
INBOUND: Simple yet powerful
Specification of Syntax with Binders

Steven Keuchel
Ghent University

steven.keuchel@ugent.be

Tom Schrijvers
KU Leuven

tom.schrijvers@cs.kuleuven.be

Abstract
Nearly all meta-programming tools need to deal with binders in
abstract syntax trees. Unfortunately, ubiquitous boilerplate func-
tions for computing free variables and variable substitution are re-
markably intricate and hard to get right. Moreover, the complex-
ity quickly increases with larger languages and non-trivial binding
forms. On top of that, the underlying scoping rules are only implic-
itly encoded in these function definitions. Because their logic has
to be repeated across functions, this leaves ample space for incon-
sistencies. In short, programming with binders is a pain!

Our new specification language INBOUND brings much needed
relief: it allows programmers to explicitly state the scoping rules of
syntax with binders in a concise and intuitive manner. From such
a specification the INBOUND compiler automatically generates the
boilerplate functions, and takes care of all the intricacies as well as
mutual consistency.

We illustrate INBOUND with a number of examples and two
larger case studies, including a simple type checker for Haskell.
These show that INBOUND easily scales to larger languages and
complex binding situations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords variable binders, code generation, attribute grammars,
datatype-generic programming

1. Introduction
It is well-recognized in the programming language community that
handling binders is intricate and tedious. This recognition has led to
a steady stream of approaches and proposals that tackle the problem
from different angles.

For instance, much effort has gone into developing different
variable representations like de Bruijn indices[6], nested datatypes
[4], the locally nameless representation [3] and various forms of
higher-order syntax [11, 13, 14]. Many of these results are targeted
towards reasoning and mechanization of meta-theory in proof as-
sistants.

A second important line of work aims to provide binding-
safe programming by means of native support for binders (e.g,
FreshML, Cαml[16], Beluga[14] and Romeo[20]) or through li-
braries (e.g., FreshLook [18] and NaPa [17]). Yet another approach
is datatype generic programming support for the boilerplate oper-
ations that comes in the form of libraries like UNBOUND [22] and
Nameplate [5].

While most of these approaches are highly sophisticated, they
are also far removed from the current software development prac-
tice which typically uses the most naive representation for ab-
stract syntax with identifiers for variables. This approach is inspired
by many pragmatic reasons. Firstly, the identifier approach corre-

sponds closely to the concrete syntax of the language being pro-
cessed, which makes it easy to relate both, for instance, during de-
bugging. Secondly, the approach is compatible with nearly any tool
implementation language. Thirdly, the (deceitful) simplicity of the
approach makes it highly accessible.

This paper addresses this stand-off. We propose a down-to-
earth approach for dealing with binders that is both easy to use
and compatible with current practice. Our approach consists of a
specification language, INBOUND,

Our specific contributions are:

1. We define the INBOUND specification language and illustrate
its use with a number of examples (Section 3).
The basis of INBOUND are algebraic data types which are
a natural fit for abstract syntax trees. INBOUND additionally
captures scoping rules in terms of context attributes that define
the flow of bound variables for every constructor. These have a
great power-to-weight ratio: they can express multiple variable
namespaces, structured binders, and complex scoping.
Our well-formedness judgement enforces well-behaved binders
that admit sensible definitions of boilerplate functions.

2. We provide a semantics for INBOUND in terms of an elabora-
tion into attribute grammars (Section 4). In this elaboration ev-
ery context attribute gives rise to a number of derived attributes
that implement the boilerplate functions.
The generic derivation of these attributes is non-trivial: free
variable computation invert the data flow, while renaming and
substitution require freshening for capture avoidance.

3. We report on our implementation of INBOUND in terms of the
Utrecht University Attribute Grammar Compiler, and discuss
a number of interesting semantic extensions and practical fea-
tures (Section 5).

4. We demonstrate the usefulness of INBOUND in two case studies
(Section 6). One of these integrates INBOUND in an existing
project, a small type checker for Haskell written in Haskell.

There is quite a bit of related work, which we discuss in Section 7.

2. Overview
This section gives an overview of the variable binding boilerplate
that arises when implementing meta-programs like type-checkers
and compilers.

2.1 Background: Conventional Approach
As a starting point for illustrating the conventional approach we
take the following textbook definition for the simply typed λ-

1 2015/2/28

calculus.
τ ::= A | τ1 → τ2 types
e ::= λx : τ.e | x | e1 e2 terms

Here A denotes an abstract base type; all other constructors are
entirely standard.The scoping of this language is also standard:
λx.e binds x and its scope is e.

Abstract Syntax In the Haskell implementation of a meta-program,
we usually capture such an abstract syntax definition in a number
of algebraic data types:

data Type = BaseT
| TArr Type Type

data Term = Lam TermVar Type Term
| Var TermVar
| App Term Term

Additionally, we need to choose a particular representation for term
variables. The literature on different variable representations is
extensive and the discussion is still ongoing. The particular choice
is not relevant for this paper, and we go with a pragmatic string-
based representation.

type TermVar = String

Note that the scoping rules of the language are absent in this data
type declaration. Of course the scoping rules stated above still
apply, but it is the programmers responsibility to make sure they
are obeyed by the meta-program.

Binder Boilerplate Now comes the tedious boilerplate: There are
two ubiquitous binder-related operations that are widely used in
meta-programming tools: 1) computing the free variables that are
not bound in a term, and 2) substituting all occurrences of a variable
for a term.

For our example the free variables definitions is as follows:

freeVars :: Term → Set TermVar
freeVars (Lam x t e) = delete x (freeVars e)
freeVars (Var x) = singleton x
freeVars (App e1 e2) = freeVars e1 ‘union‘ freeVars e2

The substitution function is substantially more verbose:

subst :: TermVar → Term → Term → Term
subst x e (Var y)
| x ≡ y = e
| otherwise = Var y

subst x e1 (Lam y t e2)
| x ≡ y
= Lam y t e2
| y ‘member ‘ freeVars e1
= let y ′ = fresh (freeVars e1 ‘union‘ freeVars e2)

e ′
2 = rename y y ′ e2

in Lam y ′ (subst x e e ′
2)

| otherwise
= Lam y (subst x e1 e2)

subst x e (App e1 e2)
= App (subst x e e1) (subst x e e2)

Moreover, to avoid variable capture, we need two additional defini-
tions. The function fresh picks a variable name that is distinct from
any of the names in the given set.

fresh :: Set TermVar → TermVar
fresh s = head [v | v ← vs, v /∈ s]

where
vs = map (λn → ’v’ : show n) [0 . .]

The function rename is a more specialized variant of subst that
replaces one variable name by another.

rename :: TermVar → TermVar → Term → Term
rename x x ′ (Var y)
| x ≡ y = Var x ′

| otherwise = Var y
rename x x ′ (Lam y t e2)
| x ≡ y
= Lam y t e2
| y ≡ x ′

= let y ′ = fresh (insert x ′ (freeVars e2))
e ′
2 = rename y y ′ e2

in Lam y ′ (rename x x ′ e ′
2)

| otherwise
= Lam y (rename x x ′ e2)

rename x x ′ (App e1 e2)
= App (rename x x ′ e1) (rename x x ′ e2)

In meta-theoretic expositions these definitions are often elided be-
cause they are uninteresting. The understanding is that the informal
exposition contains enough clues for any reader to easily derive
them, if so desired. Unfortunately, the programming languages in
which meta-programming tools are written are bad at reading be-
tween the lines and do require all operations to be written out ex-
plicitly. This brings us to the aim of this paper.

