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Abstract
In this paper we present a datatype-generic approach to syntax
with variable binding. A universe specifies the binding and scop-
ing structure of object languages, including binders that bind mul-
tiple variables as well as sequential and recursive scoping. Two
interpretations of the universe are given: one based on paramet-
ric higher-order abstract syntax and one on well-typed de Bruijn
indices. The former provides convenient interfaces to embedded
domain-specific languages, but is awkward to analyse and manip-
ulate directly, while the latter is a convenient representation in im-
plementations, but is unusable as a surface language. We show how
to generically convert from the parametric HOAS interpretation to
the de Bruijn interpretation thereby taking the pain from DSL de-
veloper to write the conversion themselves.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reusable libraries

General Terms Languages

Keywords datatype-generic programming, fixed points, abstract
syntax

1. Introduction
Datatype-generic techniques allow the definition of functions that
can be applied to an entire class of datatypes. A generic function
only depends on the structure of datatypes for which it is defined.

In order to define a generic function, we must thus provide
access to the underlying structure of datatypes.

A good choice of representation is needed to include the rele-
vant structure and to make it easy to define generic functions. An
elegant way available in a dependently-typed setting is the use of
a universe construction to model the structure of datatypes. A uni-
verse is a collection of types given by a set of codes and an interpre-
tation function that maps codes to proper types. The code reflects
the structure of its type, and thus a generic function can learn about
the structure of a type by inspecting its code.

Variable binding is a domain that exhibits a lot of generic func-
tionality. Datatype-generic treatment of abstract syntax has already
been addressed in the literature [4, 7, 8, 12] using different ap-
proaches to abstract syntax with different trade-offs in terms of el-
egance, usability and expressivity.
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Well-typed de Bruijn indices and higher-order abstract syntax
(HOAS) are two approaches that statically guarantee that functions
defined over these representation respect scoping. However, both
come with their own trade-offs.

Well-typed de Bruijn indices provide an easy and elegant way
to adequately encode the scoping and typing structure of simply-
typed languages, but are virtually impossible to use by humans.

The HOAS approach uses the meta-language’s bindings to
model binding of a language, which gives the user a pleasant inter-
face to write terms directly, but does not allow direct definitions of
many desired operations.

Especially in the field of embedded domain-specific languages
(EDSLs), we would like to combine the advantages of both. In
fact, people do use both approaches simultaneously and convert
between them when necessary [2, 3, 5]. However, to the best of
our knowledge, a datatype-generic treatment of such a conversion
has not been addressed before.

In this paper, we show a particular approach that captures the
scoping structure of abstract syntax types with variable binding.
Specifically, our contributions are the following:

• We develop a universe for generic programming with syntax
types that is very expressive, in the sense that it allows the spec-
ification of rich binding structures such as patterns, declarations
including sequential and recursive scoping, and in the sense that
it captures the scoping and typing structure of simply-typed lan-
guages.
• We show how to extend the MultiRec [13] approach to incorpo-

rate scoping. This makes it possible to define an interpretation
of the universe in terms of well-typed de Bruijn representations.
• We give an interpretation of the universe using the parametric

higher-order abstract syntax (PHOAS) variant proposed by [1]
and show how to construct a novel generic conversion function
from PHOAS to de Bruijn representations.

The rest of this paper is organized as follows: we introduce the
well-scoped de Bruijn approach to variable binding in Section 2,
by demonstrating how to encode a few representative languages. In
Section 3 we develop a first version of our universe for mutually re-
cursive families of datatypes representing syntax with unary bind-
ing. Section 4 introduces the PHOAS approach, and Section 5 gives
an alternative interpretation of the universe in terms of PHOAS. In
Section 6 we revisit the well-scoped de Bruijn approach and show
how to express rich binding forms and recursive as well as sequen-
tial scoping. An enriched universe, which supports these features,
and a new generic conversion function are developed in Section 7.
We conclude in Section 8, pointing to related research and giving
possible directions for future research.

We perform our development in the dependently-typed pro-
gramming language Agda [9] and assume the reader is familiar with
Agda. Norell [10] provides and introduction, including a universe
for generic programming.



2. Well-scoped de Bruijn representations
This section introduces essential elements for well-scoped de
Bruijn representations of syntax with binding. We restrict ourselves
to binding forms that bind a single variable. Later we will introduce
other forms of scoping and binding forms that are found in many
programming languages.

Well-scopedness is a property we can enforce in the definition
of datatypes representing syntax. The general idea is to form an
inductive family of datatypes where the index set determines the
context and to restrict variable occurrences to variables from the
context given by the index of the family. Throughout this paper we
will use the type Ctx defined below as this index set.

The syntax of a language may involve terms of different syn-
tactic sorts, so we define Ctx to be a list of Sort for a given type
Sort that represents all syntactic sorts with variables of a specific
language.

module Context pSort : Setq where
infixl 5 _�_
data Ctx : Set where
ε : Ctx
_�_ : pΓ : Ctxq ps : Sortq Ñ Ctx

The type of a variable is then a membership predicate on a
context, i.e. a variable of sort ps : Sortq in a context pΓ : Ctxq is
a proof that s is contained in the list Γ.

infix 4 _Q_
data _Q_ : pΓ : Ctxq Ñ Sort Ñ Set where

vz : tΓ : Ctxu ts : Sortu Ñ Γ � s Q s
vs : tΓ : Ctxu ts t : Sortu Ñ Γ Q s Ñ Γ � t Q s

2.1 Single-sorted syntax
We define a well-scoped de Bruijn representation for the untyped
λ-terms. Terms are the only syntactic sort, so we can use a singleton
type for Sort. Note that in the case of a λ-abstraction exactly one
variable is bound, so the context has to be extended by appending
a new element.

data Sort : Set where
term : Sort

open Context Sort

data Lam pΓ : Ctxq : Set where
varDB : Γ Q term Ñ Lam Γ

appDB : Lam Γ Ñ Lam Γ Ñ Lam Γ

absDB : Lam pΓ � termq Ñ Lam Γ

2.2 Multi-sorted syntax
Object languages may deal with multiple sorts of variables. Sys-
tem F for example has two two syntactic sorts: terms and types. We
use a two-valued datatype to represent these sorts.

data Sort : Set where
type : Sort
term : Sort

open Context Sort

data Type pΓ : Ctxq : Set where
var : Γ Q type Ñ Type Γ

arr : Type Γ Ñ Type Γ Ñ Type Γ

for : Type pΓ � typeq Ñ Type Γ

data Term pΓ : Ctxq : Set where
varDB : Γ Q term Ñ Term Γ

appDB : Term Γ Ñ Term Γ Ñ Term Γ

absDB : Type Γ Ñ Term pΓ � termq Ñ Term Γ

τappDB : Term Γ Ñ Type Γ Ñ Term Γ

τabsDB : Term pΓ � typeq Ñ Term Γ

In the case of type binders τabs and for we extend the context with
the sort value representing types and in the case of λ-abstraction
we extend the context with the sort value representing terms. In
System F, the constructor for λ-abstraction has a type annotation,
so this is a family of two syntax types that are however not mu-
tually recursive. Note that this representation only guarantees that
terms are well-scoped, but it does not guarantee that they obey the
System F typing rules.

3. Universes of de Bruijn syntax types
A generic function depends on the structure of the datatype on
which it is used. To define a generic function we need a uniform
view and a uniform representation of the structure of datatypes. In
a dependently-typed setting, we obtain a uniform representation by
using a universe construction. A universe is a set of codes together
with an interpretation that maps codes to types. To define a generic
function, the structure it depends on needs to be reflected in the
codes.

The generic function then inspects the code to learn about the
structure of a type and can apply its generic functionality.

In this section we develop a universe for generic programming
with de Bruijn types, i.e. types indexed by a context:

DeBruijn : Set1
DeBruijn � Ctx Ñ Set

A regular datatype is a datatype representable as a fixed point of a
polynomial functor of type Set Ñ Set. In Section 3.1 we establish
a generic view of single de Bruijn types related to regular datatypes,
i.e. de Bruijn types representable as fixed points of functors of
type DeBruijn Ñ DeBruijn. In Section 3.2 we extend our view
to families of possibly mutually recursive de Bruijn types and in
Section 3.3 define a universe that enables us to program generically.

3.1 Fixed points for regular de Bruijn types
Datatypes whose structure can be represented by polynomial func-
tors – consisting of sums, products and constants – are often called
regular datatypes. In Haskell or ML-like datatype definitions these
are directly recursive datatypes. We now look at corresponding
well-typed de Bruijn representations of type Ctx Ñ Set that are
directly recursive, and represent their structure by polynomial func-
tors extended with a notion of binding.

