. (1995). Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’95, pages 333–343.
ACM. ↑80, ↑103

Licata, D. R. and Harper, R. (2009). A universe of binding and computa-
tion. In Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, ICFP ’09, pages 123–134. ACM. ↑191

Löh, A., Clarke, D., and Jeuring, J. (2003). Dependency-style Generic Haskell.
In Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming, ICFP ’03, pages 141–152. ACM. ↑73

Löh, A. and Magalhães, J. P. (2011). Generic programming with indexed func-
tors. In Proceedings of the seventh ACM SIGPLAN workshop on Generic
programming, WGP ’11, pages 1–12. ACM. ↑73

Magalhães, J. P., Dijkstra, A., Jeuring, J., and Löh, A. (2010). A generic
deriving mechanism for haskell. In Proceedings of the third ACM Haskell
symposium on Haskell, Haskell ’10, pages 37–48. ACM. ↑73

BIBLIOGRAPHY 227

Magalhães, J. P. and Löh, A. (2012). A formal comparison of approaches to
datatype-generic programming. In Chapman, J. and Levy, P. B., editors,
Proceedings Fourth Workshop on Mathematically Structured Functional Pro-
gramming, Tallinn, Estonia, 25 March 2012, volume 76 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 50–67. Open Publishing
Association. ↑63, ↑74

Malcolm, G. (1990). Algebraic Data Types and Program Transformation. PhD
thesis, Rijksuniversiteit Groningen. ↑37

McBride, C. (2010). Ornamental algebras, algebraic ornaments. Journal of
Functional Programming. ↑47

Mcbride, C. and Paterson, R. (2008). Applicative programming with effects.
Journal of Functional Programming, 18(1):1–13. ↑105

Mendler, N. P. (1987). Recursive Types and Type Constraints in Second-Order
Lambda Calculus. In Proceedings of the Second Annual IEEE Symposium on
Logic in Computer Science, LICS’87, pages 30–36. IEEE Computer Society
Press. ↑38

Mendler, N. P. (1991). Inductive types and type constraints in the second-
order lambda calculus. Annals of Pure and Applied Logic, 51(1):159–172.
↑38

Mitchell, N. and Runciman, C. (2007). Uniform boilerplate and list process-
ing. In Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
Haskell ’07, pages 49–60. ACM. ↑73

Moggi, E. (1989). An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Edinburgh University, Department of Computer
Science. ↑103

Moggi, E., Bell, G., and Jay, C. (1999). Monads, shapely functors and
traversals. Electronic Notes in Theoretical Computer Science, 29:187–208.
{CTCS} ’99. ↑64, ↑188

Morris, P. (2007). Constructing universes for generic programming. PhD
thesis, The University of Nottingham. ↑46, ↑76

Morris, P., Altenkirch, T., and Ghani, N. (2007). Constructing strictly positive
families. In Proceedings of the thirteenth Australasian symposium on Theory
of computing - Volume 65, CATS’07, pages 111–121. Australian Computer
Society, Inc. ↑74

228 BIBLIOGRAPHY

Morris, P., Altenkirch, T., and McBride, C. (2006). Exploring the Regular
Tree Types. In Fillitre, J.-C., Paulin-Mohring, C., and Werner, B., editors,
Types for Proofs and Programs, volume 3839 of Lecture Notes in Computer
Science, pages 252–267. Springer Berlin Heidelberg. ↑63, ↑73, ↑192

Mosses, P. D. (2004). Modular structural operational semantics. The Journal
of Logic and Algebraic Programming, 6061(0):195–228. ↑105

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer. ↑14

Norell, U. (2007). Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology and
Göteborg University. ↑14

Oliveira, B. C., Hinze, R., and Löh, A. (2006). Extensible and modular generics
for the masses. Trends in Functional Programming, 7:199–216. ↑73

Oliveira, B. C. d. S., Schrijvers, T., and Cook, W. R. (2010). EffectiveAd-
vice: disciplined advice with explicit effects. In Proceedings of the 9th Inter-
national Conference on Aspect-Oriented Software Development, AOSD ’10,
pages 109–120. ACM. ↑78, ↑81, ↑82, ↑106

Pfenning, F. and Elliott, C. (1988). Higher-order Abstract Syntax. In Pro-
ceedings of the ACM SIGPLAN 1988 Conference on Programming Language
Design and Implementation, PLDI ’88, pages 199–208. ACM. ↑121