2.2 Challenge: Minimal Clues for Binder Boilerplate
The scoping rules are implicitly reflected in the above functions.
Indeed, the functionality depends only on the structure of the lan-
guage and its scoping rules. As a consequence, the process is repet-
itive; the the same pattern is applied time and again. This makes the
implementation of boilerplate functions time-consuming and error-
prone.

Genericity In fact, this similarity challenges us to identify and
formalize the generic recipe at the heart of binder boilerplate, and to
isolate the minimal amount of information necessary to instantiate
the generic recipe for a particular language. Then the programmer
need only to supply the latter to get all the boilerplate automatically.

Expressivity Of course many such generic recipes are possible,
depending on the class of languages that are covered by it. Our
aim here is to be expressive and useful in practice. Hence our
solution should go beyond small toy examples and cover a large
set of realistic binding forms and situations like, for instance:

• multiple kinds of variables with interdependencies, e.g., type
and term variables in System F:

Λa.λ(x : a).e

• structured binders, e.g., nested patterns in Haskell:

case e1 of
(x , (y , z))→ e2

• complex scoping, e.g., recursive scopes in OCaml:

let rec f x = g (x − 1)
g x = if x > 0 then f x else 1

in f 5 + g 7

2.3 Solution: INBOUND

Our solution is INBOUND, a domain-specific language for specify-
ing abstract syntax with binders. In exchange for a small amount of
binding information, INBOUND automatically derives the tedious
boilerplate functions.

2 2015/2/28

Below is the INBOUND specification for our running example.

namespaces TermVar . Term

sort Type
| Unit
| TArr (T1 T2 : Type)

sort Term
inh ctx : [TermVar]
| Var (x@ctx)
| Lam (x : TermVar) (T : Type) (t : Term)

t .ctx = lhs.ctx , x
| App (t1 t2 : Term)

t1.ctx = lhs.ctx
t2.ctx = lhs.ctx

This specification is very similar to the algebraic data type defini-
tions in Haskell. As before we have declarations of the syntactic
sorts Type and Term , each with their data constructors.

One important difference is that no concrete representation
is chosen for term variables. Instead, TermVar is declared as a
namespace. This tells INBOUND that TermVar is a kind of vari-
able that can be bound and referenced. The annotation .Term
means that a TermVar is a Term variable, i.e., that it can be sub-
stituted by a Term . (Note that the choice of representation is left
up to INBOUND.)

Term variables are used inside terms. This is declared in the
form of the context attribute ctx associated with the Term sort.
The declaration means that there is a context of term variables at
every Term node in the abstract syntax tree. In this case the context
is inherited, i.e., the contexts of the subterms are derived from the
context of the parent term. Each constructor specifies what context
each of its subterms inherits: The subterms of the App constructor
inherit the context lhs.ctx of their parent. The Lam constructor
binds a new term variable x which is in scope at its subterm t .
Hence, t inherits its parents context extended with x .

Finally, the Var constructor references a term variable X from
the context ctx . This information is declared in the form of field
declaration X @ctx .

In summary, we can already see on this example that INBOUND
requires very little binding information on top of the basic abstract
syntax definition. Nevertheless this is enough to generate all the
tedious boilerplate. The rest of this paper explains how it manages
that and illustrates how easily the approach scales up to more
complicated binding situations.

3. Grammars and Binding Specifications
This section introduces INBOUND, our domain-specific language
for specifying the abstract syntax of programming languages and
their associated variable binder information.

3.1 Formal INBOUND Syntax
Figure 1 shows the grammar of INBOUND. The toplevel syntactic
object is a INBOUND specification spec. Such a specification con-
sists of a sequence of namespace declarations α1 .S1, . . . , αm.Sm
that name the different kinds of variables and their associated sorts,
followed by declarations sortdecl of the different syntax sorts S.

A sort declaration sortdecl consists of context attribute decla-
rations and constructor declarations. There are two kinds of context
attributes:

1. inherited contexts inhdecl pass context information down from
a term to its immediate subterms, and

2. synthesized contexts syndecl assemble a context for the term
from the contexts of its subterms.

Labels
S, T, U Sort label
K Constructor label
F Field label
X,Y, Z Meta-variable
A,B,C Attribute label
α, β, γ Namespace label

Declarations and definitions
spec ::=namespaceα . S sortdecl Specification
sortdecl ::=sortS syndecl inhdecl cdecl Sort
syndecl ::=synA : [α] Inherited attr.
inhdecl ::=inhA : [α] Synthesized attr.
cdecl ::=K vfield sfield attrdef Term constructor

| K (X@A) Var. constructor
vfield ::=X : α Variable binder
sfield ::=F : S Subterm
attrdef ::=N.A = e Attribute def.
N ::=lhs | F Node label

Context expressions

expr , e, a, b, c ::= N.A Context reference
| [] Empty context
| e,X Context extension

Figure 1. Grammars with binding specifications

Values of a particular sort are built from constructors K. There
are two kinds of constructors: term constructors and variable con-
structors. A variable constructor has exactly one field of the form
X@A. This field X references a variable in context A. In contrast,
a term constructor has two kinds of fields, declared in the construc-
tor declaration:

• every variable binder X : α introduces a new variable X of
namespace α, and

• every subterm F : S denotes a subterm of sort S with associ-
ated field label F .

In addition to the different field declarations, a constructor declara-
tion also explains how to compute a number of context attributes: a
definition lhs.A = e defines the term’s synthesized attribute A, and
the definition F .A = e defines the inherited attribute A of subterm
F .

There are three different kinds of context expression e: the
empty context is [], the context extension (e,X) extends the con-
text e with newly bound variable X and the context reference N .A
refers to context attribute A of node N (either the current node lhs
or a subterm F).

3.2 Examples
The following examples of rich binder forms illustrate the expres-
sive power of INBOUND.

Multiple contexts Figure 2 shows the INBOUND specification
of System F. We start with the declaration of two namespaces
TypeVar and TermVar for type and term variables respectively,
which is followed by the declarations of System F’s two sorts:
Types and Terms.

Both sorts have an inherited context attribute tctx : [TypeVar]
that collects the type variables in scope. These contexts are respec-
tively extended by the constructors TLam for type functions and
TAbs for type abstractions that both bind new type variables. The
only constructor that references a type variable in tctx is TVar .

3 2015/2/28

namespaces TypeVar . Type,TermVar . Term
sort Type

inh tctx : [TypeVar]
| TVar (X @tctx)
| TLam (X : TypeVar) (T : Type)

T .tctx = lhs.tctx ,X
| TArr (T1 T2 : Type)

t1.tctx = lhs.tctx
t2.tctx = lhs.tctx

sort Term
inh tctx : [TypeVar]
inh ctx : [TermVar]
| Var (x@ctx)
| Lam (x : TermVar) (t : Term)

t .tctx = lhs.tctx
t .ctx = lhs.ctx , x

| App (t1 t2 : Term)
t1.tctx = lhs.tctx
t2.tctx = lhs.tctx
t1.ctx = lhs.ctx
t2.ctx = lhs.ctx

| TAbs (X : TypeVar) (t : Term)
t .tctx = lhs.tctx ,X
t .ctx = lhs.ctx

| Tapp (t : Term) (T : Type)
t .tctx = lhs.tctx
t .ctx = lhs.ctx
T .tctx = lhs.tctx

Figure 2. Example specification of System F

Terms have a second inherited context attribute ctx :[TermVar]
for term variables in scope. This context is extended by constructor
Lam for term abstraction and referenced by the constructor Var .