We can represent the datatype for the first representation of the
untype λ-calculus of Section 2.1 by its pattern functor where we
abstract from the recursive positions using a new parameter Φ. It
is straigthforward to verify that LamF indeed is a functor between
syntax types by defining a functorial mapping map-lamf.

data LamF pΦ : DeBruijnq pΓ : Ctxq : Set where
varDB : Γ Q term Ñ LamF Φ Γ

appDB : Φ Γ Ñ Φ Γ Ñ LamF Φ Γ

absDB : Φ pΓ � termq Ñ LamF Φ Γ

map-lamf : @ tΦ Ψu Ñ pΦù Ψq Ñ LamF Φù LamF Ψ

We use _ù_ to denote morphisms between syntax types, i.e.
functions that are natural in the context.

_ù_ : DeBruijn Ñ DeBruijn Ñ Set
Φù Ψ � tΓ : Ctxu Ñ Φ Γ Ñ Ψ Γ

Furthermore, we define conversion functions

to : LamF Lamù Lam
to pvarDB xq � varDB x
to pappDB s tq � appDB s t
to pabsDB sq � absDB s
from : Lamù LamF Lam
from pvarDB xq � varDB x
from pappDB s tq � appDB s t
from pabsDB sq � absDB s



which trivially form inverses of each other. It follows that Lam and
LamF Lam are isomorphic and Lam forms a fixed point of LamF.
In the rest of this paper we call types like LamF Lam a one-level
unfolding of a fixed point.

3.2 Fixed points for inductive families of syntax types
Types representing syntax with binding are often large families
of mutually recursive datatypes. In this section we extend the
generic view from Section 3.1 to families. Our approach is based
on MultiRec [13]. MultiRec views families of datatypes as fixed
points of indexed functors of type pI Ñ Setq Ñ pI Ñ Setq for
some index set I specific to the family. In a similar vein, we view
families of de Bruijn types as fixed points of indexed functors of
type pI Ñ DeBruijnq Ñ pI Ñ DeBruijnq.

As an example, consider the following alternative representation
of the untyped λ-calculus, where application is defined with a non-
empty list of arguments.

mutual
data Lam pΓ : Ctxq : Set where

varDB : Γ Q term Ñ Lam Γ

appDB : Lam Γ Ñ Args Γ Ñ Lam Γ

absDB : Lam pΓ � termq Ñ Lam Γ

data Args pΓ : Ctxq : Set where
r sDB : Lam Γ Ñ Args Γ

::DB : Lam Γ Ñ Args Γ Ñ Args Γ

We have a family of two datatypes that are mutually recursive and
Lam is the only type in the family with variables. Let us model
this family more explicitly. The type index forms an index set, i.e.
it has one value for each de Bruijn type in the family. LamI maps
each index to the appropriate type.

data Index : Set where
term args : Index

LamI : Index Ñ DeBruijn
LamI term � Lam
LamI args � Args

LamF below is a pattern functor for this family. Each construc-
tor of the functor corresponds to a specific constructor of a type in
the family. Recursive occurrences are replaced by the parameter Φ
at the appropriate index.

data LamF pΦ : Index Ñ DeBruijnq : Index Ñ DeBruijn where
varDB : @ tΓu Ñ Γ Q term Ñ LamF Φ term Γ

appDB : @ tΓu Ñ Φ term Γ Ñ Φ args Γ Ñ LamF Φ term Γ

absDB : @ tΓu Ñ Φ term pΓ � termq Ñ LamF Φ term Γ

r sDB : @ tΓu Ñ Φ term Γ Ñ LamF Φ args Γ

::DB : @ tΓu Ñ Φ term Γ Ñ Φ args Γ Ñ LamF Φ args Γ

As in the regular case it is easy to define conversion functions

fromLamI : @ t iu Ñ LamI iù LamF LamI i
toLamI : @ t iu Ñ LamF LamI iù LamI i

and prove them inverses of each other. Consequently, LamI is a
fixed point of LamF.

3.3 A universe of indexed functors
In the following, we develop a universe that can be used to con-
struct pattern functors for families such as LamI from Section 3.2
systematically. Our universe is parameterized over two types I and
S. S represents the syntactic sorts with variables in a language and
I is an index set for a family of types representing that language. In
general S is a subset of I. However, we do not enforce that in the
implementation.

module Universe pI S : Setq where

The codes of the universe are given by three different types
ProdCode, TagCode and DataCode that closely follow the struc-

ture of Haskell datatype definitions of pattern functors. A ProdCode
describes one or more fields of a constructor.

data ProdCode : Set where
one : ProdCode
rec : pi : Iq Ñ ProdCode
_b_ : pc1 c2 : ProdCodeq Ñ ProdCode
abs : ps : Sq pi : Iq Ñ ProdCode

The one code represents a field of a unit type and the code rec i
represent a field that references the ith member of the parameter
family of the functor. The abs s i code also references the param-
eter, and additionally introduces a new abstraction over a variable
of sort s. Using _b_ we can combine different fields of a construc-
tor. Note that we do not include information about variables in the
codes. Variables are handled by the interpretation.

A TagCode represents a single constructor. It consists of a
ProdCode for the fields together with an index i : I that designates
the family member that is targeted by the constructor.

data TagCode : Set where
_�_ : pc : ProdCodeq pi : Iq Ñ TagCode

Finally the type DataCode represents a complete data declara-
tion as a list of TagCodes.

DataCode : Set
DataCode � List TagCode

The well-scoped representation of the alternative untyped λ-
calculus from Section 3.2 has the following DataCode in our
universe:

data I : Set where
term args : I

data S : Set where
term : S

LamCode : DataCode
LamCode � prec term b rec args � termq

:: pabs term term � termq
:: prec term � argsq
:: prec term b rec args � argsq
:: r s

3.4 Interpretation of the universe
We now come to the definition of an interpretation for codes. So
far we have been working on the sorts with variables S and on
the indices I of the family without having any information which
datatype in the family belongs to a specific sort ps : Sq. We
assume that the user provides a function embed : S Ñ I
that establishes this missing link. We do not require embed to be
injective. However, in general S is a subset of I and embed is the
injection.

An interpretation of a code is a functor that takes a parameter
pΦ : I Ñ DeBruijnq. For convenience we use a parameterized mod-
ule and inside this module define functions of type I Ñ DeBruijn.

For the interpretation of one we provide a single constructor in
every context, for rec i we reference the member i of the parameter
family Φ, in the case of a product we pack the interpretation of
the components together and finally for abs s i we reference the
parameter Φ in a context extended by s.

module Interpretation pembed : S Ñ Iq pΦ : I Ñ DeBruijnq where
data PJ_K : ProdCode Ñ DeBruijn where

one : @ tΓu Ñ PJ one K Γ

rec : @ tΓ iu Ñ Φ i Γ Ñ PJ rec i K Γ

_b_ : @ tΓ c1 c2 u Ñ PJ c1 K Γ Ñ PJ c2 K Γ Ñ PJ c1 b c2 K Γ

abs : @ tΓ s iu Ñ Φ i pΓ � sq Ñ PJ abs s i K Γ

For a tagged code c � o the interpretation forces the output
index to coincide with o. Selecting any other output index from the



interpretation will result in an uninhabited type, since there is no
way to construct a value of this type.

data TJ_K : TagCode Ñ I Ñ DeBruijn where
tag : @ to Γ cu Ñ PJ c K Γ Ñ TJ c � o K o Γ

A DataCode is interpreted in two steps. The interpretation
function DJ_K covers the sum structure of a DataCode. Finally,
J_K adds variables for functors. For each s : S, var constructs a
value of the embed s member.

data DJ_K : DataCode Ñ I Ñ DeBruijn where
top : @ to Γ c csu Ñ TJ c K o Γ Ñ DJ c :: cs K o Γ

pop : @ to Γ c csu Ñ DJ cs K o Γ Ñ DJ c :: cs K o Γ

data J_K : DataCode Ñ I Ñ DeBruijn where
var : @ ts Γ cu Ñ Γ Q s Ñ J c K pembed sq Γ

x_y : @ to Γ cu Ñ DJ c K o Γ Ñ J c K o Γ

We pack the information for a specific language syntax repre-
sentation together in a record. This includes the family representing
the syntax, its code in the universe, the embed function and finally
conversions from and to the one level unfolding of the syntax fam-
ily.