Pfenning, F. and Paulin-Mohring, C. (1990). Inductively defined types in the
calculus of constructions. In Mathematical Foundations of Programming
Semantics, volume 442 of Lecture Notes in Computer Science, pages 209–
228. Springer-Verlag. ↑37

Pfenning, F. and Schürmann, C. (1999). Twelf – A Meta-Logical Framework
for Deductive Systems. In CADE-16. Springer. ↑14, ↑157, ↑190

Pientka, B. and Dunfield, J. (2008). Programming with Proofs and Explicit
Contexts. PPDP ’08, pages 163–173. ACM. ↑190

Pientka, B. and Dunfield, J. (2010). Beluga: A Framework for Programming
and Reasoning with Deductive Systems. In IJCAR. Springer. ↑14, ↑157,
↑190

Pierce, B. C. (2002). Types and Programming Languages. MIT press. ↑3, ↑52,
↑86

BIBLIOGRAPHY 229

Pitts, A. M. (2003). Nominal logic, A First Order Theory of Names and
Binding. Information and Computation, 186. ↑121, ↑192

Pitts, A. M., Matthiesen, J., and Derikx, J. (2015). A Dependent Type The-
ory with Abstractable Names. Electronic Notes in Theoretical Computer
Science, 312:19–50. Ninth Workshop on Logical and Semantic Frameworks,
with Applications (LSFA 2014). ↑142

Plotkin, G. and Pretnar, M. (2009). Handlers of algebraic effects. In Program-
ming Languages and Systems: 18th European Symposium on Programming,
ESOP 2009, volume 5502 of Lecture Notes in Computer Science, pages 80–
94. Springer. ↑104, ↑206

Plotkin, G. D. and Power, J. (2002). Notions of computation determine mon-
ads. In Proceedings of the 5th International Conference on Foundations of
Software Science and Computation Structures, FoSSaCS ’02, pages 342–356.
Springer-Verlag. ↑104

Pollack, R., Sato, M., and Ricciotti, W. (2012). A Canonical Locally Named
Representation of Binding. Journal of Automated Reasoning, 49(2):185–207.
↑121

Polonowski, E. (2013). Automatically Generated Infrastructure for de Bruijn
Syntaxes. In ITP’13, volume 7998 of LNCS. Springer. ↑190, ↑193

Pottier, F. (2013). dblib. https://github.com/fpottier/dblib. Accessed:
2016-07-04. ↑190, ↑191

Pouillard, N. and Pottier, F. (2010). A Fresh Look at Programming with
Names and Binders. ICFP’10, pages 217–228. ACM. ↑154

Project, T. T. (2015). The Twelf Wiki. http://twelf.org/wiki. Accessed:
2015-10-14. ↑190

Reynolds, J. C. (1983). Types, Abstraction and Parametric Polymorphism. In
IFIP Congress, pages 513–523. ↑106

Sabry, A. and Felleisen, M. (1993). Reasoning about programs in continuation-
passing style. LSC, 6(3-4). ↑141

Sato, M. and Pollack, R. (2010). External and internal syntax of the λ-calculus.
JSC, 45(5):598 – 616. ↑121, ↑142

https://github.com/fpottier/dblib
http://twelf.org/wiki

230 BIBLIOGRAPHY

Schäfer, S., Smolka, G., and Tebbi, T. (2015a). Completeness and Decidability
of De Bruijn Substitution Algebra in Coq. In CPP’15. ACM. ↑141, ↑191

Schäfer, S., Tebbi, T., and Smolka, G. (2015b). Autosubst: Reasoning with
de Bruijn Terms and Parallel Substitutions. In Zhang, X. and Urban, C.,
editors, ITP’15, LNAI. Springer. ↑190, ↑191, ↑196

Schrijvers, T. and Oliveira, B. C. d. S. (2010). The Monad Zipper. Report
CW 595, Dept. of Computer Science, K.U.Leuven. ↑105

Schwaab, C. and Siek, J. G. (2013). Modular type-safety proofs in Agda. In
Proceedings of the 7th workshop on Programming languages meets program
verification, PLPV’13, pages 3–12. ACM. ↑54, ↑73, ↑74