In all other cases the contexts are simply inherited without mod-
ification from parent to children. As this case occurs frequently,
INBOUND tries to insert this definition automatically when no ex-
plicit definition is provided. For this the parent needs an inherited
attribute with the same label and type. However, we allow parent
and child to be of different sorts. Hence, we could have elided 11
out of the 14 attribute definitions in this example. We do so in all
further examples.

Binding forms Figure 3 shows the INBOUND specification of a
simply-typed lambda calculus with products and destructuring let
bindings.

A destructuring let binding Let p t1 t2 matches term t1 against
pattern p; the variables bound by p are in scope in term t2. The
complication here is how to add variables bound inside p to the
context of t2. This cannot happen in the let-binding itself, because
the variables are not listed at this level – they are inside the pattern
p. Yet inside p we have the problem that t2 and its context are not
available.

Our solution use two context attributes: an inherited attribute
ictx that is used to pass the outer context down into the pattern, and
a synthesized attributed sctx that is passed up from the pattern in
which all variables of the pattern are adjoined to the outer context.
In the case of a product pattern, the context is chained from the
pattern p1 for the first component to the pattern p2 of the second
component.

namespaces TermVar . Term
sort Term

inh ctx : [TermVar]
| Var (x@ctx)
| Lam (x : TermVar) (t : Term)

t .ctx = lhs.ctx , x
| App (t1 t2 : Term)
| Prod (t1 t2 : Term)
| Let (p : Pat) (t1 t2 : Term)

p.ictx = lhs.ctx
t2.ctx = p.sctx

sort Pat
inh ictx : [TermVar]
syn sctx : [TermVar]
| PVar (x : TermVar)

lhs.sctx = lhs.ictx , x
| PProd (p1 p2 : Pat)

p1.ictx = lhs.ictx
p2.ictx = p1.sctx
lhs.sctx = p2.sctx

Figure 3. Example specification of STLC Prod

3.3 Well-Formed INBOUND Specifications
Not all INBOUND specifications make sense. The well-formedness
relation ` spec in Figure 4 enforces that attribute definitions are
type-correct with respect to sorts and namespaces.

In order to not overburden the definition of this relation and its
subsidiaries, we assume that some information is available glob-
ally:

• IA: all inherited attributes, and
• SA: all synthesized attributes.

The single rule WFSPEC expresses that a specification is well-
formed if each of its sort declarations is well-formed.

Rule WFSDECL in turn states that a sort declaration is well-
formed if each of its its constructor declaration is well-formed with
respect to the declaration’s sort.

Rule WFVARCDECL states that a variable constructorK (X@A)
is well-formed if the context attribute A is an inherited attribute of
the constructor’s sort.

Rule WFTERMCDECL expresses that term constructors are
well-formed if the bodies ē of its attribute definitions are well-
typed. The typing discipline of these bodies is linear with respect
to the variables X̄ bound in the constructor; this requirement is
motivated below. Linearity means that every variable X must be
used exactly once. Hence, we split the set of bound variables into
disjoint subsets Γi,∆j , called local environments, one for each
body expression.

Rule WFCDECL requires that the attribute definitions for the
constructor declaration are well-formed with respect to the enclos-
ing declaration for sort S and with respect to the local environment
Σ that includes the references and fields of the constructor.

The relation Σ `θS e : [α] denotes that context expression e is
well-typed for namespace α with respect the local environment Σ
and field typing θ. It enforces linearity of the local environment Σ.
The relation is defined by four rules: Rule WFNIL states that the
empty context [] is well-typed for any namespace α in an empty
local environment. Rule WFCONS states that a context extension
is well-typed, if the namespace of the new variable X matches

4 2015/2/28

the namespace of the context expression e . Note that the local
environment is split to enforce linearity. Finally rule WFINH and
rule WFSYN express that the types of attribute references match
the types in the attribute environments IA and SA respectively.

Linearity The linearity requirement is a consequence of our
choice for functional purity. We want all boilerplate operations
to yield equal1 results when repeated. This means that whenever
we choose a fresh name for a variable x , we do so in a pure way:
like in Section 2 we compute a name that is distinct from all names
that live in the same contexts as x .

If x could appear twice in a context, we would have to avoid
the circularity pitfall of attempting to choose a name that is distinct
from itself. Instead of performing a complicated analysis to detect
and avoid this pitfall, we rule it out entirely with a simple linearity
requirement. So far this has not turned out to be a costly require-
ment: none of our examples or case studies suffers from it.

Linearity would not be required if we opted for impure genera-
tion of fresh variable names. However, we would then lose the good
properties of a pure semantics.

Circularity For the final extraction of functions from the spec-
ification we also require that the dependency between attributes
is non-circular [9]. However, for the sake of brevity we omit the
details and refer to related work dealing with checking for non-
circularity of attribute grammars [7, 9].

4. Elaboration Semantics
In this section we define the semantics of well-formed INBOUND-
specifications by elaboration into a lower-level attribute grammar
system. A central part of the elaboration is to turn the binding spec-
ifications into attributes that implement the necessary computations
for the boilerplate operations.

4.1 Target language
Figure 5 shows the target attribute grammar language AG that
we use for the elaboration. The language contains declarations for
sorts, constructors and attributes.

Notably, AG has no special support for variables and binders.
As a consequence there are two major differences with INBOUND:

1. There is no notion of variables in AG, and thus no notion of
binding and referencing occurrences of variables in construc-
tors either. Constructors can have two types of fields: subtrees
of any sort, and terminals of the type A explained below.

2. In INBOUND each attribute represents a context. In contrast,
attributes in AG can have arbitrary types and purposes.
Our elaboration makes use of this flexibility when elaborating
each context into multiple attributes that implement the differ-
ent syntactic operations.

Because of the wider scope of attributes in AG, its type and
expression syntax are much richer. It supports list, set, (finite) map
and tuple data types and their corresponding expression forms.
There is also a primitive type A for identifiers, which we leave
abstract in this paper.

4.2 Variable Elaboration
The INBOUND-specification language itself does not fix a specific
variable representation. Yet the choice of representation influences
the elaboration. For two reasons we work in this paper with the
traditional first-order representation that uses identifiers of type A
for variables: First, the definitions are intuitive and we assume that
the reader is comfortable with the handling of variables using this

1 and not just α-equivalent

SA ::= S.A : [α] Synthesized attributes
IA ::= S.A : [α] Inherited attributes
Γ,∆ ::= X : α Local environment
θ ::= F 7→ T Field typing

` spec
` sortdecl i (∀i)

` namespaces α . S sortdecl
WFSPEC

` sortdecl
` cdecl i (∀i)

` sort S syndecl inhdecl cdecl
WFSDECL

`S cdecl
WFTERMDECL

θ = [F 7→ T]
⊎
iΓi]

⊎
j∆j = X : α

∀(lhs.Ai = ai) : Γi `θS ai : [αi] (S.Ai : [αi]) ∈ SA

∀(Fj .Bj = bj) : ∆j `θS bj : [αj] (Tj .Bj : [αj]) ∈ IA

`S K (X : α) (F : T) (lhs.A = a) (F.B = b)

(S.A : [α]) ∈ IA

`S K (X@A)
WFVARCDECL

Γ `θS e : [α]
ε `θS [] : [α] WFNIL

Γ `θS e : [α]

Γ] {X : α} `θS e,X : [α]
WFCONS

(θ(F).A : [α]) ∈ SA

ε `θS F.A : [α]
WFSYN

(S.A : [α]) ∈ IA

ε `θS lhs.A : [α]
WFSDECL

Figure 4. Well-formed specifications

representation. Second, such representations are easy to inspect and
debug.

