
Needle & Knot: Binder boilerplate tied up

Steven Keuchel1, Stephanie Weirich2, and Tom Schrijvers3

1 Ghent University, steven.keuchel@ugent.be
2 University of Pennsylvania, sweirich@cis.upenn.edu

3 KU Leuven, tom.schrijvers@cs.kuleuven.be

Abstract. In order to lighten the burden of programming language
mechanization many approaches have been developed that tackle the
substantial boilerplate which arises from variable binders. Unfortunately,
the existing approaches are limited in scope. They typically do not sup-
port complex binding forms (such as multi-binders) that arise in more
advanced languages, or they do not tackle the boilerplate due to men-
tioning variables and binders in relations. As a consequence, the human
mechanizer is still unnecessarily burdened with binder boilerplate and
discouraged from taking on richer languages.
This paper presents Knot, a new approach that substantially extends
the support for binder boilerplate. Knot is a highly expressive language
for natural and concise specification of syntax with binders. Its meta-
theory constructively guarantees for well-formed specifications the cov-
erage of a considerable amount of binder boilerplate, including that for
well-scoping of terms and context lookups. Knot also comes with a code
generator, Needle, that specializes the generic boilerplate for convenient
embedding in Coq and provides a tactic library for automatically dis-
charging proof obligations that frequently come up in proofs of weakening
and substitution lemmas of type-systems.
Our evaluation shows, that Needle & Knot significantly reduce the size
of language mechanizations (by 40% in our case study). Moreover, as
far as we know, Knot enables the most concise mechanization of the
POPLmark Challenge (1a + 2a) and is two-thirds the size of the next
smallest. Finally, Knot allows us to mechanize for instance dependently-
typed languages, which is notoriously challenging because of dependent
contexts and mutually-recursive sorts with variables.

1 Introduction

The meta-theory of programming language semantics and type-systems is highly
complex due to the management of many details. Formal proofs are long and
prone to subtle errors that can invalidate large amounts of work. In order to
guarantee the correctness of formal meta-theory, techniques for mechanical for-
malization in proof-assistants have received much attention in recent years.

This paper targets the syntactic approach to programming language metathe-
ory, popularized by Wright and Felleisen [41] and Pierce [25]. An important issue
that arises in such formalizations is the treatment of variable binding which typ-
ically comprises the better part of the whole formalization. Most of this variable

binding infrastructure is repetitive and tedious boilerplate. By boilerplate we
mean mechanical operations and lemmas that appear in many languages, such
as: 1) common operations like calculating the sets of free variables or the do-
main of a typing context, appending contexts and substitutions; 2) lemmas about
operations like commutation of substitutions or the interaction between the free-
variable calculation and substitution; and 3)lemmas about the well-scoping of
terms and preservation of well-scoping under syntactic operations.

To alleviate researchers from this burden, multiple approaches have been
developed to capture the structure of variable binding and generically take care
of the associated boilerplate. These include specification languages of syntax with
binding and scoping rules [33], tools or reflection libraries that generate code
for proof assistants from specifications [7,27,32], generic programming libraries
that implement boilerplate using datatype generic functions and proofs [19] and
meta-languages that have built-in support for syntax with binding [22,24,35].

Yet, despite the multitude of existing approaches, the scope of the available
support is still rather limited. Most approaches do not cover rich-binding forms
(such as patterns or declaration lists) or the advanced scoping rules (like se-
quential and recursive scopes) of more complex languages. Those that do still
leave most of the boilerplate up to the developer. As a consequence, only drastic
simplifications of languages are mechanized, in order to fit the mold of existing
tools and make the development cost affordable. For example, multi-variable
binders are replaced by single-variable binders and polymorphic languages by
monomorphic sublanguages to avoid dealing with multiple distinct namespaces.
Obviously there is a very real danger that these simplifications gloss over actual
problems in the original language and give a false sense of security.

