
INFRAGEN: Binder Boilerplate at Scale

Abstract
A key concern in the mechanization of programming language
metatheory is the representation of terms with variable binding.
The properties of operations manipulating terms are notoriously
burdensome to prove and the amount of work required to scale
formalizations to realistic programming languages with rich bind-
ing forms is deemed infeasible. This is a pity, because we lose the
practical benefits of mechanizing real programming languages.

We present a new solution to generically handle the boilerplate
involved in mechanizations that scales to rich binding forms and
advanced rules of scoping. We define a new specification language
for abstract syntax with binding and implement a code generator
that produces Coq code for the representation of the abstract syntax,
syntactic operations and proofs of their properties.

We illustrate how our approach removes the burden of variable
binding boilerplate in the mechanization of realistic programming
languages on a list of example specifications and a solution of the
PoplMark challenge based on the generated code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords variable binders, mechanized meta-theory, datatype-
generic programming, code generation

1. Introduction
The meta-theory of programming language semantics and type-
systems is highly complex due to the management of many details.
Formal proofs are long and prone to subtle errors that can invalidate
large amounts of work. In order to guarantee the correctness of
formal meta-theory, techniques for mechanical formalization in
proof-assistants have received much attention in recent years.

An important issue that arises in many formalizations is the
treatment of variable binding which typically comprises the bet-
ter part of the whole formalization. Most of this variable bind-
ing infrastructure is repetitive and tedious boilerplate. To allevi-
ate researchers from this burden, multiple approaches have been
developed to capture the structure of variable binding and generi-
cally take care of the associated boilerplate. These include speci-
fication languages of syntax with binding and scoping rules, tools
that generate code for proof assistants from specifications, generic
programming libraries that implement boilerplate using datatype
generic functions and proofs, and meta-languages that have built-
in support for syntax with binding.

[Copyright notice will appear here once ’preprint’ option is removed.]

Yet, despite all the existing support, mechanized meta-theory
is still only rarely used where it can make the biggest difference:
full-scale programming languages. The reason is that it is practi-
cally infeasible to mechanize a realistic language entirely by hand.
The development cost would be prohibitive, and, when small struc-
tural changes can have a snowball effect, maintenance would be a
nightmare too. Unfortunately, the available tools that cover binder
boilerplate are also inadequate to alleviate part of the burden. The
problem is that most do not cover the rich-binding forms (such as
patterns or declaration lists) and the advanced scoping rules (like
sequential and recursive scopes) that are typical of realistic lan-
guages, and those that do still leave of most of the boilerplate up
to the developer. As a consequence, only drastic simplifications of
realistic languages are mechanized, in order to fit the mold of exist-
ing tools and make the development cost affordable. For example,
multi-variable binders are replaced by single-variable binders and
polymorphic languages by monomorphic sublanguages to avoid
dealing with multiple distinct namespaces. Obviously there is a
very real danger that these simplifications gloss over actual prob-
lems in the full-scale language and give a false sense of security.

This work takes a big step towards making the mechanization
of realistic programming languages manageable by taking care of
the boilerplate for rich binding forms and advanced scoping rules.
For this purpose we provide INFRA, our Ott-style specification lan-
guage [?], to concisely and intuitively specify the abstract syn-
tax and rich binding structure of realistic programming languages.
From such an INFRA specification our INFRAGEN tool generates
Coq code: the necessary datatypes for a de Bruijn representation
of the abstract syntax and the corresponding variable binder boiler-
plate. This boilerplate covers shifting and substitution operations,
as well as properties and proofs of these operations.

Our specific contributions are:

• We present a new generic solution to the automatic treatment
of variable binding boilerplate based on the INFRA specifica-
tion that scales to realistic programming languages with rich-
binding forms and advanced forms of scoping like recursive and
sequential scopes. This combination of expressiveness and the
extent of the boilerplate is not covered by any existing work.

• We mechanically verify the meta-theory of INFRA in Coq. This
mechanical formalization gives rise to datatype-generic imple-
mentations of boilerplate operations and lemmas.

• We develop the INFRAGEN tool that provides a user-friendly
way to generate boilerplate code from an INFRA specification
for the Coq proof-assistant.

• We perform a case-study, including parts of the POPLMARK
challenge, that shows the expressiveness and benefits of our
approach.

The code for INFRAGEN and the Coq developments of our case
study are available at http://goo.gl/zcVPTu.

1 2014/10/31

http://goo.gl/zcVPTu

α ::= type variable
x ::= term variable
τ ::= type
| α type variable
| τ → τ ′ function type
| τ1, τ2 product type
| ∀α. τ universal type
e ::= term
| x variable
| λx :τ. e abstraction
| e1 e2 application
| Λα. e type abstraction
| e[τ] type application
| e1, e2 product
| let p=e1 in e2 pattern binding

p ::= pattern
| x variable pattern
| p1, p2 product pattern

Γ ::= type environment
| ε empty env
| Γ, α type binding
| Γ, x : τ term binding

Figure 1. F× syntax

2. Overview
This section gives an overview of the variable binding boilerplate
that arises when proving type preservation of typed programming
languages. For this purpose we use F× (i.e., System F with prod-
ucts and destructuring pattern bindings) as the running example. In
the following, we elaborate the different steps of the formalization
and point out where variable binding boilerplate arises.

2.1 Syntax: Variable Representation
Figure 1 shows the first step in the formalization: the syntax of F×.
Notice that patterns can be nested and thus can bind an arbitrary
number of variables at once. In this grammar the scoping rules are
left implicit. The intended rules are that in a type or term abstraction
the given variable scopes over the body e and in a pattern binding
the variables bound by the pattern scope over e2 but not e1.

The syntax raises the first variable-related issue: how to con-
cretely represent variables, issue that is side-stepped in Figure 1.
Traditionally one would use identifiers as the set of variables. How-
ever, when formalizing meta-theory this representation requires
reasoning modulo α-conversion of bound variables to an extent that
is excruciating. It is therefore inevitable to choose a different rep-
resentation of the abstract syntax.

The goal of this paper is not to develop a new approach to
variable binding or to compare advantages or disadvantages of
existing ones, but rather to scale the generic treatment of a single
approach to realistic languages. We choose to work with de Bruijn
representations for mainly two reasons. First, reasoning with de
Bruijn representations is well-understood and in particular and the
representation of pattern binding and scoping rules is also well-
understood [? ?]. Second, the functions related to variable binding,
the statements of properties of these functions and their proofs have
highly regular structures with respect to the abstract syntax and the
scoping rules of the language. This helps us in treating boilerplate
generically and automating proofs.

The term grammar below encodes a de Bruijn representation
of F×. The variable occurrences of binders have been removed in
this representation and the referencing occurrence of type and term
variables are replaced by de Bruijn indices n .