4.3 Term elaboration
Figure 6 provides a bare-bones elaboration of INBOUND abstract
syntax terms into AG terms.

The elaboration is straightforward, taking specifications to pro-
grams, sorts to sorts and constructors to constructors. All binding
and referencing occurrences of variables are turned into terminals
of type A in the process. All context attributes are entirely ignored;
they are only used in the definition of the boilerplate operations.

The remainder of this section explains how the operations are
defined, dressing up this bare-bones elaboration with attributes. In
order to keep the presentation modular, we define each operation as
a separate dressed-up elaboration. In practice we obviously merge
these different elaborations into a single one that defines all op-
erations simultaneously. Figure 8 shows a full elaboration of the
simply-typed lambda caluclus with products specified in Figure 3,
including support for all operations.. In the following subsections
we explain step-by-step all the attributes of this running example.

4.4 Free variable elaboration
Figure 7 provides our first boilerplate elaboration: computing the
free variables in a term. The key idea is that every context attribute

5 2015/2/28

Declarations and definitions
ag prog ::= ag sortdecl Program
ag sortdecl ::= sort S ag syndecl ag inhdecl ag cdecl

Sort
ag syndecl ::= syn A : ag type Synthesized attr.
ag inhdecl ::= inh A : ag type Inherited attr.
ag cdecl ::= K ag field ag attrdef Constructor
ag field ::= F : S Sort field

| X : Atom Atom field
ag attrdef ::= N.A = ag expr Attr. def.

Types

ag type ::= S Sort type
| Atom Atom type
| [ag type] List type
| Set ag type Set type
| ag type1 × ag type2 Tuple type
| ag type1 7→ ag type2 Map type

Expressions

ag expr , ae
::= x Variable
| X Atom field ref.
| N.A Attribute ref.
| ∅ Empty set
| {ae} Singleton set
| ae1 ∪ ae2 Set union
| ae1 − ae2 Set difference
| [] Empty list
| [ae] Singleton list
| ae1 : ae2 List extension
| ε Empty map
| ae1 ◦ (ae2 7→ ae3) Map extension
| (ae1, ae2) Tuple
| let (x1, x2) = ae1 in ae2 Tuple elimination
| K ae Term
| let x = ae1 in ae2 Let binding

Figure 5. Attribute grammar syntax

A : [α] in INBOUND is turned into a corresponding AG attribute
Afv : SetA. For example, elaborated sort Term in Figure 8 has
an attribute ctx fv where the original Term has an attribute ctx .

There is one important catch: we need to invert the dataflow.
Contexts flow variables form their binders to their references, while
free variables flow variable references to their binders. This flow
inversion means that in rule FV-SDECL inherited attributes are
elaborated into synthesized attributes and vice versa.

Similarly, context expressions are inverted in the elaboration.
Indeed, Lam X t extends its context with X before passing it to
t , but subtracts X from t’s free variables before passing them up.
Hence, we get the following elaboration for Lam:

t .ctx = lhs.ctx ,X ; lhs.ctx fv = t .ctx fv − {X }
In general, every binding occurrence of a variable gives rise to a
subtraction, and every referencing occurrence to an addition of a
variable. The latter is captured in rule FV-VARCDECL and illus-
trated by the elaborated attribute lhs.ctx fv = {X } of Var X .
The former is handled by rule FV-TERMCDECL who is responsi-
ble for inverting all the flows from and to subterms. All inherited
contexts A of the current node, require definitions of free variable
synthesis, and all synthesized contexts B of the subterms require
definitions of inherited free variables. To calculate these definitions,

spec ; ag prog

sortdecl i ; ag sortdecl i (∀i)
namespaces α . S sortdecl ; ag sortdecl

E-SPEC

sortdecl ; ag sortdecl

cdecl i ; ag cdecl i (∀i)
sort S syndecl inhdecl cdecl ; sort S ag cdecl

E-SDECL

cdecl ; ag cdecl

K (X : α) (F : S) attrdef

; K (X : A) (F : S)
E-TERMCDECL

K (X@A) ; K (X : A) E-VARCDECL

Figure 6. Bare-bones term elaboration

we invert and combine all expressions that use A (respectively B).
The App t1 t2 constructor is an example that involves combined
inversion. The context lhs.ctx is inherited by both t1 and t2. Hence,
lhs.ctx fv is defined as the union of t1.ctx fv and t2.ctx fv .

Our formalisation avoids a clever up-front analysis of the uses;
instead it combines all expressions and suppresses the irrelevant
ones during inversion. The joint inversion and suppression happens
in the auxiliary function JeKN1 .A1

N2 .A2
. This function computes the con-

tribution of context definition N1 .A1 = e to the free variable def-
inition N1 .A1fv . It does so by inverting empty sets into empty sets
and context extensions into free variable subtractions. Whenever a
use of N1 .A1 occurs, it is inverted into the free variables N2 .A2fv

of the user. Whenever another attribute is used instead of N1 .A1

the expression is suppressed by inverting it into an empty set.

Free variable functions We provide free variable functions as a
front-end interface to the elaborated free variable attributes. There
is one such function for each syntactic sort S . This function takes
initial values for the inherited attributes to final values for the
synthesized attributes:

fvsS : S → Set A→ Set A

For example:, the elaborated attributes in Figure 8 give rise to
two functions.

fvsTerm :: Term → () → Set A
fvsPat :: Pat → Set A→ Set A

For Terms we get a function that computes the free variables of
a given Term . The function on patterns expects a set of variables
and returns the remainder of variables which are not bound by the
pattern.

The free variable function plays an important role in capture-
avoiding substitution: it is used to identify which variables men-
tioned in a substitution run the risk of being captured when moving
that substitution under a binder. For instance, the following derived
function determines the free variables in a term substitution.

fvsSubst :: (A 7→ Term)→ Set A
fvsSubst sub = unions [{x } ∪ fvsTerm t | (x 7→ t)← sub]

We derive such a function for every namespace.

6 2015/2/28

sortdecl ; ag sortdecl
cdecl i ;S ag cdecl i (∀i)

sort S (syn A : [α]) (inh B : [β]) cdecl ; sort S (inh A : SetA) (syn B : SetA) ag cdecl
FV-SDECL

cdecl ;S ag cdecl
ag syndef i ≡ (lhs.Afv =

⋃
kJekK

lhs.A
Nk.Ak

) (∀(S.A : [α]) ∈ IA)
ag inhdef j ≡ (F.Bfv =

⋃
kJekK

F.B
Nk.Ak

) (∀(Ti.B : [β]) ∈ SA)

K (X : α) (F : T)N.A = e ;S K (X : A) (F : T) ag syndef ag inhdef
FV-TERMCDECL

ag attrdef i ≡ (lhs.Bfv = ∅) (∀(S.B : [β]) ∈ IA : B 6= A)

K (X@A) ;S K (X : A) (lhs.Afv = {X}) ag attrdef
FV-VARCDECL

JeKN1 .A1
N2 .A2

J[]KN1 .A1
N2 .A2

≡ ∅
Je, XKN1 .A1

N2 .A2
≡ JeKN1 .A1

N2 .A2
− {X}

JN3 .A3KN1 .A1
N2 .A2

≡
{

N2 .A2fv , if N1 .A1 = N3 .A3

∅ , otherwise

Figure 7. Free variable elaboration

4.5 Renaming elaboration
Variable renaming replaces all references to a variable by refer-
ences to a different variable. It is used as an auxiliary function of
full substitution: in order to avoid variable capture, bound variables
are renamed to fresh ones. One renaming may lead to a cascade of
further recursive renamings, as the operation itself is a simplified
form of substitution that must avoid variable capture. We generi-
cally deal with the problem by conservatively freshening all bound
variables during renaming; no attempt is made to accurately deter-
mine whether variable capture would actually happen.