Sewell, P., Nardelli, F. Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., and
Strnǐsa, R. (2010). Ott: Effective tool support for the working semanticist.
Journal of Functional Programming, 20. ↑157, ↑158

Shinwell, M. R., Pitts, A. M., and Gabbay, M. J. (2003). FreshML: Pro-
gramming with Binders Made Simple. In Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’03,
pages 263–274. ACM. ↑158

Stansifer, P. and Wand, M. (2014). Romeo: A System for More Flexible
Binding-safe Programming. In ICFP’14, pages 53–65. ACM. ↑154, ↑157,
↑158

Steele, Jr., G. L. (1994). Building interpreters by composing monads. In
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’94, pages 472–492. ACM. ↑103

Stump, A. and Tan, L.-Y. (2005). The Algebra of Equality Proofs. In Interna-
tional Conference on Rewriting Techniques and Applications, pages 469–483.
Springer. ↑189

Swierstra, W. (2008). Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436. ↑27, ↑29, ↑75, ↑105

Tate, R. (2017). https://dev.to/rosstate/

java-is-unsound-the-industry-perspective. Accessed: 2018-05-
15. ↑3

https://dev.to/rosstate/java-is-unsound-the-industry-perspective
https://dev.to/rosstate/java-is-unsound-the-industry-perspective

BIBLIOGRAPHY 231

Urban, C., Berghofer, S., and Norrish, M. (2007). Barendregt’s Variable Con-
vention in Rule Inductions. In Pfenning, F., editor, Automated Deduction –
CADE-21, pages 35–50. Springer. ↑121

Urban, C. and Tasson, C. (2005). Nominal Techniques in Isabelle/HOL. In
CADE-20, volume 3632 of LNCS. Springer. ↑158, ↑190, ↑192

Uustalu, T. and Vene, V. (2000). Coding recursion à la mendler. In Proceedings
2nd Workshop on Generic Programming, WGP ’00, pages 69–85. ↑38

Van Noort, T., Yakushev, A. R., Holdermans, S., Jeuring, J., Heeren, B.,
and Magalhães, J. P. (2010). A lightweight approach to datatype-generic
rewriting. Journal of Functional Programming, 20(3-4):375–413. ↑17, ↑63

Verbruggen, W., de Vries, E., and Hughes, A. (2008). Polytypic program-
ming in Coq. In Proceedings of the ACM SIGPLAN workshop on Generic
programming, WGP ’08, pages 49–60. ACM. ↑73

Voigtländer, J. (2009). Free theorems involving type constructor classes: func-
tional pearl. In Proceedings of the 14th ACM SIGPLAN international con-
ference on Functional programming, ICFP ’09, pages 173–184. ACM. ↑106

Vouillon, J. (2012). A Solution to the PoplMark Challenge Based on de Bruijn
Indices. Journal of Automated Reasoning, 49(3). ↑156, ↑195

Wadler, P. (1989). Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer architecture,
FPCA ’89, pages 347–359. ACM. ↑106

Wadler, P. (1992). Monads for functional programming. In Proceedings of the
Marktoberdorf Summer School on Program Design Calculi. ↑103

Wadler, P. (1998). The Expression Problem. http://homepages.inf.ed.ac.
uk/wadler/papers/expression/expression.txt. Accessed: 2017-05-10.
↑23, ↑26

Wadler, P. (2015). Propositions as types. Commun. ACM, 58(12):75–84. ↑33

Watkins, K., Cervesato, I., Pfenning, F., and Walker, D. (2004). A concurrent
logical framework: The propositional fragment. In TYPES, volume 3085 of
LNCS. Springer. ↑141

Weirich, S. (2006). RepLib: A Library for Derivable Type Classes. In Proceed-
ings of the 2006 ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages
1–12. ACM. ↑192

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

232 BIBLIOGRAPHY

Wright, A. and Felleisen, M. (1994). A Syntactic Approach to Type Soundness.
Information and Computation, 115(1). ↑112

Yakushev, A. R., Holdermans, S., Löh, A., and Jeuring, J. (2009). Generic
programming with fixed points for mutually recursive datatypes. In Pro-
ceedings of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP ’09, pages 233–244. ACM. ↑63, ↑73