T := n | Arr T1 T2 | Prod T1 T2 | All T
p := pvar | pprod p1 p2

t := n | abs T t | app t1 t2 | tabs t |
tapp t T | prod t1 t2 | let p t1 t2

The de Bruijn indices point directly to their binders: The index
k points to the k th enclosing binding position. For instance, the
F× expression for the polymorphic swap function

Λα.Λβ. λx :(α, β). let (x1 , x2)=x in (x2 , x1)

is represented by the de Bruijn term

tabs tabs abs (Prod 1 0)
(let (pprod pvar pvar) 0 (prod 0 1))

Again the order in which de Bruijn indices are bound and the
scoping rules are left implicit in the term grammar. Our specifica-
tion language INFRA for de Bruijn terms from Section 3 will make
order of binding and scoping rules explicit.

A second example representation is tabs tabs (abs 1 (abs 0 1))
for the polymorphic const function Λα.Λβ. λx :α. λy :β. x .

We treat indices for variables from distinct namespaces inde-
pendently: The index for the type variable β that is used in the
inner abs is 0 and not 1, because we only count the number of
binders for the corresponding namespace but not binders for other
namespaces.

2.2 Semantics: Shifting and Substitution
The next step in the formalization is to develop the typical semantic
relations for the language of study. In the case ofF× these comprise
a small-step call-by-value operational semantics, as well as a well-
formedness relation for types, a typing relation for terms and a
typing relation for patterns.

This requires us to develop our first set of variable boilerplate:
type and term substitution operations on the de Bruijn representa-
tion. For this, we need an auxiliary operation called shift that adapts
the indices of the free variables in an expression. More specifically,
if a type substitution goes under a binder, as in

[α 7→ τ1](Λβ. τ2)

the substitution is continued in a context that has one more variable.
Accordingly we need to increment the index of α and the indices
of free variables in the representation of τ2 so that they still refer to
the same variables.

To restrict shifting to free variables but not bound variables, the
shiftτ function below takes a cutoff parameter c. Initially the cutoff
is zero and when going under a binder that number is incremented
with the amount of variables that are being bound. Thus the indices
of bound variables are smaller than the cutoff and the indices of
free variables are greater or equal to the cutoff.

Definition 1. The one-place shift of types is recursively defined as

shiftτ c n = shiftN c n
shiftτ c (Arr T1 T2) = Arr (shiftτ c T1) (shiftτ c T2)
shiftτ c (All T) = All (shiftτ (1 + c) T)
shiftτ c (Prod T1 T2) = Prod (shiftτ c T1) (shiftτ c T2)

and the one-place shift of an index as

shiftN c n =

{
1 + n , n > c

n , n < c.

Substitution is typically used for β-reduction: given a type ab-
straction applied to a type, we substitute the type variable by the
given type in the body and remove the abstraction

(Λα.τ2) τ1
β−→ [α 7→ τ1] τ2

2 2014/10/31

Because the abstraction is removed we need to adapt the in-
dices of variables. Indices of variables bound in τ2 can remain un-
changed; they have an index that is strictly smaller than that of α.
Indices of free variables of τ2 need to be decremented to account
for the fact that α’s binder is removed; they have an index that is
strictly greater than that of α. We are now able to define type sub-
stitution substτ m S T on the de Bruijn representation.

Definition 2. Type substitution in types is defined as

substτ m τ n = substN m τ n
substτ m τ (Arr τ1 τ2) = Arr (substτ m τ τ1)

(substτ m τ τ2)
substτ m τ (Prod τ1 τ2) = Prod (substτ m τ τ1)

(substτ m τ τ2)
substτ m τ (All τ ′) =

All (substτ (m + 1) (shiftτ 0 τ) τ ′)

and the type substitution for indices is defined as

substN m τ n =

n , n < m

τ , n = m

n− 1 , n > m.

We also need to define type shifting and type substitution in
terms as well as term shifting and term substitution in terms. For
the latter two, the interesting case is pattern bindings. Given the
function b that counts the number of variables in a pattern p

b (pvar) = 1
b (pprod p1 p2) = b p2 + b p1

we have

shifte c (let p e1 e2) = let p (shifte c e1) (shifte (b p + c) e2)

and

subste m s (let p e1 e2) =
let p (subste m s e1) (subste (b p + m) s e2)

2.3 Theorems: Commutation, Weakening and Preservation
Given the definitions from the previous subsection, we are ready to
define the semantics and type system of F× and move on to formu-
late and prove type soundness for F×. We refrain from formulating
it here explicitly. The proof of type soundness involves the usual
lemmas for inversion of values, well-definedness of pattern match-
ing, progress and preservation [?]. In order to prove these lemmas
we require a second set of variable binding boilerplate: lemmas for
various properties of the shift and substitution relations, both on the
level of terms and of relations.

• At the level of terms, lemmas include commutation between
two operations in the same or distinct namespaces, e.g., the
commutation of two shifts in the namespace of types or the
commutation of a type substitution with a term substitution.

• At the level of relations, we have weakening lemmas, preserva-
tion under type substitution as well as preservation under term
substitution.

2.4 Summary
Table 1 summarizes the effort required to formalize type soundness
of F× in the Coq proof assistant in terms of the de Bruijn represen-
tation. It lists the lines of Coq code for the three different parts of
the formalization discussed above, divided in binder-related “boil-
erplate” and the other “useful” code.

The table clearly shows that the boilerplate constitutes more
than half of the formalization (57.3%). The boilerplate lemmas in

Useful Boilerplate

Syntax 23 0 (0%)
Semantics 177 132 (11.0%)
Theorems 311 553 (46.2%)

Total 511 685 (57.3%)

Table 1. Lines of Coq code for the F× meta-theory mechanization.

particular, while individually fairly short, make up the bulk of the
boilerplate and close to half of the whole formalization (46.2%).

Of course, very similar variable binder boilerplate arises in
the formalization of other languages, where it requires a similar
unnecessarily large development effort. Rossberg et al. [?] report
that 400 out of 500 lemmas of their mechanization in the locally-
nameless style [?] were tedious boilerplate lemmas.

Fortunately there is much regularity to the boilerplate: it follows
the structure of the language’s abstract syntax and its scoping rules.
Many earlier works have already exploited this fact in order to
automatically generate or generically define part of the boilerplate
for simple languages.

2.5 Objectives and Approach
The aim of this work is to exploit the generic structure of variable
binder boilerplate to cater for large-scale languages that contain
complex binding structures, like the nested pattern matches of F×,
recursive multi-binders, . . . Moreover, because the formalization of
large-scale languages would otherwise be prohibitive we cover a
larger extent of the boilerplate than earlier works.

Our approach consists of a specification language, called IN-
FRA, that precisely covers the universe of supported languages. We
provide generic definitions and lemmas for the variable binding
boilerplate that apply to every well-formed INFRA specification.
Finally, we complement the generic approach with a code genera-
tor, called INFRAGEN, that specializes the generic definitions and
allows manual customization and extension.

3. Grammars and Binding Specifications
This section introduces INFRA, the language for specifying the ab-
stract syntax and associated variable binder information of pro-
gramming languages. The advantage of specifying programming
languages in INFRA is straightforward: the variable binder boiler-
plate comes for free for any well-formed INFRA specification.