_ù_ : pI Ñ DeBruijnq Ñ pI Ñ DeBruijnq Ñ Set
Fù G � t i : Iu tΓ : Ctxu Ñ F i Γ Ñ G i Γ

record DeBruijnFamily : Set1 where
field

syntaxFamily : I Ñ DeBruijn
syntaxCode : DataCode
syntaxEmbed : S Ñ I

open Interpretation syntaxEmbed syntaxFamily
field

from : syntaxFamilyù J syntaxCode K
to : J syntaxCode Kù syntaxFamily

3.5 Quantified constructors
Variables in the de Bruijn representations are enriched with infor-
mation about syntactic sorts. This idea can be taken further to in-
clude type information about variables. Types are a refinement of
syntactic sorts and can replace sorts in the context representation
leading to well-typed representations.

A well-typed representation for the simply-typed λ-calculus
(STLC) is given below.

infixr 6 _�_
data Ty : Set where

unit : Ty
_�_ : pτ1 τ2 : Tyq Ñ Ty

open Context Ty
infix 2 _$_
data _$_ pΓ : Ctxq : Ty Ñ Set where

varDB : @ tτu Ñ Γ Q τ Ñ Γ $ τ
appDB : @ tτ1 τ2 u Ñ Γ $ τ1 � τ2 Ñ Γ $ τ1 Ñ Γ $ τ2
absDB : @ tτ1 τ2 u Ñ Γ � τ1 $ τ2 Ñ Γ $ τ1 � τ2
ttDB : Γ $ unit

The family of STLC terms is indexed over simple types with one
base type unit. Note that the application and abstraction construc-
tors are universally quantified over two simple-types and the vari-
able constructor is quantified over a single simple-type. In this sec-
tion we extend the universe to include this kind of quantification.

In the STLC example the quantification is over simple types,
i.e. the whole index of the family. In general quantifications over
a subset of the index set are useful. Consider for example adding
declarations to the STLC example. In this case, we quantify over
the subset that corresponds to the types of expressions.

For the sake of presentation, however, we restrict ourselves to
the case of the full index set. It is possible to alter the universe
to quantify over other sets. We redefine TagCode to include an-

other alternative σ, which takes a function cf mapping I to a new
TagCode.

data TagCode : Set where
_�_ : pc : ProdCodeq pi : Iq Ñ TagCode
σ : pcf : I Ñ TagCodeq Ñ TagCode

We also redefine the interpretation of TagCodes and add a new
alternative some that is universally quantified over a value i : I. It
uses the interpretation of the new TagCode obtained by applying
the cf function.

data TJ_K : TagCode Ñ I Ñ DeBruijn where
tag : @ to Γ cu Ñ PJ c K Γ Ñ TJ c � o K o Γ

some : @ to Γ cfu t i : Iu Ñ TJ cf i K o Γ Ñ TJ σ cf K o Γ

This extended universe is rich enough to include the STLC example
from above. Both the index set I of the family and the set S of sorts
with variables are Ty. The embed function is the identity in this
case.

Stlc : Ty Ñ DeBruijn
Stlc α Γ � Γ $ α
open Interpretation id Stlc

The codes for the Stlc family are shown below.

StlcApp � σ pλ αÑ σ pλ βÑ rec pα� βq b rec α � βqq
StlcAbs � σ pλ αÑ σ pλ βÑ abs α β � α� βqq
StlcUnit � one � unit
StlcCode : DataCode
StlcCode � StlcApp :: StlcAbs :: StlcUnit :: r s

We complete this example by showing how to fully instantiate
the record type from Section 3.4 for the Stlc family including the
conversion functions from and to the one-level unfolding.

StlcSyntaxFamily : SyntaxFamily
StlcSyntaxFamily � record t

syntaxCode � StlcCode;
syntaxFamily � Stlc;
from � from;
to � tou
where
from : Stlcù J StlcCode K
from pvarDB xq � var x
from pappDB s tq � x top psome psome ptag prec s b rec tqqqq y
from pabsDB sq � x pop ptop psome psome ptag pabs sqqqqq y
from ttDB � x pop ppop ptop ptag oneqqq y
to : J StlcCode Kù Stlc
to pvar xq � varDB x
to x top psome psome ptag prec s b rec tqqqq y � appDB s t
to x pop ptop psome psome ptag pabs sqqqqq y � absDB s
to x pop ppop ptop ptag oneqqq y � ttDB
to x pop ppop ppop pqqq y

4. Parametric higher-order abstract syntax
This section introduces another approach to represent syntax with
binding called higher-order abstract syntax (HOAS). It uses the
function space of the meta-language to model binding in an object-
language.

We will begin by giving a general outline of the ideas behind
HOAS and then introduce a variant called parametric HOAS which
we will use. In the last part of this section we show how to write
a conversion of a parametric HOAS representation of the untyped
λ-calculus to a de Bruijn representation. This serves as a template
for a generic conversion that we will develop later.

The HOAS approach uses the function space of the meta-
language to model variable binding. So the λ-expression λ x Ñ e
binds the variable x in e. We can use this in the definition of a
datatype representation by using function types where variable



binding occurs. The domain is the sort of the variable that is being
bound, and the codomain is the sort of the expression we abstract a
variable from.

The following datatype encodes the syntax for the untyped λ-
calculus:

data Lam : Set where
appHO : Lam Ñ Lam Ñ Lam
absHO : pLam Ñ Lamq Ñ Lam

Note that there is no explicit constructor for variables, because they
are handled by the function space at the meta-level. The S, K and I
combinators can be expressed using this datatype.

I � absHO pλ x Ñ xq
K � absHO pλ x Ñ absHO pλ y Ñ xqq
S � absHO pλ f Ñ absHO pλ g Ñ absHO pλ x Ñ

appHO pappHO f xq pappHO g xqqqq

It is also possible to write computations that produce term
values quite easily. The num function produces for every natural
number the associated Church numeral. It uses the fold function
for naturals from the Agda standard library.

num : NÑ Lam
num n � absHO λ z Ñ absHO λ s Ñ Data.Nat.fold z pappHO sq n

This approach also scales to support multiple syntactic sorts.
The type system of the meta-language ensures that variables of
a sort only appear at positions where that sort is expected. For
System F we get:

data Type : Set where
arr : Type Ñ Type Ñ Type
for : pType Ñ Typeq Ñ Type

data Term : Set where
appHO : Term Ñ Term Ñ Term
absHO : Type Ñ pTerm Ñ Termq Ñ Term
τappHO : Term Ñ Type Ñ Term
τabsHO : pType Ñ Termq Ñ Term

While the above HOAS encodings represent abstract syntax
terms in a clear way, they come with their own set of drawbacks,
which make them inconvenient to use in some situations. Modern
functional programming languages allow users to define functions
by pattern matching on arguments. This can also be done with
values of the HOAS representation types as shown in the definition
of the body function below. Wrapping a function that case splits its
argument in the abs constructor

exotic : Lam
exotic � absHO body

where body : Lam Ñ Lam
body pappHO s tq � appHO t s
body x � x

gives us a value of type Lam. Such values are called exotic terms
because they do not correspond to syntax terms. For a Lam value
to represent a syntax term we need to ensure that all functions
contained in abs do not case-analyse their argument, i.e. they
are parametric functions. An elegant approach to guarantee this
is developed by Washburn and Weirich [11]. They use parametric
polymorphism found in the type systems of the meta-language, to
ensure parametricity of functions used in HOAS representations.

4.1 Church encodings
We will introduce the parametric higher-order abstract syntax rep-
resentation proposed by Atkey et al. [2], which builds on Wash-
burn’s and Weirich’s idea. Their representation is based on general-
ized Church encodings for term formers of the syntax of a language
syntax comparable to Church encodings of inductive datatypes.
Consider the following System F type that is a Church encoding

of the naturals

Cnat � @α.αÑ pαÑ αq Ñ α.

A value of Cnat is a function that expects some type α and one value
per constructor of the naturals, a value of type α for the zero and
a function of type α Ñ α for the successor, and construct another
value of type α. Due to parametricity the Cnat value can only use the
given constructors. This means that a value of type Cnat represents
a natural number by its fold operator. The type it gets is the carrier
of an algebra and the arguments are the algebra functions for that
carrier.

Similarly, we can read the System F type below as a generalized
Church encoding of the untyped λ-calculus.

Cλ � @α.ppαÑ αq Ñ αq Ñ pαÑ αÑ αq Ñ α.

A value of this type gets an abstract type α and functions for each
of the term formers, one for λ-abstractions and one for applications.
The noteworthy difference between Cλ and ordinary Church encod-
ings of inductive datatypes is the negative appearance of α in the
type pα Ñ αq Ñ α of the constructor of λ-abstractions. This is
exactly where the meta-level binding is introduced: a λ-abstraction
introduces one term variable that is used in the definition of another
term. As for Cnat the values of Cλ encode a fold operator. This can
be used to define computations over parametric HOAS terms by
providing a suitable algebra.