Figure 9 shows the elaboration of variable renaming in two
parts: analysis and synthesis. The analysis part pushes a mapping
from variables to freshened variables down the context flow. This
mapping is used in the synthesis part to construct the renamed term
in a bottom-up fashion.

Analysis Rule RENAMINGSORTDECL elaborates every attribute
declaration to one of the same kind; the flow is not inverted. The
types of every elaborated attribute is a Cartesian product of

1. a list [A] that represents the context after renaming, and

2. a map (A 7→ A) from old to fresh variables.

Rule RA-VARCDECL is trivial: there are no attributes to de-
fine. In contrast, rule RA-TERMCDECL transforms all the term
constructor’s attribute definitions with the auxiliary function JeKren.

This function transforms a context expression into a correspond-
ing Cartesian product. An empty context becomes a pair of an
empty list and an empty map, a context attribute reference becomes
an renaming attribute reference and a context extension (e,X) be-
comes an extension of the pairs’ components. This last one chooses
a new variable name y to replace X , one that is fresh with respect
to the renamed context ctx for e. For this purpose we use the deter-
ministic function fresh. This new name is used to extend ctx and
the mapping ρ of e. Note that it is vital that ρ is extended on the
left, i.e., giving precedence to X 7→ y. After all the freshening of
X is meant to avoid any variable capture caused by ρ.

Synthesis Rule RS-SDECL declares a new synthesized attribute
rename : S that holds the renamed term. In rule RS-VARCDECL
this attribute is defined for a variable constructor K (X@A) as
K (ρ(X)) where ρ is the renaming map for attribute A that is
computed by the analysis part.

For a term constructor rule RS-TERMCDECL constructs a new
term with the same constructor, and with renamed bound variables
and the recursively renamed subterms. The former are proactively
renamed to fresh variables to avoid potential variable capture. We
choose the new variable name fresh with respect to the renamed
context that receives it; this renamed context is computed by the
analysis part. Auxiliary function JeKXren takes care of retrieving
the appropriate renamed context and computing the fresh name.
The renamed subterms are trivially obtained through the rename
attributes of the subterms.

Example Figure 8 contains the renaming elaboration for the
simply-typed lambda calculus. The two interesting constructors
are those that bind variables: lambda abstractions and pattern vari-
ables. In each case a let-binding matches against the previous
freshened context ctx and renaming mapping rho. Using fresh we
can choose a new fresh name and construct the pair again with an
updated context and mapping.

Renaming function The elaborated attributes give rise to renam-
ing functions for abstract syntax terms. Specifically, the elaborated
attributes in figure 8 give rise to two functions.

renameTerm :: Term → ([A], (A 7→,A))→ Term
renamePat :: Pat →

([A], (A 7→ A))→ (Pat , [A], (A 7→ A))

The function renameTerm takes as argument the freshened con-
text and the renaming mapping and will return the synthesized re-
named term. renamePat returns the freshened pattern and addi-
tionally the updated context and mapping.

4.6 Substitution elaboration
The elaboration of substitution is similar to that of renaming, except
that it replaces variables by terms instead of other variables. It too
proceeds in two steps, analysis and synthesis. Analysis pushes a
map from variables to terms down the context flow and synthesis
builds the new term with the variables replaced and the necessary
capture avoiding renamings performed. Both steps are defined in
Figure 10.

Analysis Rule SA-SDECL elaborates the attribute declarations
into ones that hold substitution maps. As rule SA-VARCDECL
shows, we do not need to define substitution maps for variable con-
structors. In rule SA-TERMCDECL we see that term constructors

7 2015/2/28

sort Term
syn ctx fv : Set A
inh ctx ren : [A]× (A 7→ A)
inh ctx sub : A 7→ Term
syn rename, subst : Term
| Var (x : A)

lhs.ctx fv = {x }
lhs.rename = let (ctx , rho) = lhs.ctx ren

in Var (rho x)
lhs.subst = let (ctx , rho) = lhs.ctx ren

in ((x 7→ Var x) ◦ rho) (x)
| Lam (x : A) (t : Term)

lhs.ctx fv = t .ctx fv − {x }
t .ctx ren = let (ctx , rho) = lhs.ctx ren

y = fresh ctx
in (y : ctx , rho ◦ (x 7→ y))

lhs.rename = Lam (let (ctx , rho) = lhs.ctx ren

in fresh ctx) t .rename
t .ctx sub = lhs.ctx sub

lhs.subst = Lam (let (ctx , rho) = lhs.ctx ren

in fresh ctx) t .subst
| App (t1 t2 : Term)

lhs.ctx fv = t1.ctx fv ∪ t2.ctx fv

t1.ctx ren = lhs.ctx ren

t2.ctx ren = lhs.ctx ren

lhs.rename = App t1.rename t2.rename
t1.ctx sub = lhs.ctx sub

t2.ctx sub = lhs.ctx sub

lhs.subst = App t1.subst t2.subst
| Prod (t1 t2 : Term)

lhs.ctx fv = t1.ctx fv ∪ t2.ctx fv

t1.ctx ren = lhs.ctx ren

t2.ctx ren = lhs.ctx ren

lhs.rename = Prod t1.rename t2.rename
t1.ctx sub = lhs.ctx sub

t2.ctx sub = lhs.ctx sub

lhs.subst = Prod t1.subst t2.subst

| Let (p : Pat) (t1 t2 : Term)
lhs.ctx fv = p.ictx fv ∪ t1.ctx fv

p.sctx fv = t2.ctx fv

t1.ctx ren = lhs.ctx ren

t2.ctx ren = p.sctx ren

p.ictx ren = lhs.ctx ren

lhs.rename = Let p.rename t1.rename t2.rename
t1.ctx sub = lhs.ctx sub

t2.ctx sub = p.sctx sub

p.ictx sub = lhs.ctx sub

lhs.subst = Let p.subst t1.subst t2.subst

sort Pat
syn ictx fv , inh sctx fv : Set A
inh ictx ren , syn sctx ren : [A]× (A 7→ A)
inh ictx sub , syn sctx sub : A 7→ Term
syn rename, subst : Pat
| PVar (x : A)

lhs.ictx fv = lhs.sctx fv − {x }
lhs.sctx ren = let (ctx , rho) = lhs.ictx ren

y = fresh ctx
in (y : ctx , rho ◦ (x 7→ y))

lhs.rename = PVar (let (ctx , rho) = lhs.ictx ren

in fresh ctx)
lhs.sctx sub = lhs.ictx sub

lhs.subst = PVar (let (ctx , rho) = lhs.ictx ren

in fresh ctx)
| PProd (p1 p2 : Pat)

lhs.ictx fv = p1.ictx fv

p1.sctx fv = p2.ictx fv

p2.sctx fv = lhs.sctx fv

p1.ictx ren = lhs.ictx ren

p2.ictx ren = p1.sctx ren

lhs.sctx ren = p2.sctx ren

lhs.rename = PProd p1.rename p2.rename
p1.ictx sub = lhs.ictx sub

p2.ictx sub = p1.sctx sub

lhs.sctx sub = p2.sctx sub

lhs.subst = PProd p1.subst p2.subst

Figure 8. Free variable elaboration of STLC Prod

only propagate the substitution maps down the context flow, with-
out modification, to make them available for the synthesis part.