The syntax of INFRA allows programming languages to be
expressed in terms of different syntactic sorts, term constructors for
these sorts and binding specifications for these term constructors.
The latter specify the number of variables that are bound by the
term constructors as well as their scoping rules.

The semantics of INFRA explains which concrete terms inhabit
a particular INFRA specification. As noted in the previous section,
INFRA assumes concrete terms make use of the de Bruijn represen-
tation for variables.

3.1 INFRA Syntax
Figure 2 shows the grammar of INFRA. An INFRA specification
spec of a language consists of a declaration of variable namespaces
α and of declarations of syntactic sort declarations sort .

A sort declaration consists of constructor declarations ctor , of
which there are two kinds. It is either a variable constructor C α
that holds a de Bruijn index that references the namespace α or it
is a constructor C nti bsi

i
: fnj = vlej

j
that has subterms but

no indices as immediate children. The i-th subterm is named nti

3 2014/10/31

spec ::= Specification
| namespacesαi

i sort j
j

α, β ::= Namespace
sort ::= Sort declaration

| s := ctori
i

s ::= Sort names
ctor ::= Constructor decl.

| C α

| C nti bsi
i

: fnj = vlej
j

C ::= Constructor name
nt ::= Field name

| s suff
suff ::= Suffix
bs ::= Binding specification

| vlei
i

vle ::= Variable list
| ε empty
| α singleton
| fn(nt) function call
| vle1, vle2 concatenation

fn ::= Function name

Figure 2. Grammars with binding specifications

and has a binding specification bsi . A subterm name consists of
a sort name s followed by an optional numeric suffix. The former
specifies the sort of the subterm and the latter distinguishes it from
other subterms of the same sort. The subterm’s binding specifica-
tion bsi stipulates which variables are bound by the term construc-
tor and brought in scope of the subterm. The binding specification
consists of a heterogeneous list of homogeneous variable list ex-
pression vle . We will discuss this choice in more detail in Section
8. A variable list expression vle represents a homogeneous list of
nameless variables, i.e. variables that live in the same namespace. A
variable list expression is either empty, a singleton variable form a
given namespace, the concatenation of two variable list expressions
or the invocation of an auxiliary function.

Each non-variable constructor is annotated with fnj = vlej
j
, a

list of auxiliary function bindings. These auxiliary functions calcu-
late variable lists from terms and serve to specify binders in binding
specifications.

3.2 Examples
The following examples of rich binder forms illustrate the expres-
sive power of INFRA.

Nested Patterns Figure 3 shows the INFRA specification of F×.
We start with the declaration of two namespaces: X for type vari-
ables and x for term variables, which is followed by the decla-
rations of F×’s three sorts: types, patterns and terms. For read-
ability reasons we have omitted empty binding specifications from
these declarations. The INFRA specification contains only four non-
empty binding specifications: universal quantification for types and
type abstraction for terms each bind exactly one type variable, the
lambda abstraction for terms binds exactly one term variable and
the destructuring let binds b(p) variables in t2 where b is an auxil-
iary function defined on patterns.

Recursive Scopes Figure 4 shows the specification of a simply-
typed lambda calculus with recursive let definitions like the ones
found in the Haskell programming language.

namespaces X , x
T :=
| Var X
| Arr T1 T2

| All T [X]
| Prod T1 T2

p :=
| pvar : b = X
| pprod p1 p2 : b = b(p1), b(p2)

t :=
| var x
| abs T t [x]
| app t1 t2
| tabs t1 [X]
| tapp t T
| prod t1 t2
| let p t1 t2 [b(p)]

Figure 3. Example specification of F×

namespaces x
T :=
| Top
| Arr T1 T2

d :=
| nil : b = ε
| cons t d : b = x , b(d)

t :=
| var x
| abs T t [x]
| app t1 t2
| letrec d [b(d)] t [b(d)]

Figure 4. Example specification of recursive let

The auxiliary function b collects the variables bound by a dec-
laration list d . In the term constructor letrec we specify that the
variables of d are not only bound in the body t but also in d itself.

Interdependent Namespaces Figure 5 shows the specification of
a lambda calculus with first-order dependent types as presented by
Pierce [?]. In this language terms t and types T are mutually
recursive and have distinct namespaces. Type variables can be
declared in the context with a specific kind K but are never bound
in the syntax.

Sequential Scoping Telescopes were invented to model dependently-
typed systems [?]. A telescope is a list of of variables together with
their types

x1 : T1, . . . , xn : Tn

where each variable scopes over types that appear later in the list.
The calculus presented in Figure 6 uses telescopic abstractions.

In the abstract syntax of telescopes D the variable names are erased
but the sequential scoping is captured in the specification. In the
lambda abstraction case abs and the dependent function type con-
structor pi the variables of a telescope are bound simultaneously in
the body.

4 2014/10/31

namespaces X , x
T :=
| Var X
| Pi T1 T2 [x]
| App T t

t :=
| var x
| abs T t [x]
| app t1 t2

K :=
| star
| pi T K [x]

Figure 5. Example specification of λLF

namespaces x
t :=
| var x
| abs D t [b(D)]
| pi D t [b(D)]
| app t1 t2

D :=
| nil : b = ε
| cons T D [x] : b = x , b(D)

Figure 6. Example specification of telescopic lambdas

3.3 Well-Formed INFRA Specifications
Figure 7 defines the well-formedness relation Φ ` spec for INFRA
specifications spec with respect to the global function environment
Φ. This global function environment Φ associates with each func-
tion fn a signature s → α. The single rule WFSPEC expresses that
a specification is well-formed if each of its sort declarations is.

Rule WFSORT in turn states that a sort declaration is well-
formed if each of its constructor declaration is well-sorted with the
declaration’s sort. The auxiliary well-sorting relation Φ ` ctor : s
denotes that constructor declaration ctor has sort s with respect to
the global environment Φ. There are two rules for this relation, one
for each constructor form.

The grammar of INFRA already syntactically enforces that no
auxiliary functions are defined for variable constructors. Rule WF-
VAR goes further and requires that in this case there is no function
for that sort in the function environment Φ. This implies that, if a
sort has a variable constructor, its other constructors cannot have
function definitions either. The restriction is necessary to guarantee
that auxiliary functions are stable under shifting and substitution.
For instance, substituting terms in a list of let-bound declarations
does not change the number of variables that is bound by that dec-
laration list.

Rule WFCTOR handles the case of non-variable constructors.
This rule requires that the binding specification of each subterm is
well-formed and that the function definition is well-typed. The for-
mer is regulated by rule WFBINDSPEC, which requires the bind-
ing specification to be a (possibly) heterogeneous list of homoge-
neously typed sublists.

The relation Φ,Γ ` vle : α denotes that variable list ex-
pression vle is typed homogeneously with elements from names-
pace α with respect to global function environment Φ and local
non-terminal environment Γ. It is defined by four rules. By rule

WFVLEEMPTY, the empty list ε has elements from any names-
pace α. Rule WFVLESINGLE states that the singleton list, denoted
by α, has elements from the corresponding namespace α. Rule
WFVLEAPPEND requires that the two subterms of a concatenation
are typed homogeneously. Finally, rule WFVLEAUX makes sure
that function calls respect the function signature.