In Agda we can write Church encodings more conveniently by
grouping the algebra functions in a parameterized record, so that
the field names can be used for the constructors. The LamAlgebra
record does this for an algebra of the untyped λ-calculus. We also
define a syntax macro to reduce the syntactic overhead.

record LamAlgebra pA : Setq : Set where
field

appPH : A Ñ A Ñ A
absPH : pA Ñ Aq Ñ A

syntax absPH pλ x Ñ eq � o x ñ e
open LamAlgebra tt ...uu

In Agda every record definition also defines a module of the same
name. The line open LamAlgebra tt ...uu opens that module and
brings accessor functions for the fields into scope. These accessors
take a concrete record value as an instance argument [6], which is
resolved automatically in our examples.

We can now equivalently define Cλ to be the type of functions
that map an abstract algebra record to a value of its carrier. Writing
terms for the S,K,I combinators is as convenient as before.

Cλ : Set1
Cλ � tA : Setu ttalg : LamAlgebra Auu Ñ A
I : Cλ

I � o x ñ x
K : Cλ

K � o x ñ o y ñ x
S : Cλ

S � o f ñ o g ñ o x ñ appPH pappPH f xq pappPH g xq

Writing computations as folds over parametric HOAS terms is
done by providing an instance of LamAlgebra. The sizeAlg algebra
below calculates the size of Cλ terms. The algebra function for
applications sums the sizes of the subterms and increments the
result. For abstraction we get a function f that expects the value
that will replace occurrences of the bound variable. We give every
variable occurrence the size 1 and also add 1 for the λ-abstraction
itself. The size of a Cλ term can then be calculated by applying it
to sizeAlg.

sizeAlg : LamAlgebra N
sizeAlg � record tappPH � λ m n Ñ m + n + 1

; absPH � λ f Ñ 1 + f 1u



size : Cλ Ñ N
size t � t ttsizeAlguu

4.2 Conversion to de Bruijn terms
In this section we develop a conversion function from the PHOAS
representation of the untyped λ-calculus of Section 4.1 to the
well-scoped de Bruijn representation given in Section 2.1. The
conversion will be written as a fold by constructing a suitable
LamAlgebra. Instead of using the Lam type directly the follow-
ing Exp type is used as the carrier of the conversion algebra. The
idea is that applying a value f of type Exp to a context Γ constructs
a term which is closed in Γ. Abstracting from the context allows us
to instantiate a term in the correct context.

Exp : Set
Exp � pΓ : Ctxq Ñ Lam Γ

conversionAlgebra : LamAlgebra Exp
conversionAlgebra � record
tappPH � λ a b Γ Ñ appDB pa Γq pb Γq
; absPH � λ f Γ Ñ absDB pf pmakeExpVar Γq pΓ � termqqu
where makeExpVar : pΓ : Ctxq Ñ Exp

makeExpVar Γ ∆ � ...
convert : Cλ Ñ Exp
convert t � t ttconversionAlgebrauu

To construct a de Bruijn term of an application we instantiate both
subterms in the given context and combine the results. In case of a
λ-abstraction the body is represented by a meta-language function
f. The function makeExpVar will create an Exp value representing
the new variable which is passed to f. The body of the λ-abstraction
will then be constructed in the bigger context Γ � term.

The value produced by makeExpVar Γ will eventually be ap-
plied to some inner context ∆, which is a strict super-context of Γ
because recursing under λ-abstractions adds variables to the con-
text, and variables are never removed. Because of this property the
introduced variable has a de Bruijn index in ∆. We would like to
create this index by using a proof of the sub-context relation be-
tween Γ and ∆, but as Atkey et al. [2] point out, Agda’s type system
unfortunately does not provide us with enough information to ob-
tain such a proof. Atkey [1] provides a meta-theoretical proof of
this property for an encoding in System F, however, his proof re-
lies on the parametricity of the universal quantification in Cλ. We
define an almost well-typed makeExpVar function at the end of
the following subsection. For a completely well-typed solution, we
could alter the PHOAS types to include information about the cur-
rent term context or we could incorporate parametricity principles
into the type system.

Using the conversion algebra with the K and S combinator
examples produces the following desired results. We make use of
a function v : tΓ : Ctxu pn : Nq t : ...u Ñ Lam Γ as a
convenient way to write de Bruijn indices using natural numbers,
i.e. v 2 stands for var pvs pvs vzqq.

convert K ε � absDB pabsDB pv 1qq
convert S ε � absDB pabsDB pabsDB

pappDB pappDB pv 2q pv 0qq
pappDB pv 1q pv 0qqqqq

4.3 Prefix relation
We develop a predicate _�_ for the sub-context relation and im-
plement a deciding function for it. Using it we can reconstruct
the necessary information for makeExpVar, i.e. decide the rela-
tion Γ � term � ∆. In the positive case we get a proof term for
the relation and in the negative case we postulate the result. As this
case will not occur the computation will not get stuck during the
conversion.

We assume that we operate on a language with syntactic sorts
given by S : Set and that we have a function _ ?

�S_ : @ px y :
Sortq Ñ Dec px � yq which decides equality on Sort. The result
of _ ?

�S_ is a value of the Dec type, that carries either a proof of
the predicate, or a proof of its negation.

data Dec pP : Setq : Set where
yes : pp : Pq Ñ Dec P
no : p p :  Pq Ñ Dec P

For the conversion we will need to relate a context Γ outside
of an abstraction to contexts inside the abstraction. Consider the
case of a single variable abstraction where a new variable for the
sort s is introduced in an outer context Γ. As we only append new
variables to a context, clearly the context Γ � s will be a prefix
of any context ∆ inside the abstraction. The following predicate
_�_ encodes the prefix relation between contexts. Furthermore this
predicate is decidable and _�?_ denotes a deciding function. The
implementation of the deciding function is omitted.

infix 4 _�_
data _�_ pΓ : Ctxq : Ctx Ñ Set where

refl : Γ � Γ

_�_ : t∆ : Ctxu pΓ�∆ : Γ � ∆q ps : Sortq Ñ Γ � ∆ � s

infix 4 _�?_
_�?_ : @ px y : Sortq Ñ Dec px � yq

Given a proof for Γ � s � ∆ we can create an index in ∆ for the
variable introduced in Γ.

makeVar : tΓ ∆ : Ctxu ts : Sortu Ñ Γ � s � ∆ Ñ ∆ Q s
makeVar refl � vz
makeVar pΓ�∆ � q � vs pmakeVar Γ�∆q

We can now finish the definition of the makeExpVar function from
Section 4.2. As mentioned before we have to postulate the result in
the negative case.

makeExpVar : pΓ : Ctxq Ñ Exp
makeExpVar Γ ∆ with Γ � term �? ∆

makeExpVar Γ ∆ | yes Γ�term�∆ � var pmakeVar Γ�term�∆q
makeExpVar Γ ∆ | no  p � whatever

where postulate whatever :

5. PHOAS interpretation of syntax families
We develop a generic conversion from parametric HOAS to well-
formed de Bruijn representations. To this end we first specify
the Church encodings of the HOAS representations in terms of
DataCodes and later define one generic algebra on the structure
given by DataCodes that performs the conversion. We assume that
we are given a complete representation of a syntax family:

module PHOAS t I S : Setu pSF : SyntaxFamily I Sq where
open SyntaxFamily SF
open Interpretation syntaxEmbed syntaxFamily

5.1 Church encodings
The Church encodings of syntax families are the types of a fold
operator that expects an algebra for some abstract carrier A :
I Ñ Set. We use the module Church that is parameterized over
such a carrier and inside define functions that interpret codes as
algebra types with carrier A.

As before, an algebra will be a product of algebra functions, one
per non-variable constructor. Generally an algebra function has the
type @ t iu Ñ F A i Ñ A i for some functor F. The function Arg
computes this functor for a ProdCode. In the interesting case of an
abstraction, we produce a function type that provides us with one
meta-language variable.



module Church pA : I Ñ Setq where
Arg : ProdCode Ñ I Ñ Set
Arg one j � J
Arg prec iq j � A i
Arg pc1 b c2q j � Arg c1 j � Arg c2 j
Arg pabs s iq j � A psyntaxEmbed sq Ñ A i

Note that the index parameter j : I is never used, except in
recursive calls of Arg, and can thus be dropped. The fields of a
constructor corresponding to a ProdCode do not depend or change
the output index. To get more flexibility we make the result type
into a parameter R : Set and calculate F A Ñ R in a curried style,
to eliminate the unit type and the products. This is implemented by
AlgProd.