Synthesis Rule SS-SDECL introduces a new synthesized at-
tribute rename to hold the newly synthesized term. Rule SS-
TERMCDECL synthesizes a new constructor term using the same
constructor, renamed bound variables (to avoid variable capture)
and substituted subterms.

The actual substitution happens in rule SS-VARCDECL. First
the referenced variable X is renamed to y using the renaming map
ρ to account for variable capture avoidance. The resulting term is
then obtained by either looking up y in the propagated substitution
map or, if y is not in the substitution map, by simply returningK y.

Example Figure 8 contains the substitution elaboration for the
simply-typed lambda calculus. The interesting case is the term vari-
able case. The variable is first renamed and then either substituted
by a different term or by the renamed reference.

Substitution function The elaborated attributes give rise to sub-
stitution functions on abstract syntax terms. For each syntactic sort
S with a variable constructor KS :α→ S this is a function that ex-
pects values for each inherited attribute and in turn delivers values
for each synthesized attribute. Specifically, the elaborated attributes
for renaming and substitution in Figure 8 give rise to the function:

substTerm :: Term → Set A→ (A 7→ A)→ (A 7→ Term)
→ Term

The first argument is the original term. The second argument is
the freshened context and the third the renaming map. Finally, the
fourth argument specifies the substitution map. From this function
we can derive a proper substitution function in the following way:

• The freshened context is initially the outer context which in-
cludes the free variables of the term, the variables to be substi-
tuted and the free variables of the substitutes.

8 2015/2/28

Renaming Analysis

sortdecl ; ag sortdecl
cdecl i ;S ag cdecl i (∀i)

sort S (syn A : [α]) (inh B : [β]) cdecl

; sort S (syn Aren : [A]× (A 7→ A)) (inh Bren : [A]× (A 7→ A)) ag cdecl

RA-SDECL

cdecl ;S ag cdecl

K (X@A) ;S K (X : A)
RA-VARCDECL

K (X : α) (F : T) (N.A = e) ;S K (X : A) (F : T) (N.Aren = JeKren) RA-TERMCDECL

JeKren J[]Kren ≡ ([], ε)
Je, XKren ≡ let (ctx , ρ) = JeKren in let y = fresh(ctx) in (y : ctx , ρ ◦ (X 7→ y))
JN.AKren ≡ N.Aren

Renaming Synthesis

sortdecl ; ag sortdecl
cdecl i ;S ag cdecl i (∀i)

sort S (syn A : [α]) (inh B : [β]) cdecl ; sort S (syn rename : S) ag cdecl
RS-SDECL

cdecl ;S ag cdecl
ag attr ≡ (lhs.rename = K (Je where X ∈ eKXren) (F.rename))

K (X : α) (F : T)N.A = e;S K (X : A) (F : T) ag attr
RS-TERMCDECL

ag attr ≡ (lhs.rename = let (, ρ) = lhs.Aren inK (ρ(X)))

K (X@A) ;S K (X : A) ag attr
RS-VARCDECL

JeKXren Je, XKXren ≡ let (ctx ,) = JeKren in fresh(ctx)
Je, Y KXren ≡ JeKXren

Figure 9. Renaming elaboration

• The renaming map is initially empty.

For terms the result is

substTerm :: Term → (A 7→ Term)→ Term
substTerm t sub =

substTerm t (fvsTerm t ∪ fvsSubst sub) [] sub

5. Implementation
This section briefly discusses our INBOUND compiler and explains
how it differs from the elaboration of Section 4.

Our INBOUND compiler is written partly in Haskell and partly
in terms of the Utrecht University Attribute Grammar Compiler
system UUAGC [21]. Moreover, our compiler elaborates IN-
BOUND specifications into UUAGC attribute grammars, which
support all the required target language features. UUAGC in turn
compiles attribute grammars to Haskell code. This makes it very
easy to use INBOUND specifications for meta-programming tools
written in Haskell. As another convenience, the UUAGC system
Also checks the required non-circularity for us.

The whole INBOUND compiler consists of about 350 lines of
Haskell code and 1400 lines of attribute grammar code.

5.1 Implemented extentions
The line count above includes additional features, on top of those
presented in Sections 3 and 4, that make the specification language
more practical. We list the most important extensions below.

Namespaces without substitution The well-formedness relation
presented in Section 3 makes sure that every namespace can sup-
port substitution. Our compiler does not uniformly enforce this
property, but also allows namespaces that only support renaming. A
practical application for this relaxation are type constructors. While
type constructors come with a notion of scoping and can be re-
named, substitution does not make sense for them.

Terminals It is not practical to define primitive datatypes, such
as ints, floats and strings, in terms of INBOUND sorts. Hence,
our compiler supports sort term constructors with terminals of
any Haskell type. These terminals are simply copied as is in the
elaboration of the syntactic operations.

Variable constructor fields In practice, variable constructors do
not follow the prototypical example of a single atom field. Variables
commonly annotated with additional information (e.g, source code
location, type or kind) to ease the implementation of the meta-
program.

To enable this practice, our implementation also allows variable
constructors to have additional terminals and subtrees. In the elab-
oration of substitution these are preserved during renaming but are
dropped when the variable is substituted. This is the semantics that
is usually applied in this situation. However, it is up to the user to
verify that it coincides with his intentions.

5.2 Future extensions
There a few desirable extensions worth mentioning, that we intend
to investigate in future work. They can further facilitate the use of
INBOUND.

9 2015/2/28

Substitution Analysis

sortdecl ; ag sortdecl
cdecl i ;S ag cdecl i (∀i) α� T β � U

sort S (syn A : [α]) (inh B : [β]) cdecl ; sort S (syn Asub : A 7→ T) (inh Bsub : A 7→ U) ag cdecl
SU-SDECL

cdecl ;S ag cdecl

K (X@A) ;S K (X : A)
SU-VARCDECL

K (X : α) (F : T) (N.A = e) ;S K (X : A) (F : T) (N.Asub = JeKsub) SU-TERMCDECL

JeKsub J[]Ksub ≡ ε
Je, XKsub ≡ JeKsub
JN.AKsub ≡ N.Asub

Substitution Synthesis

sortdecl ; ag sortdecl
cdecl i ;S ag cdecl i (∀i)

sort S (syn A : [α]) (inh B : [β]) cdecl ; sort S (syn subst : S) ag cdecl
SS-SDECL

cdecl ;S ag cdecl
ag attr ≡ (lhs.subst = K (Je where X ∈ eKXren) (F.subst))

K (X : α) (F : T)N.A = e;S K (X : A) (F : T) ag attr
SS-TERMCDECL

ag attr ≡ (lhs.subst = let (, ρ) = lhs.Aren in let y = ρ(X) in ((y 7→ K y) ◦ lhs.Asub)(y))

K (X@A) ;S K (X : A) ag attr
SS-VARCDECL

Figure 10. Substitution elaboration

Polymorphic type constructors Polymorphic type-constructors
for reusable data types like lists is high on our list. Lists are ubiq-
uitous in abstract syntax and writing many different specialized
definitions is rather tedious.