In addition to the explicitly formulated well-formedness re-
quirements of Figure 7, we also require a number of simple con-
sistency properties:

1. Constructor names are not repeated for different constructor
declarations.

2. Field names are not repeated in a constructor declaration.

3. For each namespace α there is a unique variable constructor
declaration C α.

The first two requirements avoid ambiguity and follow good
practice. The third requirement expresses that every variable be-
longs to one sort and there is only one way, i.e., one term construc-
tor, to inject it in that sort.

3.4 INFRA Semantics
We are now able to generically define abstract syntax terms for
well-formed INFRA specifications. Fix a specification spec and
suppose spec is well-formed with function environment Φ. We
assume that information about constructors is also available in a
global environment. We will use (C : α → s) for looking up
the namespace α and sort s of a variable constructor and (C :

nt i bs i
i → s) for retrieving the field names and binding speci-

fication of non-variable constructors. When we are only interested
in the sorts of the fields, we will write (C : si

i → s) instead.
Figure 8 contains a term grammar for raw terms. A term con-

sists of either a term constructor applied to a natural number or a
term constructor applied to other terms. Figure 9 contains a judg-
ment for well-sortedness of terms. Rule WFASTVAR states that a
term constructor applied to a natural number is well-sorted with s
if it was declared as a variable constructor in the declaration of s .
Finally, rule WFASTCTOR makes sure that for non-variable con-
structors the arity and sorts of subterms are respected.

4. Infrastructure Operations
In the previous section we have introduced the INFRA specification
language and given it a semantics by declaring the abstract syntax
terms that are valid with respect to the specification. In this section
we generically define the boilerplate syntax operations on valid
abstract syntax terms.

Again, we fix a specification spec with function environment
Φ. The first operation we consider is the evaluation of variable
list expressions, that return the number of variables bound by a
binding construct. Subsequently we define shifting and substitution
operations that respect the scoping rules defined by the binding
specifications that are part of spec.

For the definitions in this chapter we make use of several helper
functions. The function (defOf : fn → C → vle) returns the
defining variable list expression of a function fn for the constructor
C . Furthermore, we need a function (namespacesOf : s → αi

i)
that associates sorts with the set of namespaces they depend on.
For example, in F× types do not depend on the namespace for term
variables. We will use that in the definition of the operations to
not recurse into subterms of sorts on which the operations are the
identity function. We require namespacesOf to fulfil two sanity
conditions.

1. For each constructor (C : α→ s)

α ∈ namespacesOf s

5 2014/10/31

Φ ::= Function environment
| fni : si → αi

i

Γ ::= Field environment
| nti

i

Φ ` spec

∀j . Φ ` sort j

Φ ` namespacesαi
i sort j

j WFSPEC

Φ ` sort

∀i . Φ ` ctori : s

Φ ` s := ctori
i WFSORT

Φ ` ctor : s

∀β. 6 ∃fn.(fn : s → β) ∈ Φ

Φ ` C α : s
WFVAR

∀i . Φ, nti i ` bsi
∀(fn : s → α) ∈ Φ. ∃ i .

fn = fni ∧ Φ, nti
i ` vlei : α

∀j . ∃α.(fnj : s → α) ∈ Φ

Φ ` C nti bsi
i

: fnj = vlej
j

: s
WFCTOR

Φ,Γ ` bs

∀i . ∃α.Φ,Γ ` vlei : α

Φ,Γ ` vlei
i WFBINDSPEC

Φ,Γ ` vle : α

Φ,Γ ` ε : α
WFVLEEMPTY

Φ,Γ ` α : α
WFVLESINGLE

(fn : s → α) ∈ Φ
(s suff) ∈ Γ

Φ,Γ ` fn(s suff) : α
WFVLEAUX

Φ,Γ ` vle1 : α
Φ,Γ ` vle2 : α

Φ,Γ ` vle1, vle2 : α
WFVLEAPPEND

Figure 7. Well-formed specifications

2. and for each constructor (C : si
i → s)

∀i .namespacesOf si ⊆ namespacesOf s.

4.1 Variable List Evaluation
The binding specification for a particular subterm of a given term
constructor defines how many variables are bound by the construc-
tor in that subterm. The evaluation operator captures the semantics
of binding specifications by evaluating the binding specification for
a given term and returning the concrete number of variables that are
bound.

Figure 10 defines the evaluation operator evalα for variable list
expressions and auxiliary functions. The evaluation of a variable

n, m, c ::= 0 | S n De Bruijn index
t ::= Abstract syntax terms

| C n

| C ti
i

Figure 8. Grammar for abstract syntax terns

` t : s

C : α→ s

` C n : s
WFASTVAR

C : si
i → s

∀i . ` ti : si

` C ti
i

: s
WFASTCTOR

Figure 9. Well-sorted abstract syntax terms

evalα :: ti
i → vleα → vlα

evalα ti
i
ε = 0

evalα ti
i
α = 1

evalα ti
i

(vle1, vle2) = evalα ti
i

vle2 + evalα ti
i

vle1

evalα ti
i

(fn nt i) = evalα fn ti

evalα :: fn → t → vlα

evalα fn (C ti
i
) = evalα ti

i
(defOf C fn)

Figure 10. Evaluation of variable list expressions and functions

list expression is always performed in the context of a particular
constructor C . This is taken into account in the call to evalα by
supplying as the first argument the list of subterms for the fields of
C . The interesting case of evalα is that of a function call fn(nt i),
which evaluates fn on the corresponding term ti . The evaluation of
a function pattern matches on the term and looks up the definition
of the function for that constructor using defOf . Note that we have
ruled out function definitions for variable constructors. Thus, we do
not need to handle that case here.

4.2 Shifting
We now define the shift operation generically over all abstract syn-
tax terms. We can perform the shift in each namespace indepen-
dently. Our definitions for shift in Figure 11 are therefore parame-
terized over a namespace α.

The function shiftα has two arguments: a cutoff and a term t .
The case for the variable constructor C :α→ s shifts the index by
using shiftN that we defined in Section 2. For variable constructors
of other namespaces we keep the index unchanged. In the case of
a non-variable constructor we need to calculate the cutoffs for the
recursive calls. This is done using the liftα function. liftα takes as
parameters the binding specification bs of a field nt i , the subterms
ti

i for all fields and a cutoff c. It will increment c by evaluation
every part of the binding specification for the namespace α. Using
the calculated cutoffs, the shift ′α function can proceed recursively
on the subterms that depend on the namespace α.