AlgProd : ProdCode Ñ Set Ñ Set
AlgProd one R � R
AlgProd prec iq R � A i Ñ R
AlgProd pc1 b c2q R � AlgProd c1 pAlgProd c2 Rq
AlgProd pabs s iq R � pA psyntaxEmbed sq Ñ A iq Ñ R

AlgTag computes the algebra type for a constructor described
by a TagCode. In case of a σ cf we add a universal quantification
and recurse over the produced TagCode. For a tag, we select the
appropriate member for the result family and call AlgProd. We
again parameterize over the result family instead of fixing it to A.

AlgTag : pc : TagCodeq pR : I Ñ Setq Ñ Set
AlgTag pc � iq R � AlgProd c pR iq
AlgTag pσ cfq R � @ t iu Ñ AlgTag pcf iq R

For a DataCode the AlgData function calculates the product of
the algebra function types.

AlgData : pc : DataCodeq pR : I Ñ Setq Ñ Set
AlgData r s R � J
AlgData pc :: csq R � AlgTag c R � AlgData cs R

The AlgProd, AlgTag and AlgData functions are functorial as
witnessed by the following mappings. These will be used in the
definition of the conversion algebra.

map-prod : pc : ProdCodeq tR S : Setu Ñ
pR Ñ Sq Ñ AlgProd c R Ñ AlgProd c S

map-prod one f x � f x
map-prod prec iq f x � f � x
map-prod pc1 b c2q f x � map-prod c1 pmap-prod c2 fq x
map-prod pabs s cq f x � f � x

map-tag : pc : TagCodeq tR S : I Ñ Setu Ñ
p@ t iu Ñ R i Ñ S iq Ñ AlgTag c R Ñ AlgTag c S

map-tag pc � iq f x � map-prod c f x
map-tag pσ cfq f x � λ t iu Ñ map-tag pcf iq f x

map-data : pc : DataCodeq tR S : I Ñ Setu Ñ
p@ t iu Ñ R i Ñ S iq Ñ AlgData c R Ñ AlgData c S

map-data r s f tt � tt
map-data pc :: csq f px, yq � map-tag c f x,map-data cs f y

The AlgebraF and Algebra functions are variants of the AlgTag
and AlgData functions, in which the result type is fixed to A.

AlgebraF : TagCode Ñ Set
AlgebraF c � AlgTag c A

Algebra : Set
Algebra � AlgData syntaxCode A

5.2 A generic conversion algebra
We now come to the definition of a generic conversion algebra. As
in the non-generic example, we specify a family Exp : I Ñ Set
as the carrier of the conversion algebra which abstracts from the
context a de Bruijn syntax term is instantiated in. Furthermore,
we specify related datatypes ExpP, ExpT and ExpD where the de
Bruijn syntax family is wrapped in interpretations of corresponding

codes. The intention is that these will represent partial construc-
tions of the one-level unfolding of the syntax family.

Exp : I Ñ Set
Exp i � pΓ : Ctxq Ñ syntaxFamily i Γ

ExpP : ProdCode Ñ Set
ExpP c � pΓ : Ctxq Ñ PJ c K Γ

ExpT : TagCode Ñ I Ñ Set
ExpT c i � pΓ : Ctxq Ñ TJ c K i Γ

ExpD : DataCode Ñ I Ñ Set
ExpD c i � pΓ : Ctxq Ñ DJ c K i Γ

open Church Exp

As in Section 4.3 we define a helper function makeExpVar
that creates an Exp value, which calculates a de Bruijn index for
a variable that is introduced in a context Γ. Note the use of to to
perform the one-level folding of the fixed point

makeExpVar : pΓ : Ctxq ps : Sq Ñ Exp psyntaxEmbed sq
makeExpVar Γ s ∆ with Γ � s �? ∆

makeExpVar Γ s ∆ | yes Γ�s�∆ � to pvar pmakeVar Γ�s�∆qq
makeExpVar Γ s ∆ | no  p � whatever

where postulate whatever :

The conv-prod function produces the part of the conversion
algebra corresponding to a ProdCode c. The result is a function
of type AlgProd c pExpP cq that takes as arguments the fields
described by the ProdCode and builds the part of the one level
unfolding of the syntax family that corresponds to c abstracted over
a context Γ.

conv-prod : pc : ProdCodeq Ñ AlgProd c pExpP cq
conv-prod one � λ Γ Ñ one
conv-prod prec iq � λ x Γ Ñ rec px Γq
conv-prod pabs s iq � λ f Γ Ñ abs pf pmakeExpVar Γ sq pΓ � sqq
conv-prod pc1 b c2q �

map-prod c1 pλ x Ñ map-prod c2 pλ y Γ Ñ x Γ b y Γq a2q a1
where a1 � conv-prod c1; a2 � conv-prod c2

For a recursive position rec i we take the field px : Exp iq and
wrap the instantiation in the de Bruijn interpretation of rec i. In case
of an abs s i, we get a meta-binding pf : Exp psyntaxEmbed sq Ñ Exp iq
as argument. A variable is created using makeExpVar and the body
is instantiated in the extended context Γ � s. For a product c1 b c2
the algebras of the recursive calls have to be combined. For this
the functorial mapping of AlgProd is used to access the results
px : ExpP c1q and py : ExpP c2q.

The functions conv-tag and conv-data calculate the conversion
algebra for TagCodes and DataCodes. They use the functorial
mappings and function composition _�_ to add the appropriate
constructors of the de Bruijn interpretation.

conv-tag : pc : TagCodeq Ñ AlgTag c pExpT cq
conv-tag pc � iq � map-prod c p_�_ tagq pconv-prod cq
conv-tag pσ cfq � λ tsu Ñ map-tag pcf sq p_�_ someq

pconv-tag pcf sqq

conv-data : pc : DataCodeq Ñ AlgData c pExpD cq
conv-data r s � tt
conv-data pc :: csq � map-tag c p_�_ topq pconv-tag cq,

map-data cs p_�_ popq pconv-data csq

Finally, conversionAlgebra takes care of a one-level folding of the
fixed point once the pattern functor is fully constructed.

conversionAlgebra : Algebra
conversionAlgebra � map-data syntaxCode

pλ x Γ Ñ to x x Γ yq
pconv-data syntaxCodeq

5.3 Example: Simply-typed lambda calculus
We exemplify the usage of the generic conversion algebra for
the simply-typed lambda calculus from section 3.5. The HOAS



interface is determined by the record StlcAlgebra. The appropriate
types of the fields can easily be calculated using the AlgebraF
function from the Church module. The resulting types are given
in comments above the field declarations.

open PHOAS StlcSyntaxFamily

record StlcAlgebra pLam : Ty Ñ Setq : Set where
open Church Lam
field

-- @ α βÑ Lam (α� β)Ñ Lam αÑ Lam β
appPH : AlgebraF StlcApp

-- @ α βÑ (Lam αÑ Lam β)Ñ Lam (α� β)
absPH : AlgebraF StlcAbs

-- Lam unit
ttPH : AlgebraF StlcUnit

syntax absPH pλ x Ñ eq � o x ñ e

StlcPHOAS is the type of the parametric HOAS representation,
i.e. the type of fold operators over the syntax. For a convenient way
to write HOAS terms, we unpack the record fields using instance
arguments.

open StlcAlgebra tt ...uu
StlcPHOAS : Ty Ñ Set1
StlcPHOAS τ � @ tAu ttalg : StlcAlgebra Auu Ñ A τ

The generic conversion algebra needs to be converted to our
language specific StlcAlgebra record so that we are able to write
the conversion convert to the well-typed de Bruijn representation.

convertAlg : @ tAu Ñ Church.Algebra A Ñ StlcAlgebra A
convertAlg pa, b, c, ttq � record tappPH � a; absPH � b; ttPH � cu
convert : @ tτu Ñ StlcPHOAS τÑ Exp τ
convert t � t ttconvertAlg conversionAlgebrauu

Function convert converts the apply function

apply : StlcPHOAS ppunit� unitq� unit� unitq
apply � o f ñ o a ñ appPH f a

to the following de Bruijn term

absDB pabsDB pappDB pv 1q pv 0qqq

6. Binders with embedded terms, sequential and
recursive scoping

So far, we have only considered languages with single variable
binding. However, modern functional programming languages let
users define algebraic datatypes and provide mechanisms to pat-
tern match on them, which allows binding of multiple variables
at once. Other rich binding forms allowing multiple bindings are
let-expressions, which come in different flavours. Using patterns,
non-recursive lets, sequential lets and recursive lets we exemplify
how these and other rich binding forms can be encoded using a
well-typed de Bruijn representation. In the next section we develop
a universe that is rich enough to capture the structure of these bind-
ing forms and construct a generic conversion algebra from PHOAS
to de Bruijn terms.