Yang, X., Chen, Y., Eide, E., and Regehr, J. (2011). Finding and Under-
standing Bugs in C Compilers. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’11, pages 283–294. ACM. ↑15

Zhao, J., Zhang, Q., and Zdancewic, S. (2010). Relational Parametricity for
a Polymorphic Linear Lambda Calculus. In Ueda, K., editor, Program-
ming Languages and Systems: 8th Asian Symposium, APLAS 2010, Shang-
hai, China, November 28 - December 1, 2010. Proceedings, pages 344–359.
Springer Berlin Heidelberg. ↑15

	Acknowledgements
	Summary
	Samenvatting
	Contents
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Programming Language Specifications
	Syntax
	Semantics
	Typing

	Meta-Theoretical Analysis
	Mechanization
	Reusability
	Overview

	I Modularity
	Background
	Expression Problem
	Datatypes à la Carte
	Fixed-points
	Automated Injections
	Semantic Functions

	Reasoning à la Carte
	Propositions as Types
	Induction Principles
	Strict Positivity

	Church Encodings
	Encoding Algebraic Datatypes
	Reasoning with Church Encodings

	Mendler Folds

	Modular Predicative Universes
	Motivation
	Declarative Specification
	Fixed-Points
	Fold Operator

	Declarative Specification of Induction
	All-Modalities
	Proof Algebras
	Induction Operator

	Modularity Frontend
	Non-Modularity of SPF
	Example: Depth vs. Size

	Containers
	Generic Universes
	Container Universe
	Coproducts
	Fixpoints and Folds
	Induction
	Container Class
	Extensible Inductive Relations

	Polynomial Functors
	Universe of Polynomial Functors
	Universe Embedding
	Generic Equality

	Case Study
	Related and Future Work
	Scientific Output

	Modular Monadic Effects
	The 1!3MT Monad Library
	Monad Classes
	Algebraic Laws
	Monad Transformers
	Discussion

	Modular Monadic Semantics
	Example: References
	Effect-Dependent Theorems

	Monadic Type Safety
	Three-Step Approach
	Typing of Monadic Computations
	Monolithic Soundness for a Pure Feature
	Modular Sublemmas
	Reusable Bind Sublemma

	Effect and Language Theorems
	Pure Languages
	Errors
	References
	Lambda
	Modular Effect Compositions
	State and Exceptions
	State, Reader and Exceptions

	Case Study
	Related Work
	Functional Models for Modular Side Effects
	Modular Effectful Semantics
	Effects and Reasoning
	Mechanization of Monad Transformers

	Scientific Output

	II Genericity
	Background
	Semi-formal Development
	Syntax
	Semantics
	Meta-Theory

	Formalization and Mechanisation
	Syntax Representation
	Well-scopedness
	Substitutions
	Semantic Representation
	Meta-Theory
	Mechanisation

	Our Approach
	Scientific Output

	The Knot Specification Language
	Knot by Example
	Abstract Syntax Specifications
	Inductive Relation Specifications

	Key Design Choices
	Free Monadic Presentations
	Local and Global Variables
	Context Parametricity

	Knot Syntax
	Well-Formed Knot Specifications

	Symbolic Expressions
	Expression Well-formedness

	Inductive Relations
	Relation Well-formedness

	Discussion
	Related Work
	Contributions

	Semantics
	Syntax terms
	Raw Terms
	Binding Specification Evaluation
	Well-scopedness

	Expression Semantics
	Shifting and Weakening
	Substitution
	Evaluation

	Relation Semantics
	Environment lookups
	Rule Binding Specifications
	Derivations

	Elaboration
	Interaction Lemmas
	Overview
	Semi-formal Shift Commutation
	Term Equality Witnesses
	Proof Elaboration

	Well-Scopedness
	Witnesses of Well-Scoping
	Proof Elaboration

	Shifting and Substitution
	Shifting
	Substitution

	The Loom Generic Library
	The Needle Code Generator
	Related Work
	Contributions

	Evaluation
	Comparison of Approaches
	Manual vs. Knot Mechanizations

	Conclusion
	Conclusion
	Research Question
	Summary
	Modularity
	Genericity

	Future Work
	Modularity
	Genericity

	Appendices
	Needle & Knot
	Free Monadic Well-Scoped Terms
	Well-scoped Evaluation
	Relation Shift Elaboration

	Bibliography