6 2014/10/31

shiftα :: c → t → t

shiftα c (C n) = if C : α→ s
then C (shiftN c n) else C n

shiftα c (C ti
i
) = C shift ′α ci ti

i

where C : nt i bs i
i → s

ci = liftα bs i ti
i

c

shift ′α :: c → t → t

shift ′α c t = if ` t : s ∧ α ∈ namespacesOf s
then shiftα c t else t

liftα :: bs → ti
i → c → c

liftα [] ti
i

c = c

liftα (bs, vle) ti
i

c =

if Φ, ti
i ` vle : α

then evalα ti
i

vle + liftα bs ti
i

c

else liftα bs ti
i

c

weakenα :: n → t → t

weakenα n t = if n ≡ 0
then t
else shiftα 0 (weakenα (n − 1) t)

Figure 11. Shifting of terms

4.3 Weakening
As Figure 11 shows, we implement k -place weakening weakenα
by iterating the 1-place shiftα operator. Weakening will be instru-
mental in hoisting terms under binders in the definition of substitu-
tions.

4.4 Substitution
In the remainder of this section we define a substitution operation
generically for all namespaces. Similar to shifting we have three
substitution functions and one auxiliary function lifts . In all cases,
the index m is to be substituted by the term t given as the second
argument.

substN,α implements the necessary arithmetic to define substi-
tutions for de Bruijn indices. In the case n > m the decrement
is needed, because we consider the variable to be removed from
the context. The substitution for terms substα recurses on the term
structure, lifts the index m and term t under the binding specifica-
tion of the subterms. The variant subst ′α only recurses when when
it is necessary to do so.

The auxiliary function lifts implements the hoisting of terms
under binders for the sort s . For each part of a binding specification
we weaken the term t if s depends on the namespace of the binder.

5. Infrastructure Lemmas
In this section we look at properties of the shift and substitution
operators that are useful in mechanization. We discuss the steps in
the proof of a lemma on commutations of shift to explain the rea-
soning approach that is involved. Understanding each step in detail
is important for the correctness of our code generator INFRAGEN.

5.1 Example: Shift Commutation
Lemma 3. For every namespace α the following holds

substN,α :: m → t → n → t

substN,α m t n
| n <m = C n
| n ≡ m = t
| n >m = C (n − 1)
where C : α→ s

substα :: m → t → t → t

substα m t (C n) = if C : α→ s
then substN,α m t n
else C n

substα m t (C ti
i
) = C subst ′α mi t ′i ti

i

where C : nt i bs i
i → s

mi = liftα bs i ti
i

m

t ′i = lifts bs i ti
i

t

subst ′α :: m → t → t → t

subst ′α m t t ′ = if ` t ′ : s ∧ α ∈ namespacesOf s
then substα m t t ′ else t ′

lifts :: bs → ti
i → t → t

lifts [] ti
i

t = t

lifts (bs, vle) ti
i

t =

if Φ, ti
i ` vle : β ∧ β ∈ namespacesOf s

then weaken (evalβ ti
i

vle) (lifts bs ti
i

t)

else lifts bs ti
i

t

Figure 12. Substitution of terms

shiftα 0 ◦ shiftα c = shiftα (1 + c) ◦ shiftα 0

The intuition behind Lemma 3 is the following: We are using
shift to adapt indices whenever a new variable is introduced into
the context, e.g. by going under a binder. shift c adapts indices
for an introduction of a variable at position c and shift 0 for a
new variable at the end of the context. The lemma says how these
operations commute. Inserting a new variable x at position c and
then a new variable y at position 0 is the same as inserting y first
at 0 and then accounting for y when inserting x , i.e. inserting it at
position 1 + c.

A problem of Lemma 3 is that we cannot prove it by induction
over terms directly. The reason is that the cutoffs change when
going under a binder. For instance, when going under a lambda
abstraction that binds a single variable, we need to show

shiftα 1 (shiftα (1 + c) t) = shiftα (2 + c) (shiftα 1 t)

for the body t of the lambda abstraction. The induction hypothesis
for t would be useless in this case. Hence, in order to obtain a useful
induction hypothesis we need to strengthen Lemma 3 to:

Lemma 4. For every namespace α and natural numbers k , c the
following holds

shiftα k ◦ shiftα (k + c) ≡ shiftα (k + (1 + c)) ◦ shiftα k

Note that the variable case of Lemma 4 is independent from
a concrete specification. Hence, it is worthwhile to capture it in a
separate reusable lemma that we prove once and for all:

7 2014/10/31

Lemma 5. For every natural number k and c the following holds

shiftN k ◦ shiftN (k + c) ≡ shiftN (k + (1 + c)) ◦ shiftN k

Proof. By arithmetic reasoning.

To prove Lemma 4 we will need two more auxiliary lemmas
about evaluation of binding specifications.

Lemma 6. For every namespace α, binding specification bs , terms
ti

i and cutoffs ci
i we have

lift bs shiftα ci ti
i ≡ lift bs ti

Proof outline. By induction over binding specification bs and using
similar lemmas for the evaluation of variable list expressions and
auxiliary functions.

Lemma 7. For every namespace α, binding specification bs , terms
ti

i and natural number k , c we have

lift bs ti (k + c) ≡ lift bs ti k + c

Proof outline. By induction over binding specification bs and using
the associativity of addition.

The shift and substitution operators only act on variables and
leave the rest of the term unchanged. To prove Lemma 6, we
needed to rule out auxiliary functions for sorts with variables. A
similar lemma holds for substitutions. Lemma 7 reassociates a list
of additions

n1 + (...+ (ni + (k + c))...)

into
(n1 + (...+ (ni + k)...) + c.

Proof outline of Lemma 4. By induction over terms. Use Lemma 5
in the variable case. For the non-variable case we need Lemma
6 to ensure that the same subterms are used in the evaluation
of the binding specification to lift the cutoff. Use Lemma 7 to
reassociate the lifted cutoffs to match the form of the induction
hypotheses.

In contrast to Lemma 5 which we can implement generically,
our code generator INFRAGEN does generate specialized code for
Lemmas 4, 6 and 7. However, all difficult arithmetic reasoning that
is involved is encapsulated in the generic variable case. The rest of
the proof that is generated only involves fairly easy reasoning about
associativity.

5.2 Overview: Infrastructure Lemmas
To conclude this section we give a short overview of the lemmas
that we have formalized and implemented in INFRAGEN.

Lemma 8. The following hold for operations in the same names-
pace.

1. subst x s (shift x t) ≡ t

2. shift 0 (subst x s t) ≡
subst (1 + x) (shift c s) (shift c t)

3. shift c (subst 0 s t) ≡
subst 0 (shift c s) (shift (1 + c) t)

4. subst x s2 (subst 0 s1 t) ≡
subst 0 (subst x s2 s1) (subst (1 + x) (shift 0 s2) t)

The following lemmas cover the interaction between operations
in different namespaces α 6= β. Note that we use shift ′α in cases

where the statement of the lemma depends on the namespaces
involved.

5. shiftα c (shiftβ c t) ≡
shiftβ c (shiftα c t)

6. shiftα c (substβ mβ t t) ≡
substβ mβ (shift ′α c t) (shiftα c t)

7. substα mα t (substβ mβ t t) ≡
substβ mβ (subst ′α mα t t) (substα mα (shift ′β mβ t) t)

Proof outline. The proofs of the first group follow the same struc-
ture as the proof of the shift commutation lemma of Section 5.1.
For the second group a simple induction over the terms is suffi-
cient, there is no need to strengthen the statements.