6.1 Patterns
In a language with patterns, a pattern in an abstract syntax tree will
be described by a value that specifies which variables are to be
bound. An abstraction then takes a pattern and a term in a appropri-
ately extended context. In a well-scoped de Bruijn representation
this means that the term context is extended by a list of new vari-
ables, i.e. another context is appended. This is implemented by the
following function:

_��_ : Ctx Ñ Ctx Ñ Ctx
Γ �� ε � Γ

Γ �� p∆ � τq � Γ �� ∆ � τ

We will call the list of new variables the binder context and the
context by which terms are indexed the term context. A pattern
can be represented as a family that is indexed by a binder context.
Consider the datatype Pat for patterns below. The constructor for
pattern variables takes no argument and produces a pattern with a
singleton binder context. For a product pattern the binder context
is the concatenation of the binder contexts of the sub-patterns.
Lam is a representation of an untyped λ-calculus with a product
constructor , and pattern matching in λ-abstractions. In the λ-
abstraction case the binder context ∆ is appended to the outer term
context Γ to form the term context of the body.

data Pat : Ctx Ñ Set where
varDB : Pat pε � termq
, : @ t∆1 ∆2 u Ñ Pat ∆1 Ñ Pat ∆2 Ñ Pat p∆1 �� ∆2q

data Lam pΓ : Ctxq : Set where
varDB : Γ Q term Ñ Lam Γ

appDB : Lam Γ Ñ Lam Γ Ñ Lam Γ

absDB : @ t∆u Ñ Pat ∆ Ñ Lam pΓ �� ∆q Ñ Lam Γ

, : Lam Γ Ñ Lam Γ Ñ Lam Γ

6.2 Declarations
Many programming languages offer declarations or definitions that
associate names with expressions, type signatures or other kinds
of annotations. Functional programming languages often provide
let-expressions. Consider a non-recursive let expression of the fol-
lowing form.

let x1 � e1; . . . ; xn � en; in en+1

The scope of the variables x1, . . . , xn is the expression en+1. They
are considered to be bound simultaneously. We want to group re-
lated things together and not separate a variable xi from its expres-
sion ei. A declaration and a list of declarations must be seen as
both a value containing expressions that reference variables and
thus needs a term context, and as a value that binds variables and
thus needs a binder context. The following datatypes implement
this for a λ-calculus with let-expressions:

mutual
data Decl : Ctx Ñ Ctx Ñ Set where

declDB : @ tΓu Ñ Lam Γ Ñ Decl pε � termq Γ

data Decls : Ctx Ñ Ctx Ñ Set where
dnilDB : @ tΓu Ñ Decls ε Γ

dconsDB : @ tΓ ∆1 ∆2 u Ñ
Decl ∆1 Γ Ñ Decls ∆2 Γ Ñ Decls p∆1 �� ∆2q Γ

data Lam pΓ : Ctxq : Set where
varDB : Γ Q term Ñ Lam Γ

appDB : Lam Γ Ñ Lam Γ Ñ Lam Γ

absDB : Lam pΓ � termq Ñ Lam Γ

letDB : @ t∆u Ñ Decls ∆ Γ Ñ Lam pΓ �� ∆q Ñ Lam Γ

Note that the binder context in the dconsDB case of a declaration
list is analogous to the product case for patterns: the concatenation
of the sub-binder contexts accumulates the variable bindings from
both components. The term context is distributed to all embedded
expressions and not changed by the declarations.

6.3 Recursive scoping
In a mutually recursive let expression the scope of the variables
x1, . . . , xn are all the right hand sides e1, . . . , en and the body en+1.
The well-formed de Bruijn representation of a recursive let is just
as easy as a normal one: the embedded expressions are simply in
the inner context Γ �� ∆ of the declaration list.

letrec : @ t∆u Ñ Decls ∆ pΓ �� ∆q Ñ Lam pΓ �� ∆q Ñ Lam Γ



6.4 Sequential scoping
As a third variant of let expressions consider the case where a
variable scopes only over all subsequent declarations and the body,
i.e. xi scopes over all e_j with i < j ¤ n+1. In the dcons case
the binder context again accumulates the variable bindings from
the sub-components, but additionally the context of the embedded
expression in a declaration is changed.

mutual
data Decl : Ctx Ñ Ctx Ñ Set where

decl : @ tΓu Ñ Lam Γ Ñ Decl pε � termq Γ

data Decls : Ctx Ñ Ctx Ñ Set where
dnil : @ tΓu Ñ Decls ε Γ

dcons : @ tΓ ∆1 ∆2 u Ñ Decl ∆1 Γ Ñ
Decls ∆2 pΓ �� ∆1q Ñ Decls p∆1 �� ∆2q Γ

data Lam pΓ : Ctxq : Set where
var : Γ Q term Ñ Lam Γ

app : Lam Γ Ñ Lam Γ Ñ Lam Γ

abs : Lam pΓ � termq Ñ Lam Γ

letseq : @ t∆u Ñ Decls ∆ Γ Ñ Lam p∆ �� Γq Ñ Lam Γ

7. A universe of binders
In this section we will generalize the universe of families from
Section 3 to include binders. For simplicity we use a uniform
representation and index all types in a family by both a term context
and a binder context. Thus we will not distinguish between sorts
which are used solely as binders, like patterns, and sorts which
are not used as binders at all, like λ-expressions. Furthermore we
extend the universe by new structure descriptions for richer forms
of binding like recursive and sequential scoping.

7.1 Universe codes
As before, the universe is parameterized over two types I and S for
the index and sorts. The ProdCodes of the previous universe are
extended with three new alternatives : bsng, brec and bseq.

module Universe pI S : Setq where
data ProdCode : Set where

one : ProdCode
rec : I Ñ ProdCode
_b_ : pc1 c2 : ProdCodeq Ñ ProdCode
abs : pc : ProdCodeq Ñ I Ñ ProdCode
bsng : S Ñ ProdCode
bseq : pc : ProdCodeq Ñ I Ñ ProdCode
brec : I Ñ ProdCode

The code bsng s represents a value that binds exactly one new
variable of the given sort s. The bseq code describes sequential
scoping. The variables of values of the first code scope over the
second. Recursive scoping is introduced by brec. A variable bound
by a value of the given code scopes over the value itself. The
definitions of TagCode and DataCode are the same as in Section
3.5.

7.2 De Bruijn interpretation
The interpretations of the different codes are functors over families
with two contexts. The interpretation of one does not bind any
variables, so the binder context is empty. bsng s has a binder
context consisting of exactly one variable of sort s. The binder
context of a product is the concatenation of the binder contexts
∆1 and ∆2 of the components. In case of an abs the variables of
the first ProdCode scope over the second, i.e. the binder context
∆1 of the first interpretation is appended to the term context of
the second. The binder context ∆1 of the first code is hidden in
the abstraction by existential quantification and the binder context
of the result is the binder context ∆2 of the second ProdCode,

i.e. the binder context of an abstraction is the binder context of
the value inside the abstraction. For bseq the variables of the first
code scope over the second. The binder context of the result is the
concatenation of the binders of the sub-components. For recursive
scoping via brec the binder context ∆ is appended to the term
context of the interpretation itself, thus the sub-component is in
the context Γ �� ∆.

module Interpretation pembed : S Ñ Iq
pΦ : I Ñ Ctx Ñ Ctx Ñ Setq where

data PJ_K : ProdCode Ñ I Ñ Ctx Ñ Ctx Ñ Set where
one : @ to Γu Ñ PJ one K o ε Γ

rec : @ to i Γ ∆u Ñ Φ i ∆ Γ Ñ PJ rec i K o ∆ Γ

_b_ : @ t∆1 ∆2 c1 c2 o Γu Ñ
PJ c1 K o ∆1 Γ Ñ PJ c2 K o ∆2 Γ Ñ
PJ c1 b c2 K o p∆1 �� ∆2q Γ

abs : @ t∆1 ∆2 c i o Γu Ñ
PJ c K o ∆1 Γ Ñ Φ i ∆2 pΓ �� ∆1q Ñ
PJ abs c i K o ∆2 Γ

bsng : @ ts o Γu Ñ PJ bsng s K o pε � sq Γ

bseq : @ t∆1 ∆2 c i o Γu Ñ
PJ c K o ∆1 Γ Ñ Φ i ∆2 pΓ �� ∆1q Ñ
PJ bseq c i K o p∆1 �� ∆2q Γ

brec : @ t∆ i o Γu Ñ Φ i ∆ pΓ �� ∆q Ñ PJ brec i K o ∆ Γ

The interpretations of TagCode and DataCode are extended
by an argument for the binder context. It is passed through to the
ProdCode interpretations.

data TJ_K : TagCode Ñ I Ñ Ctx Ñ Ctx Ñ Set where
tag : @ to Γ ∆ cu Ñ

PJ c K o ∆ Γ Ñ TJ c � o K o ∆ Γ

some : @ to Γ ∆ cf iu Ñ
TJ cf i K o ∆ Γ Ñ TJ σ cf K o ∆ Γ

data DJ_K : DataCode Ñ I Ñ Ctx Ñ Ctx Ñ Set where
top : @ to Γ ∆ c csu Ñ TJ c K o ∆ Γ Ñ DJ c :: cs K o ∆ Γ

pop : @ to Γ ∆ c csu Ñ DJ cs K o ∆ Γ Ñ DJ c :: cs K o ∆ Γ

data J_K pc : DataCodeq : I Ñ Ctx Ñ Ctx Ñ Set where
var : @ to Γu Ñ Γ Q o Ñ J c K pembed oq ε Γ

x_y : @ to Γ ∆u Ñ DJ c K o ∆ Γ Ñ J c K o ∆ Γ

The SyntaxFamily record is upgraded to handle a family of binders.