This work greatly improves the support for binder boilerplate in the mech-
anization of programming languages in two dimensions. Firstly, we support a
rich class of abstract syntaxes with binders involving advanced binding forms,
complex scoping rules and mutually recursive sorts with variables. Secondly, the
supported boilerplate for this class goes beyond term-related functions and their
associated interaction lemmas: it also covers generic treatment of contexts and
their interaction with term-related functions, as well as well-scopedness predi-
cates and associated lemmas.

For this purpose we provide Knot, a language to concisely and naturally
specify the abstract syntax and rich binding structure of programming languages.
From such a Knot specification our Needle tool generates the corresponding
Coq code as well as all the derived boilerplate. Our specific contributions are:

1. We present Knot, a new approach to automate the treatment of variable
binding boilerplate. Knot is a natural and concise specification language for
syntax with binders. Knot is highly expressive, supporting multi-binders,
advanced scoping rules and mutually recursive sorts with variables.

2. We prove that any well-formed Knot specification is guaranteed to pro-
duce a considerable amount of binder boilerplate operations and lemmas
that include the usual term-level interaction lemmas, but also lemmas for
contexts and context lookups and for weakening, strengthening and substi-

2

tution lemmas of well-scopedness relations. Our mechanized proof consists
of a constructive generic implementation which in particular deals with the
challenges of mutually recursive definitions.

3. Alongside the generic implementation, we provide Needle, a convenient
code generator that produces specialized boilerplate for easy embedding in
larger Coq formalizations. Needle also provides a library of tactics to sim-
plify and automatically discharge well-scopedness proof obligations.

4. We demonstrate the usefulness of Knot with two case studies.

(a) We show that the Knot-based approach is on average 40% smaller than
the unassisted approach in a case-study of type-safety mechanizations
for 10 languages.

(b) We compare the Knot solution of the POPLmark challenge (1A + 2A)
to 7 other solutions. Ours is by far the smallest.

The code for Needle and the Coq developments are available at https:

//users.ugent.be/~skeuchel/knot.

2 Overview

This section gives an overview of the variable binding boilerplate that arises when
proving type preservation of typed programming languages. For this purpose
we use F× (i.e., System F with products and destructuring pattern bindings)
as the running example. In the following, we elaborate the different steps of the
formalization and point out where variable binding boilerplate arises.

2.1 Syntax: Variable Representation

Figure 1 (top) shows the first step in the formalization: the syntax of F×. Notice
that patterns can be nested and can bind an arbitrary number of variables at
once. In this grammar the scoping rules are left implicit. The intended rules are
that in a type or term abstraction the variable scopes over the body e and in a
pattern binding the variables bound by the pattern scope over e2 but not e1.

The syntax raises the first variable-related issue: how to concretely represent
variables, an issue that is side-stepped in Figure 1 (top). Traditionally one would
use identifiers as the set of variables. However, when formalizing meta-theory
this representation requires reasoning modulo α-conversion of bound variables
to an extent that is excruciating. It is therefore inevitable to choose a different
representation of the abstract syntax.

The goal of this paper is neither to develop a new approach to variable
binding nor to compare existing ones, but rather to scale the generic treatment
of a single approach to realistic languages. For this purpose we choose de Bruijn
representations [9], motivated by two main reasons. First, reasoning with de
Bruijn representations is well-understood and, in particular, the representation
of pattern binding and scoping rules is also well-understood [10,16]. Second,
the functions related to variable binding, the statements of properties of these

3

https://users.ugent.be/~skeuchel/knot
https://users.ugent.be/~skeuchel/knot

α, β ::= type variable p ::= pattern
x , y ::= term variable | x variable pattern
Γ,∆ ::= type environment | p1, p2 product pattern

| ε empty env e ::= term
| Γ, α type binding | x term variable
| Γ, x : τ term binding | λx : τ.e term abstraction

τ, σ ::= type | e1 e2 application
| α type variable | Λα.e type abstraction
| τ → τ function type | e [τ] type application
| τ1, τ2 product type | e1, e2 product
| ∀α.τ universal type | case e1 of p → e2 pattern binding

E ::= enil t ::= var n p ::= pvar
| etvar E | abs T t | pprod p1 p2

| evar E T | app t1 t2
T ::= tvar n | tyabs t
| tarr T1 T2 | tyapp t T
| tprod T1 T2 | prod t1 t2
| tall T | case t1 p t2

Fig. 1: F× syntax and de Bruijn representation

functions and their proofs have highly regular structures with respect to the
abstract syntax and the scoping rules of the language. This helps us in treating
boilerplate generically and automating proofs.