Non-free syntax Variable binding of abstract syntax exhibits a
monad interpretation of substitution [1]. In essence a substitution
function corresponds to the bind of a Monad .

subst :: Term → (Var → Term)→ Term

In this light the structure that we enforce on abstract syntax
specifications is the structure of a free monad for which we then
can derive the bind automatically.

However, not all languages can be cast into this scheme. For
example, the let-normal-form restricts the shape of compound
expressions: an application takes two term variables as arguments.

type V = String
data Expr = Var V | Lam V Expr

| App V V | Let V Expr Expr

It is still possible to define a substitution function for this lan-
guage? Yes, but this would require renormalization after substitut-
ing the variables of an application. However, deriving this substitu-
tion function automatically seems as challenging as automatically
deriving a Monad instance for an arbitrary datatype declaration.
Still, we would like to support such languages and ask the user to
only specify the essential parts of the monadic bind .

Name resolution INBOUND, like other specification languages
for binding, focuses on resolved programs, i.e., programs in which
names are already associated with the originating declaration. It
does not address the name resolution process, but takes it for
granted. This typically means that the meta-program first has to

perform a syntactic analysis before using the INBOUND syntax and
operations.

Neron et al. [12] describe name resolution in a language-
independent way by means of a scope graph that represents the
naming structure of a program but which abstracts away language
dependent parts of the abstract syntax. On top of that they develop
a resolution calculus, which describes how to resolve references to
declarations within a scope graph.

Attributes conveniently allow this contextual information to
flow from the declaration (or the top-level) to the point where it is
used. We would like to make the types of attributes richer and allow
arbitrary information to flow around the abstract syntax and from
this build the scope graphs that can be used for name resolution.

This would result in a formal specification language that covers
parts of name binding that are commonly described in an ad-hoc
way such as module imports.

6. Case Studies
To show the expressiveness of our specification language and the
benefits of our approach we have performed two case studies.

6.1 LetPoly
We have implemented from scratch a compiler from a lambda
calculus with let-polymorphism, LETPOLY, to System F.

The compiler features two syntactic sorts of terms, one for
the source language and one for the target language, each with
its own namespace of term variables, and one syntactic sort of
types. Additionally, we specify typing environments, i.e. mappings
from term variables to types, as part of the abstract syntax to get
boilerplate operations for them for free.

The compiler consists of two major meta-programming tasks:

10 2015/2/28

Original INBOUND Generated

Declarations Boilerplate Grammar Binding AG Code HS Code

LETPOLY N/A N/A 15 4 170 570
System F N/A N/A 15 5 310 1230
THIH (Types) 15 80 25 20 250 900
THIH (Full) 50 80 100 120 1600 6500

Table 1. Size statistics of the specifications and boilerplate.

Elaboration of LetPoly into System F This involves compu-
tations of free variables, fresh name generation for System Fterm
and type variables and type substitution in System Ftypes,
terms and typing environments which were all generated by
INBOUND.

Normalisation of System F This uses free variable checks for
η-reduction and term substitution for β-reduction and relies on
capture avoidance.

6.2 Typing Haskell in Haskell
Our second case study integrates INBOUND in an existing project:
We have replaced the existing syntax definitions and boilerplate
operations for Haskell in Jones’ Typing Haskell in Haskell (THIH)
[8] by a corresponding INBOUND specification.

The type language fragment of the abstract syntax has four
distinct namespaces: type constructor names, type class names,
unification variables and schematic type variables bound by type-
schemes. In the original code unification variables use a nominal
representation and schematic variables use de Bruijn indices. We
translated the latter to use a nominal approach as well. The binding
structure is rather flat, the only binding forms are type-schemes.
We managed to express an important invariant of the type-checker
in the binding specification: In a type scheme of the form

∀α : k.Cτ ⇒ τ ′

the qualified type Cτ ⇒ τ ′ contains no unification variables and
the only schematic variables are the αs bound in the type scheme,
i.e. type schemes are closed with respect to type variables.

Both kinds of variables support substitution (or instantiation)
but their original implementations do not account for capture and
do not need to do so because of the flat binding structure. As a
consequence, the renaming boilerplate is also not needed.

The type-checker itself only makes use of boilerplate operations
on types. We have however written a specification for the entire ab-
stract syntax including terms. The term language features intricate
scoping rules in binding groups and nested patterns. We can express
another invariant of the type-checker: After dependency analysis a
binding group

type BindGroup = ([Expl], [[Impl]])

consists of a list of explicitly typed bindings [Expl] and a topo-
logically sorted list of lists of implicitly typed bindings [[Impl]].
This is necessary to obtain the most general types possible. For a
binding group (es, [is1 , ...isn]) our specification makes clear that
no implicitly typed group depends on later ones by scoping them
sequentially. Moreover, an implicit group is binds recursively over
itself and the entire binding group is recursively scoped in the ex-
plicit ones es .

Conclusion Table 1 gives an overview of the size of the specifica-
tions and the generated code. The second and third column list the
size of the original datatype definitions and boilerplate functions.
The fourth and fifth column list the sizes of the sort declarations
and binding specifications of the languages. The sixth column is

sort Term
inh ctx : [TermVar]
| Var (x@ctx)
| Abs (p : Pat) (t1 t2 : Term)

p.ctx1 = lhs.ctx
p.ctx2 = lhs.ctx
t1.ctx = p.ctx1

t2.ctx = p.ctx2

sort Pat
chain ctx1 : [TermVar]
chain ctx2 : [TermVar]
| PVar1 (x : TermVar)

lhs.ctx1 = lhs.ctx1, x
| PVar2 (x : TermVar)

lhs.ctx2 = lhs.ctx2, x
| Prod (p1 p2 : TermVar)

Figure 11. Example specification not expressible by UNBOUND
and ROMEO

the size of the attribute grammar code that is produced by the IN-
BOUND compiler and the seventh column in turn shows the size of
the Haskell code produced by the UUAG compiler.

In case of THIH the declarations are slightly larger due to the ad-
ditional declaration of namespaces and the unfortunate inlining of
lists. However, the size of the binding specifications are a fraction
of the boilerplate in the original source code.

The generated code, however, is significantly larger. INBOUND
produces 1600 lines of AG code which in turn are translated to 6500
lines of Haskell code. Both, INBOUND and the UUAG compiler
produce a lot of copy rules. However, this does not add to the
complexity of the functions and most of the generated code can be
drastically simplified by the Haskell compiler. The overall amount
of code that is generated by the INBOUND compiler is linear in the
size of the specification.

7. Related and Future Work
7.1 Pragmatic programming with binders
Unbound The UNBOUND library [22] is a Haskell library for
programming with abstract syntax. It’s specification language con-
sists of a set of reusable type combinators that specify variables,
bindings and commonly found scoping rules like recursive and se-
quential scoping. The library also features a combinator Shift to
express more exotic non-linear scoping rules. The end user is pro-
vided with syntax operations for free which are implemented by
means of datatype-generic programming.