6. INFRAGEN
While the generic Coq definitions presented in the previous sec-
tions are satisfactory from a theoretical point of view, they are less
so from a pragmatic perspective. The reason is that the generic code
only covers the variable binder boilerplate; the rest of a language’s
formalization still needs to be developed manually. Developing the
latter part directly on the generic form is cumbersome. Interacting
indirectly with the generic definitions through conversion functions
is not much better.

For this reason we also implemented a code generation tool,
called INFRAGEN that generates all the boilerplate in a language-
specific non-generic form. INFRAGEN takes an INFRA specifica-
tion and generates Coq code: the inductive definitions of a de Bruijn
representation of the object language and the corresponding spe-
cialized boilerplate definitions, lemmas and proofs. This generated
Coq code is linked against a companion library of reusable func-
tions, proofs and proof tactics.

6.1 Code Generation
Syntax The INFRAGEN tool generates inductive definitions for
each sort in the INFRA specification. Furthermore, it analyzes mu-
tually recursive groups, creates mutually recursive definitions for
the groups and derives corresponding induction schemes, so that
lemmas can be proven by mutual induction.

Function Boilerplate The effect of shifting on de Bruijn indices
is generically defined in the companion library. INFRAGEN gen-
erates a function that traverses a term to its variable positions and
updates the cutoff whenever recursing into a field with a binding
specification.

The variable case of the substitution operator is also generi-
cally implemented in the library. It is parameterized over the term
datatype T for the sort that is substituted, the variable constructor
var : T → T and the shift operation shift : nat → T → T .

Proof Boilerplate To reduce the implementation effort, INFRA-
GEN generates proof scripts rather than proof terms for boilerplate
lemmas. These scripts are backed by dedicated tactics in the com-
panion library that capture our knowledge of how such proofs pro-
ceed.

We have pushed the generic boilerplate for the variable case of
lemmas into the library in the same manner as we did for syntax
operations. The library contains a proof of the shift commutation
lemma for indices. The full proof of commutation for shifts on
terms

∀c, shift (1 + c) ◦ shift 0 = shift 0 ◦ shift c

is merely a congruence proof that can be proven by straightforward
induction.

8 2014/10/31

The library also contains two modules for generic proofs for
the variable case of the commutation lemmas. The first one covers
commutations between a shift and a substitution and is parameter-
ized over three properties

1. The effect of shift on variables

∀c, shift c ◦ var = var ◦ shiftN c.

2. The commutation lemma for shift .

3. The effect of subst on variables

∀x t , subst x t ◦ var = substN x t .

Using the first module the code generator will derive the com-
mutation lemmas for terms which are additional inputs to the sec-
ond module that derives the variable case of the commutation
lemma for two substitutions.

6.2 Soundness
We have not formally established that INFRAGEN always generates
type-correct code or that the proof scripts always succeed. Never-
theless, a number of important implementation choices bolster the
confidence in INFRAGEN’s correctness:

• Firstly, we have established that type-sound boilerplate defini-
tions and provable boilerplate lemmas exist for every language
specified with INFRA. This proof consists of the Coq formaliza-
tion of INFRA and the corresponding generic boilerplate defini-
tions and lemmas.

• Secondly, the generated functions and proofs follow the struc-
ture of the generic functions and proofs in the formalization.
Thus the reasoning steps in the generated proofs are the appro-
priate steps to take in order to establish the desired properties.

• Thirdly, the variable cases of lemmas are generically handled
in the companion library. This means that we have established
their correctness once and for all. Furthermore, the variable
case is usually the difficult case in the proofs, whereas all other
cases are merely congruences. More specifically, most of the
reasoning about arithmetic happens in the variable case.

• Finally and more pragmatically, we have implemented a test
suite of INFRA specifications for INFRAGEN that contains a
number of languages with advanced binding constructs includ-
ing dependently-typed languages and languages with recursive
scoping for which correct code is generated. This test suite is
covered in more detail in Section 7.

Nevertheless, the above does not rule out trivial points of failure
like name clashes between definitions in the code and the Coq
standard library. Fortunately, when the generate code is loaded in
Coq, Coq still performs a type soundness check to catch any issues;
soundness never has to be taken at face value.

6.3 Binding Specification Design
While several design decisions for INFRA were made with INFRA-
GEN in mind, this is particularly true for the nature of binding spec-
ifications.

Binding specifications consist of nested lists of bound variables.
Their grammar is set up in such a way that the structure of the
outer heterogeneous list is always statically known. In contrast,
the structure of the inner homogeneous lists may not be statically
known when it is expressed in terms of auxiliary function calls
which depend on runtime values. INFRAGEN exploits the statically
known structure to fully inline the code for the heterogeneous
lists, including the functions namespacesOf , liftα, lifts , shift ′α
and subst ′α. As a consequence we are left with homogeneous
operations only.

While we have briefly considered to support only homogeneous
binding specifications, we have quickly rejected them as inade-
quate. For instance GADT pattern matching in System FC [?] in-
volves binding term, type and coercion variables simultaneously.
Hence, an adequate formalization requires heterogeneous binding
specifications.

Another alternative is to have flat heterogeneous lists as binding
specifications. That allows arbitrarily interleaved binding of vari-
ables from different namespaces. However, to support binding an
arbitrary number of variables, the structure of these lists cannot
be known statically. This requires a dynamic representation. Be-
cause of modularity concerns the usual way to do it, is to define a
traversal function that is parameterized over an operation for each
namespace in namespacesOf . For example when traversing a het-
erogeneous binder of type and term variables we call a parameter
function f for each bound term variable and a function g for each
type variable. This is in effect a Church encoding of a heteroge-
neous variable list. The problem with this is reasoning: all of the
commutation lemmas are strengthened with a heterogeneous vari-
able list. In the variable case the lemma is proved by induction over
that variable list. However, performing induction over Church en-
codings is problematic. One can still use this version by perform-
ing the reasoning over the patterns instead, i.e. establish the lem-
mas for the Church encoded lists by induction over the piece of
data that created them. This has 2 big disadvantages. Firstly, each
lemma now needs to be proved for every kind of binding specifica-
tion separately, which is a considerable blow up in terms of code.
Secondly, the variable case cannot be proven generically upfront.
This is especially bad because the variable case contains the diffi-
cult arithmetic reasoning. This would undermine the correctness of
the code generator.

In summary, our design of binding specifications sits in a sweet
spot between flat homogeneous and flat heterogeneous lists. On
the one hand, even though it forces the user to choose the order
in which variables from different namespaces are bound, it is still
highly expressive. On the other hand, it is still very suitable for
reasoning; the only price to pay is the reasoning about commutation
of operations where variables of different namespaces are bound.