_ù_ : pΦ Ψ : I Ñ Ctx Ñ Ctx Ñ Setq Ñ Set
Φù Ψ � t i : Iu t∆ Γ : Ctxu Ñ Φ i ∆ Γ Ñ Ψ i ∆ Γ

record SyntaxFamily : Set1 where
field

syntaxFamily : I Ñ Ctx Ñ Ctx Ñ Set
syntaxCode : DataCode
syntaxEmbed : S Ñ I

open Interpretation syntaxEmbed syntaxFamily
field

from : syntaxFamilyù J syntaxCode K
to : J syntaxCode Kù syntaxFamily

7.3 Church encodings for binders
For the PHOAS representation we need to define Church encodings
for the codes in the universe. A church encoding is the type of a
fold operator that accepts an abstract algebra. Algebra carriers for
binders are indexed by I and the binder context, i.e. algebra carriers
have the type I Ñ Ctx Ñ Set. This allows us to access and modify
the binder context. The term context is still handled at the meta-
level and hidden in the representation. A function of the form

Env D ∆ Ñ R

represents a higher-order binding that binds multiple variables ∆ si-
multaneously. Env represents a heterogeneous list. Given a domain
D : S Ñ Set an environments holds a value of type D s for each
s in ∆.



data Env pD : S Ñ Setq : Ctx Ñ Set where
ε : Env D ε
_�_ : @ tΓ τu Ñ Env D Γ Ñ D τÑ Env D pΓ � τq

We fix the domain to be the subfamily of A corresponding to S
where additionally the binder context is empty, as variables do not
bind other variables. Of course it is more convenient for a user to
write these functions in a curried style.

module Church pA : I Ñ Ctx Ñ Setq where
A1 : S Ñ Set
A1 s � A psyntaxEmbed sq ε
Curried : Ctx Ñ Set Ñ Set
Curried ε r � r
Curried pΓ � sq r � Curried Γ pA1 s Ñ rq
uncurry : @ tΓ ru Ñ Curried Γ r Ñ Env A1 Γ Ñ r
uncurry f ε � f
uncurry f pxs � xq � uncurry f xs x

We now come to the interpretation of universe codes as algebra
types and start with the curried variant AlgProd of the algebra for
a ProdCode. These are now functions where all arguments and the
result type are indexed by a binder context. For one the algebra
type is the result type with an empty context and for bsng s it is the
result type with a single variable context. For a recursive position
the algebra function needs to map the syntax type with the given
index to the result type. Given an abstraction abs c i we introduce
a higher-order binding with variables from the binder context ∆1
of the interpretation of c. The binder context of the result is the
same as the one of the value inside the abstraction. In the case
of a product or a bseq the result type has as binder context the
concatenation of the binder contexts of the components. Further for
bseq we have a meta-level binding given by a curried function with
the binder context from the left code. For recursive scoping we use
a higher-order binding with the binder context ∆ from inside the
binding. In general Agda’s typechecker will not be able to infer the
binder context automatically. The user needs to provide it explicitly.

AlgProd : ProdCode Ñ pR : Ctx Ñ Setq Ñ Set
AlgProd one R � R ε
AlgProd prec iq R � t∆ : Ctxu Ñ A i ∆ Ñ R ∆

AlgProd pc1 b c2q R �
AlgProd c1 pλ Γ1 Ñ AlgProd c2 pλ Γ2 Ñ R pΓ1 �� Γ2qqq

AlgProd pabs c iq R � AlgProd c pλ ∆1 Ñ
t∆2 : Ctxu Ñ Curried ∆1 pA i ∆2q Ñ R ∆2q

AlgProd pbsng iq R � R pε � iq
AlgProd pbseq c iq R � AlgProd c pλ Γ1 Ñ
tΓ2 : Ctxu Ñ Curried Γ1 pA i Γ2q Ñ R pΓ1 �� Γ2qq

AlgProd pbrec iq R �
p∆ : Ctxq Ñ Curried ∆ pA i ∆q Ñ R ∆

The definition AlgTag fixes the output index of the result type
R for a tagged ProdCode and AlgData collects the resulting types
in a product. Again the types are functorial in the result type and
allow the definition of a functiorial mapping. The implementation
of these is omitted.

7.4 A generic conversion algebra
In this section we generalize the conversion algebra for the unary
binding case from Section 5.2 to types with binders. We focus on
the conversion algebra for ProdCodes. The code for TagCodes and
DataCodes is identical to the one from Section 5.2.

The carrier of the conversion algebra is a family indexed by the
set I and a binder context. For the conversion algebra we use the
syntaxFamily where we abstracts from the term context Γ a term is
instantiated in.

Exp : I Ñ Ctx Ñ Set
Exp i ∆ � pΓ : Ctxq Ñ syntaxFamily i ∆ Γ

ExpP : ProdCode Ñ I Ñ Ctx Ñ Set

ExpP c i ∆ � pΓ : Ctxq Ñ PJ c K i ∆ Γ

open Church Exp

The conv-curried function converts a higher-order binding. A
list of new variables is created using makeExpVars.

makeExpVars : @ Γ ∆ Ñ Env pλ s Ñ Exp psyntaxEmbed sq εq ∆

makeExpVars Γ ε � ε
makeExpVars Γ p∆ � τq �

makeExpVars Γ ∆ � makeExpVar pΓ �� ∆q τ
conv-curried : t i : Iu t∆2 : Ctxu p∆1 Γ : Ctxq Ñ

Curried ∆1 pExp i ∆2q Ñ syntaxFamily i ∆2 pΓ �� ∆1q
conv-curried ∆ Γ f � uncurry f pmakeExpVars Γ ∆q pΓ �� ∆q

conv-prod : pc : ProdCodeq t i : Iu Ñ AlgProd c pExpP c iq
conv-prod one � λ Γ Ñ one
conv-prod prec yq � λ x Γ Ñ rec px Γq
conv-prod pc1 b c2q � map-prod c1 pλ x Ñ map-prod c2
pλ y Γ Ñ x Γ b y Γq pconv-prod c2qq pconv-prod c1q

conv-prod pabs c iq � map-prod c pλ t∆1 u x t∆2 u y Γ Ñ
abs px Γq pconv-curried ∆1 Γ yqq pconv-prod cq

conv-prod pbsng yq � λ Γ Ñ bsng
conv-prod pbseq c iq � map-prod c pλ t∆1 u x t∆2 u y Γ Ñ

bseq px Γq pconv-curried ∆1 Γ yqq pconv-prod cq
conv-prod pbrec iq � λ ∆ f Γ Ñ brec pconv-curried ∆ Γ fq

7.5 Example: Let bindings
We give smaller examples of the PHOAS interpretation for the λ-
calculi with different variants of let-bindings from Section 6. We
start with non-sequential, non-recursive let-bindings, and later look
at the more powerful variants.