Our specification language INBOUND subsumes the binding
specifications of UNBOUND but is also strictly more powerful:
Each of the UNBOUND combinators Bind , Rebind and Rec as-
sume that all the variables of a pattern are bound simultaneously
while INBOUND supports selecting multiple different subsets for
different bindings. Figure 11 contains an example of a INBOUND
specification that is not expressible in UNBOUND: Patterns specify
two distinct but interleaved sets of variable bindings and the term
abstraction uses them to bind in two different sub-terms.

Ott The Ott tool [19] allows the definition of concrete syntax of
programming languages and inductive relations on terms for the
formalization of meta-theory for programming languages. Ott in-

11 2015/2/28

cludes a language of binding specifications that allow the definition
of functions for calculating the sets of variables bound by patterns.
The expressivity of their binding specifications corresponds to us-
ing at most one inherited attribute per sort and namespace (and
as many synthesized attributes as desired) in INBOUND. Further-
more, Ott binding specification are restricted to specifying which
new variables are bound in a binding form, specifying that certain
expressions are closed is not supported.

7.2 Binding-safe programming
Fresh look and nameless painless Pouillard and Pottier [18] and
Pouillard [17] provide a novel approach to binding-safe program-
ming by using a fine grained and abstract interface for names that is
disconnected from and actual representation. To control the use of
names, they introduce an abstract notion of world and associate a
world with each name. Consequently, types for abstract syntax are
then indexed by one or more worlds for the names they contain.

There is a direct relation between the concepts used in this paper
and the concepts used by Pouillard and Pottier.

1. Our contexts correspond to worlds. In particular the empty
context corresponds to the empty world.

2. Context attributes correspond to world indices of abstract syn-
tax types.

3. In constructor declarations our evaluation rules of context at-
tributes correspond to the computations that define the world
indices.

4. The occurrence of a name is what we call a variable reference
and weak links are variable bindings.

In comparison we lack the support of strong links. The corre-
sponding concept would be a variable binding that is structurally
guaranteed to be fresh for the enclosing context, i.e. a variable bind-
ing that does not shadow any previous variables. While we also
chose to implement the generation of fresh variables (strong links)
in a pure way, we do not keep track of this information.

Pouillard and Pottier [18] show how to implement renaming and
substitution for the untyped lambda calculus but do not show how
to derive this functionality generically from the specification and in
particular how to do so when multiple sorts have variables which is
the goal of this paper. In turn binding-safe programming is beyond
the scope of this paper but we intend to address it in future work.

Romeo ROMEO’s binding specification language is also based on
attribute grammars. Yet, it restricts every sort to one inherited and
one synthesized attribute. These attributes are usually heteroge-
neous: they simultaneously specify the context of all namespaces.
This allows more flexibility in the specification of binders than UN-
BOUND’s type combinators, but is still not powerful enough to ex-
press the specification of Figure 11. ROMEO’s binding specification
are strictly less expressive than Otts binding specifications and also
do not support closing terms.

7.3 Variable binding in mechanization
There is a wealth of work [2, 10, 11, 13–15] on dealing with
variable binding in the mechanization of programming language
meta-theory. In particular, these system focus on addressing the
proof boilerplate of variable binding and try to make proving as
simple as possible. Often this comes at the cost of expressivity by
for example restricting to single-variable binders or restricting the
number of namespaces. Moreover, these systems are all restricted
to a single inherited context with linear scoping.

8. Conclusion
We presented the specification language INBOUND for abstract
syntax with binders. This lanuage makes scoping rules of languages
explicit and automatically derives boilerplate functions from them.
Our implementation is availabe from https://github.com/
skeuchel/inbound.

The language provides ample opportunity for follow-on work,
like automatic name resolution and support for non-free monads.

References
[1] T. Altenkirch and B. Reus. Monadic presentations of lambda terms

using generalized inductive types. In CSL, volume 1683 of LNCS.
Springer, 1999.

[2] B. Aydemir and S. Weirich. LNgen: Tool support for locally nameless
representations. Technical report, 2010.

[3] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.
Engineering Formal Metatheory. In POPL ’08. ACM, 2008.

[4] R. S. Bird and R. Paterson. de Bruijn notation as a nested datatype.
JFP, 1999.

[5] J. Cheney. Scrap your Nameplate. In ICFP ’05. ACM, 2005.
[6] N. de Bruijn. Telescopic mappings in typed lambda calculus. Infor-

mation and Computation, 1991.
[7] M. Jazayeri, W. F. Ogden, and W. C. Rounds. The Intrinsically Ex-

ponential Complexity of the Circularity Problem for Attribute Gram-
mars. Commun. ACM, 1975.

[8] M. P. Jones. Typing Haskell in Haskell. Technical report, 1999.
[9] D. E. Knuth. Semantics of context-free languages. Mathematical

systems theory, 2(2):127–145, 1968. ISSN 0025-5661.
[10] G. Lee, B. C. Oliveira, S. Cho, and K. Yi. GMeta: A generic for-

mal metatheory framework for first-order representations. In ESOP.
Springer, 2012.

[11] A. Momigliano, A. J. Martin, and A. P. Felty. Two-Level Hybrid: A
System for Reasoning using Higher-Order Abstract Syntax. ENTCS,
2008.

[12] P. Neron, A. Tolmach, E. Visser, and G. Wachsmuth. A Theory of
Name Resolution. In ESOP. Springer, 2015.

[13] F. Pfenning and C. Schrmann. Twelf – A Meta-Logical Framework
for Deductive Systems. In CADE-16. Springer, 1999.

[14] B. Pientka and J. Dunfield. Beluga: A Framework for Programming
and Reasoning with Deductive Systems. In IJCAR. Springer, 2010.

[15] E. Polonowski. Automatically generated infrastructure for de Bruijn
syntaxes. In ITP, volume 7998 of LNCS. Springer, 2013.

[16] F. Pottier. An overview of Cαml. ENTCS, 148(2), 2006.
[17] N. Pouillard. Nameless, painless. In ICFP ’11. ACM, 2011.
[18] N. Pouillard and F. Pottier. A Fresh Look at Programming with Names

and Binders. In ICFP ’10. ACM, 2010.
[19] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,

and R. Strniša. Ott: Effective tool support for the working semanticist.
JFP, 2010.

[20] P. Stansifer and M. Wand. Romeo: A System for More Flexible
Binding-safe Programming. In ICFP ’14. ACM, 2014.

[21] S. D. Swierstra, P. R. Azero Alcocer, and J. a. Saraiva. Designing
and Implementing Combinator Languages. In AFP03, volume 1608
of LNCS. Springer, 1999.

[22] S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In ICFP
’11. ACM, 2011.

12 2015/2/28

https://github.com/skeuchel/inbound
https://github.com/skeuchel/inbound

	Introduction
	Overview
	Background: Conventional Approach
	Challenge: Minimal Clues for Binder Boilerplate
	Solution: InBound

	Grammars and Binding Specifications
	Formal InBound Syntax
	Examples
	Well-Formed InBound Specifications

	Elaboration Semantics
	Target language
	Variable Elaboration
	Term elaboration
	Free variable elaboration
	Renaming elaboration
	Substitution elaboration

	Implementation
	Implemented extentions
	Future extensions

	Case Studies
	LetPoly
	Typing Haskell in Haskell

	Related and Future Work
	Pragmatic programming with binders
	Binding-safe programming
	Variable binding in mechanization

	Conclusion