6.4 Inductive relations
INFRAGEN also has some preliminary support for contexts and
inductive relations. It is possible to declare the typing context of
F× like this

ctx G :=
| ε : empty
| x : etermvar G T
| X : etypevar G

A well-formed context has exactly one empty constructor with-
out fields and several linear constructors that bind one variable in
the namespace indicated before the constructor name. From such
a declaration INFRAGEN derives predicates for insertion of vari-
ables into contexts, predicates for context lookups and weakening
lemmas for context lookups. Furthermore, one can declare induc-
tive relations where one can use substitutions of the 0 index and
shifting with the 0 cutoff in the judgements. For languages that fea-
ture only single-variable binding, INFRAGEN generates code for
the weakening lemmas of the relations.

7. Case study
To show the expressiveness of our specification language and the
benefits of our approach we have performed a case study consisting
of two parts. We have implemented a range of language specifica-
tions of languages with rich bindings forms and we have performed

9 2014/10/31

mechanizations of type-safety proofs for 4 different languages that
use the code generated by our tool INFRAGEN.

7.1 Language suite
The language specification that we have implemented are part of
INFRAGEN’s test suite. The binding forms that it covers includes
pattern bindings, declaration lists with various scoping rules, the
combination of pattern bindings with declaration lists and lan-
guages featuring intricate dependencies between namespaces and
sorts like λLF and the calculus of constructions.

The number of lemmas generated lies in O(m2n) where m
is the number of namespaces and n is the number of syntactic
sorts. For languages with two namespaces like λLF this amounts
to about 1000 lines of Coq code for the variable binding boilerplate
and additionally 300 lines of code for the definition of context
lookups, insertions and weakening lemmas of λLF ’s type system
[?]. Nevertheless, the code for λLF is checked by Coq in less than
4 seconds on a modern laptop.

7.2 Mechanizations
We have performed mechanizations of type-safety proofs for 4
different languages:

λ the simply-typed lambda calculus,

F× System F with products,

F<: System F with subtyping as in the POPLmark chal-
lenge, and

F<:,× System F with subtyping, binary products and nested
patterns (similar to the variant with records and record
patterns featured in the POPLmark challenge).

For each language we have a formalization in Coq developed
without any tool support and a version that uses the code generated
by INFRAGEN. Table 2 gives a detailed overview of the code size of
different parts for each language formalization. The column Syntax
shows the size of the abstract syntax declaration, including binding
specifications.

The useful definitions in the Semantics column are the evalua-
tion rules, typing contexts and typing rules. The boilerplate in the
semantic definitions are context lookups for the variable typing rule
as well as shifting and substitution operators, that are necessary to
define β-reduction and, if supported by the language, type applica-
tion. As can be seen in Table 2 all semantic boilerplate is generated
by INFRAGEN.

The interesting meta-theoretical lemmas in the type-safety
proofs are pattern-matching definedness, value inversion lemmas
and progress and preservation lemmas. For the languages with
subtyping this also includes the reflexivity and transitivity of the
subtyping relation. We separate the binder boilerplate that arises
during the formalizations into three classes: term, context and rela-
tion related boilerplate.

Term related boilerplate consists of commutation lemmas for
two consecutive syntactic operations that we discussed in Section
5. Note that the mechanization of λ does not make use of any com-
mutation lemmas. In the other cases INFRAGEN derives all lem-
mas that are necessary for the formalizations. With one exception,
these lemmas cover solely the operations on type variables. This
is about 140 lines of code for each language. The size depends on
the number of namespaces, the number of syntactic sorts and the
dependency structure between them, which is roughly the same for
these languages.

For contexts, the boilerplate are definitions and proofs related
to context insertion and weakening of context lookup. INFRAGEN
generates inductive relations characterizing an insertion of a single

variable somewhere in the middle of a context and weakening of
context lookups by insertion. For the simply-typed lambda calculus
and F<: all necessary lemmas are generated.

What INFRAGEN does not yet generate are lemmas for context
lookup weakening for concatenating contexts that are used in the
languages with pattern-bindings. One can of course always define
context concatenation and the necessary proofs generically. The
difficulty lies in inferring when a context is really used as a context
and when it is used as a pattern environment which is later used as
a context extension.

Finally, the boilerplate related to relations are weakening lem-
mas and lemmas for preservation of typing under substitutions. IN-
FRAGEN can derive the weakening lemmas for relations that only
feature single variable binders. This covers the typing relation of
the simply-typed lambda calculus and the subtyping and typing re-
lation of F<:. In these two cases we can strip away about 30% of
the boilerplate. In the two remaining cases we do not cover the typ-
ing relation, so that the achieved saving is down to 10%.

7.3 Discussion
The language formalizations use only a fraction of the lemmas gen-
erated by INFRAGEN. For instance, for the simply-typed lambda
calculus INFRAGEN generates about 250 lines of code for commu-
tation lemmas which are not used in the formalization. However
the proof of weakening for λLF typing rules makes use of all com-
mutation lemmas except for the ones featuring two substitutions.
Moreover, we expect that the lemmas of typing preservation under
substitutions will use all generated lemmas.

8. Related and Future Work
Because there is a large body of work related to variable binding,
we have to limit our discussion to work on specification languages
for variable binding, and to systems and tools for reasoning about
syntax with binders.

8.1 Specification Languages
The Ott tool [?] allows the definition of concrete syntax of pro-
gramming languages and inductive relations on terms. Its binding
specifications have inspired those of INFRA. While Ott generates
datatype and function definitions for abstract syntax in multiple
proof assistants, support for lemmas is absent.

The Cαml tool [?] defines a specification language for abstract
syntax with binding specifications from which it generates OCaml
definitions and substitutions. Types can be annotated with atoms
and atoms occurring in terms are considered to be binders. inner
and outer annotations let the users specify if subterms are inside
or outside of an enclosing abstraction. For instance, the pattern
bindings of F× are specified by

type term =
| ELet of < pat ∗ outer term ∗ inner term >

type pat =
| pvar of atom
| pprod of pat ∗ pat

The angle brackets<> introduce an abstraction ranging over a pat-
tern, a term outside of the abstraction and a term inside of the ab-
straction. The occurrences of atoms in the pattern are considered to
be bound by the abstraction. It is unclear to us how the expressive-
ness of Cαml binding specifications relates to that of INFRA bind-
ing specifications. However, Cαml does not allow abstractions to
be nested, which disallows the telescopic lambdas of Figure 6.

8.2 Generated Boilerplate
LNGEN Aydemir and Weirich [?] created LNGEN, a tool that
generates locally-nameless Coq definitions from an Ott specifica-

10 2014/10/31

Syntax Semantics Theorems Total Boilerplate

Useful Boilerplate Useful Boilerplate
Terms Contexts Relations

λ 10 74 43 140 0 18 61 122
IG 10 74 0 140 0 0 41 41 34%

F× 23 177 132 311 145 90 318 685
IG 23 177 0 311 0 36 279 315 45%

F<: 13 113 113 413 135 66 229 543
IG 13 113 0 413 0 0 153 153 28%

F<:,× 24 187 134 577 146 102 338 720
IG 24 187 0 577 0 36 295 331 46%

Table 2. Size statistics of the meta-theory mechanizations.

tion. It takes care of boilerplate syntax operations, local closure
predicates and lemmas. It supports multiple namespaces but re-
stricts itself to single-variable binders.