Our languages have three sorts: λ-expressions with variables
as well as declarations and list of declarations as sorts without
variables. We get the following sets as the universe arguments.

data S : Set where
term : S

data I : Set where
decl decls term : I

For the types from Section 6.2 we have the following universe
codes.

lam-app � rec term b rec term � term
lam-abs � abs pbsng termq term � term
lam-let � abs prec declsq term � term
decl-decl � rec term b bsng term � decl
decls-nil � one � decls
decls-cons � rec decl b rec decls � decls

All calculated PHOAS types are indexed by a binder context, even
types for sorts like λ-expressions, which do not bind variables.
For these values the binder context is empty. Thus the interface
performs unnecessary binder context calculations.

record LamAlgebra pA : I Ñ Ctx Ñ Setq : Set where
open Church A
Lam � A term
Decl � A decl
Decls � A decls
field

appPH : t∆1 : Ctxu Ñ Lam ∆1 Ñ
t∆2 : Ctxu Ñ Lam ∆2 Ñ Lam p∆1 �� ∆2q

absPH : t∆ : Ctxu Ñ pLam ε Ñ Lam ∆q Ñ Lam ∆

letPH inPH : t∆1 : Ctxu Ñ Decls ∆1 Ñ
t∆2 : Ctxu Ñ Curried ∆1 pLam ∆2q Ñ Lam ∆2

declPH : t∆ : Ctxu Ñ Lam ∆ Ñ Decl p∆ � termq
dnilPH : Decls ε
dconsPH : t∆1 : Ctxu Ñ Decl ∆1 Ñ

t∆2 : Ctxu Ñ Decls ∆2 Ñ Decls p∆1 �� ∆2q



For convenience we use a syntax macro for λ-expressions and a
helper function adding a λ-expression to a list of declarations.

infixr 1 _|_
_|_ : @ t∆u Ñ Lam ε Ñ Decls ∆ Ñ Decls pε � term �� ∆q
e | ds � dconsPH pdeclPH eq ds

syntax absPH pλ x Ñ eq � o x ñ e

As example terms we define the I,K and S combinators in a
let and use them in the body. We have three declarations binding
one variable each, so the body is represented by a three argument
function.

test : LamPHOAS
test � letPH

po x ñ xq |
po x ñ o y ñ xq |
po f ñ o g ñ o x ñ

appPH pappPH f xq pappPH g xqq | dnilPH
inPH pλ I K S Ñ appPH I Kq

A downside of the HOAS representation of let bindings is that
the variable names are syntactically separated from the expressions
of the declarations in the source code. Function convert converts
the above term to the following de Bruijn representation

letDB
pdconsDB pdeclDB pabsDB pv 0qqq
pdconsDB pdeclDB pabsDB pabsDB pv 1qqqq
pdconsDB pdeclDB pabsDB pabsDB pabsDB
pappDB pappDB pv 2q pv 0qq pappDB pv 1q pv 0qqqqqqq

dnilDBqqq
pappDB pv 2q pv 1qq

7.6 Example: Sequential let bindings
For the sequantial let expressions of Section 6.4 the code for cons
of declarations is

decls-cons � bseq prec declq decls � decls

The other codes for the datatypes are the same as in Section 7.5.
and the field in the LamAlgebra record changes to.

record LamAlgebra pA : I Ñ Ctx Ñ Setq : Set where
field

. . .
dconsPH : t∆1 : Ctxu Ñ Decl ∆1 Ñ

t∆2 : Ctxu Ñ Curried ∆1 pDecls ∆2q Ñ
Decls p∆1 �� ∆2q

. . .

infixr 1 dcons1

PH
dcons1

PH : t∆ : Ctxu Ñ Lam ε Ñ
Curried pε � lamq pDecls ∆q Ñ Decls pε � lam �� ∆q

dcons1

PH e ds � dconsPH pdeclPH eq ds

syntax absPH pλ x Ñ eq � o x ñ e
syntax dcons1

PH e pλ x Ñ dsq � x� e | ds

We give an example of a sequential let. We first declare a combina-
tor t that is used in the second declaration. Note that scoping occurs
at every declaration so for each declaration there is immediately a
higher-order binding scoping over the subsequent declarations. The
abstraction over the body is represented by a separate higher-order
binding. The use of two higher-order bindings entails duplication
of variable binding and does not enforce equal names for the vari-
ables.

test : LamPHOAS
test � letPH

t � po x ñ x · xq |
ω� t · t | dnilPH

inPH pλ t ωÑ ωq

Function convert converts the above term to the following de
Bruijn representation

convert test ε � let1 pdcons pdecl pabs papp pv 0q pv 0qqqq
pdcons pdecl papp pv 0q pv 0qqq
dnilqq
pv 0q

An inconvenience in the chosen PHOAS type for bseq is that
every bseq introduces a function for the complete accumulated
binder context of its left component. We have chosen cons lists for
the let declarations in our example, so the head introduces a single
variable that scopes over the tail. Choosing a snoc list will scope all
the variables of the init over the last.

7.7 Example: Recursive let bindings
For recursive lets we modify the representation of the λ-calculus
with lets from Section 7.5. The binder context of a let group is
reintroduced in the term context of the declarations.

data Lam : Ctx Ñ Ctx Ñ Set where
. . .
letDB : @ tΓ Γ+ ∆u Ñ Decls Γ+ pΓ �� Γ+q Ñ

Lam ∆ pΓ �� Γ+q Ñ Lam ∆ Γ

And we get the following new code for the let constructor.

lam-let � abs pbrec declsq term � term

We get the following type for the algebra function of recursive
lets. We have a curried function over a context which is at the same
time the binder context of the result value of the function.

letPH : p∆ : Ctxq Ñ Curried A ∆ pDecls ∆q Ñ
tΓ2 : Ctxu Ñ Curried A ∆ pLam Γ2q Ñ Lam Γ2

We give an example of a recursive let with two mutually recur-
sive functions. Note that in general it is not possible to determine a
binder context automatically. We have to provide it explicitly to the
algebra function of let. As for the sequential let example we have
two higher-order bindings. One binding introduces all the variables
for the declaration, and one introduces the variables for the body.

test : LamPHOAS
test � letPH pε � term � termq

pλ a b Ñ po x ñ bq |
po x ñ appPH x aq | dnilPHq

pλ a b Ñ appPH b aq

Function convert converts the above PHOAS term to the following
de Bruijn term

letDB pdconsDB pdeclDB pabsDB pv 1qqq
pdconsDB pdeclDB pabsDB pappDB pv 0q pv 2qqqq
dnilDBqq

pappDB pv 0q pv 1qq

Again names are not enforced to coincide. In this case it is
possible to add another constructor absrec i1 i2 to ProdCode,
that is equivalent to abs pbrec i1q i2, i.e. variables from the first
code scope recursively over values defined by the index i1, and over
values defined by the second index i2. The interpretation of absrec
uses a single higher-order binding for both the declarations, and the
let body.

8. Conclusion
In this paper we have presented a universe for dependently typed
datatype-generic programming with abstract syntax representations
that is very expressive, in the sense that it supports well-scoped
representations and also allows rich binding forms.

Two interpretations have been given and a generic conversion
function has been implemented that simplifies the implementation
of EDSLs with binding.



8.1 Related work
A datatype-generic treatment of syntax with binding has been ad-
dressed before in the literature.

Cheney [4] describes the implementation of a Haskell library
called FreshLib for generic programming with abstract syntax.
Cheney also describes an extension with a general class of binders
that can be used in the left-hand side of an abstraction allowing
user-defined bindable forms. He provides examples of let-bindings
and pattern-match cases, which bind names simultaneously, but he
does not delve into a datatype-generic treatment of binders.

Oliveira et al. [7] are working on a datatype-generic framework
GMeta for the mechanization of formal meta-theory of first-order
representations. They make use of a universe construction to repre-
sent abstract syntax types and give different first-order interpreta-
tions. However, they only cover the case of single variable bindings.

Weirich, Yorgey and Sheard [12] present a domain-specific lan-
guage Unbound and an associated generic programming library in
Haskell for the specification of binding structure of languages. It
covers bindings of an arbitrary amount of variables simultaneously
and more sophisticated binding forms that include sequential or re-
cursive scoping and as such is as expressive as the binders universe
of section 6. In fact they provide a set of type combinators very
similar to the primitive codes of the binders. Internally a locally
nameless style is used. The indices for bound variables are how-
ever not statically ensured to be well-scoped.

Licata and Harper [8] present a universe in Agda that allows
the definitions of syntax terms that mix binding and computations.
Their representation is based on well-scoped de Bruijn terms where
scoping is made explicit in the representation types, but they only
handle the single variable case.

8.2 Future work
Opportunities for future work include the automatic derivation of
the structure representation from datatype declarations and corre-
sponding conversion functions to universe types. However, doing
this for well-scoped de Bruijn terms seems very difficult, since
changes to the term and binder context have to be translated to
structure descriptions.

Agda proved itself invaluable for the development of universes
and the implementation of type computations and generic func-
tions. However, it is not as widely used as other functional pro-
gramming languages like for example Haskell. We hope that we
can use the usual techniques for faking dependent types in Haskell
together with the enhancements to the kind system added in GHC
7.4 to encode universes and their interpretations in Haskell and im-
plement generic conversions for them.
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