DBGEN Polonowksi [?] developed the DBGEN tool that gener-
ates de Bruijn representations and boilerlate code. It supports mul-
tiple namespaces and has some support for binding multiple vari-
ables: one can specify that n variables are to be bound in a field
where n is either a natural number literal or a natural number field
of the constructor. The DBGEN definition of the destructuring pat-
tern bindings of F× looks like this:

Let (n : nat) (p : pat) (t1 : term)
((∗bind n : term in∗) t2 : term)

where the annotation (∗bind n : term in∗) specifies that n vari-
ables are to be bound in the subterm t2. The constraint that n equals
the number of variables bound by p is established externally by a
well-formedness relation.

Why3 Clochard et al. [?] support variable binding in the Why3
framework [?] using nested datatypes to represent binders [? ?
]. They generate datatype definitions from a simple specification
language that supports multiple namespaces and single-variable
binders. Proof obligations are dispatched to automatic provers or
proof-assistants and proof hints for variable binding are provided.

Unlike the above generative approaches, INFRAGEN’s specifi-
cation language INFRA has been mechanically formalized. formal-
ized its specification language INFRA. Furthermore, our tool has
the added benefit that the variable case is implemented generically
and only the easy congruence cases are generated where the works
presented above generate the complete boilerplate directly.

8.3 Generic Boilerplate
GMETA GMETA [?] is a framework for first-order represen-
tations of variable binding developed by Lee et al.. It is imple-
mented as a library in Coq that makes use of datatype-generic pro-
gramming concepts to implement syntactic operations and well-
formedness predicates generically. The system supports multiple
namespaces by comparing the generic representation of the associ-
ated term types but is restricted to the single-variable case. More-
over, GMETA contains a library for contexts of one or two sorts. In
the case of two sorts, e.g. term and type variables, only the binding
of term variables can depend on types and only the binding of type
variables can be telescopic.

GMETA captures the structure of terms generically, but not the
structure of contexts and the accompanying library implements two
instances, but admittedly the ones that are used the most.

Unbound The UNBOUND library [?] is a Haskell library for pro-
gramming with abstract syntax. It’s specification language consists
of a set of reusable type combinators that specify variables, abstrac-
tions, recursive and sequential scoping. The library internally uses
a locally nameless approach to implement the binding boilerplate
which is hidden from the user. The library also has a combinator
called Shift which allows to skip enclosing abstractions. This form
of non-linear scoping is not supported by INFRA.

8.4 Language Support
Several languages have direct support for variable binding. Nom-
inal Isabelle [?] is an extension of the Isabelle/HOL framework
with support for nominal terms which provides α-equivalence for
free. At the moment the system is limted to single variable binding
but support for richer binding structure is planned [?].

Logical frameworks suchs as Abella [?], Hybrid [?], Twelf
[?] and Beluga [?] are specifically designed to reason abouts
logics and programming languages. Their specialized meta-logic
encourage the use of higher-order abstract syntax (HOAS) which
represents object-level variable binding using the binding of the
meta-language. The advantage is that facts about substitution and
α-equivalence are inherited from the meta-language. HOAS ap-
proaches can represent a list of variable bindings directly or by
transforming the abstract syntax and using an auxiliary datatype
for binding lists as for example in

base : term → bterm.
bind : (term → bterm)→ bterm.

Using this we can represent unstructured binders. For structured
binders such as patterns part of the binding specification needs to
be addressed by an external relations such as a typing relation.

Keuchel and Jeuring [?] show how to generically restructure
UNBOUND specifications without Shift but including recursive and
sequential scoping into a HOAS representation and enforce the
binding specification using dependent-types.

8.5 Comparison
Table 3 summarizes the features supported by the above languages
and systems. The upper half of the table shows the support for the
specification of rich binding forms. In this comparison we require
that the abstract syntax can be specified in a natural way, without
restructuring it to accommodate restrictions of the system. In terms
of expressiveness Ott and INFRA coincide and with two exceptions
subsume the support of all other systems. In particular INFRA-
GEN is more expressive than the other meta-theoretical frameworks

11 2014/10/31

Specification Languages HOAS First-Order Approaches
Ott Cαml UNBOUND LNGEN GMETA DBGEN INFRAGEN

Distinct namespaces
Unstructured binders # #
Heterogenous binders G# # # G# G#
Structured binders G# # # G#
Recursive scoping G# # # # G#
Sequential scoping G# # # # G#
Non-linear scoping # ? # # # # #
Inductive relations # # # # #
Renaming / shifting # # #
Substitutions # # #
Contexts # # # # G# #
Telescopic contexts # # # # G# #
Lookups # # # # G# #
Lookup weakening # # # # G# #

Table 3. Support of binding constructs in various systems

using first-order approaches. As discussed in Section 6.3, the re-
stricted support for heterogeneous binders is a deliberate choice to
simplify reasoning. Conceptually, adding supporting for heteroge-
neous binders to INFRA is easy. The other notable exception is the
unusual non-linear scoping that is only supported by UNBOUND.
In all other systems including INFRA every subterm lies in an ex-
tension of its parent’s scope. To add support for non-linear scoping
to INFRA, we have to either break this assumption or allow multi-
ple scopes for terms. However, in contrast to UNBOUND our work
involves reasoning about variable binding and both directions seem
to impose difficulties.

The lower half of the table lists how good the systems are
at removing variable binding boilerplate including properties of
the operations. Notably the frameworks based on HOAS get rid
of all the boilerplate by inheriting the properties from the meta-
language. As shown by our case study INFRAGEN gets rid of all
the boilerplate at the level of terms and most of the boilerplate
for contexts. The remaining boilerplate for contexts and that for
inductive relations is not covered by any of the other first-order
systems either; we leave it as an important open challenge.

9. Conclusion
This paper has presented INFRAGEN, a generative approach to
variable binding boilerplate backed by a generic formalization.
INFRAGEN distinguishes itself from earlier work on two accounts.
Firstly, it covers a wider range of binding constructs featuring rich
binding forms and advanced scoping rules. Secondly, it covers a
larger extent of the boilerplate functions and lemmas needed for
the mechanization of programming languages.

12 2014/10/31

	Introduction
	Overview
	Syntax: Variable Representation
	Semantics: Shifting and Substitution
	Theorems: Commutation, Weakening and Preservation
	Summary
	Objectives and Approach

	Grammars and Binding Specifications
	Infra Syntax
	Examples
	Well-Formed Infra Specifications
	Infra Semantics

	Infrastructure Operations
	Variable List Evaluation
	Shifting
	Weakening
	Substitution

	Infrastructure Lemmas
	Example: Shift Commutation
	Overview: Infrastructure Lemmas

	InfraGen
	Code Generation
	Soundness
	Binding Specification Design
	Inductive relations

	Case study
	Language suite
	Mechanizations
	Discussion

	Related and Future Work
	Specification Languages
	Generated Boilerplate
	Generic Boilerplate
	Language Support
	Comparison

	Conclusion