The term grammar in Figure 1 (bottom) encodes a de Bruijn representation
of F×. The variable occurrences of binders have been removed in this represen-
tation and the referencing occurrences of type and term variables are replaced
by de Bruijn indices n. These de Bruijn indices point directly to their binders:
The index n points to the nth enclosing binding position. For instance, the
F× expression for the polymorphic swap function

Λα.Λβ.λx : (α, β).case x of (x1 , x2)→ (x2 , x1)

is represented by the de Bruijn term

tyabs (tyabs (abs (tprod (tvar 1) (tvar 0))
(case (var 0) (pprod pvar pvar) (prod (var 0) (var 1)))))

Again the order in which de Bruijn indices are bound and the scoping rules
are left implicit in the term grammar. Our specification language Knot for de
Bruijn terms from Section 3 will make order of binding and scoping rules explicit.

A second example is tyabs (tyabs (abs (tvar 1) (abs (tvar 0) (var 1))) for the
polymorphic const function Λα.Λβ.λx :α.λy :β.x . We treat indices for variables
from distinct namespaces independently: The index for the type variable β that
is used in the inner abs is 0 and not 1, because we only count the number of
binders for the corresponding namespace and not binders for other namespaces.

4

2.2 Semantics: Shifting and Substitution

The next step in the formalization is to develop the typical semantic relations for
the language of study. In the case of F× these comprise a small-step call-by-value
operational semantics, as well as a well-scopedness relation for types, a typing
relation for terms and a typing relation for patterns. The operational semantics
defines the evaluation of term- and type-abstraction by means of β-reduction.

(λx .e1) e2 −→β [x 7→ e2] e1 (Λα.e) τ −→β [α 7→ τ] e

This requires the first boilerplate for the de Bruijn representation: substitution
of type variables in types, terms and contexts, and of term variables in terms.

For the substitution we first need to define weakening on terms that adapts
the indices of free variables in a term e when variables are added to its context
Γ , e.g. when going under a ∆ binder: Γ ` e ; Γ,∆ ` e.

To only adapt free variables but not bound variables in e we implement weak-
ening by reducing it to a more general operation called shifting that implements
insertion of a single variable in the middle of a context

Γ,∆ ` e ; Γ, x , ∆ ` e Γ,∆ ` e ; Γ, α,∆ ` e

In total, we need to implement four shift functions to adapt type-variable indices
in types, terms and contexts and term-variable indices in terms.

2.3 Theorems: Commutation, Weakening and Preservation

Given the definitions from the previous subsection, we are ready to define the
semantics and type system of F× and move on to formulate and prove type
soundness for F×. We refrain from formulating it here explicitly. The proof of
type soundness involves the usual lemmas for canonical forms, typing inversion,
pattern-matching definedness as well as progress and preservation [41]. In order
to prove these lemmas we require a second set of variable binding boilerplate:

– Interaction lemmas for the shift, weaken and substitution operations. In the
case of F× we only need interaction lemmas for type-variable operations,
but in general these may also involve interactions between two operations in
distinct namespaces.

– Weakening and strengthening lemmas about context lookups which in par-
ticular need additional interaction lemmas for context concatenation.

– We need to define well-scopedness of types with respect to a context and
prove weakening and strengthening properties and the preservation of well-
scopedness under well-scoped type-variable substitution.

2.4 Summary

Table 1 summarizes the effort required to formalize type soundness of F× in the
Coq proof assistant in terms of the de Bruijn representation. It lists the lines

5

Useful Boilerplate

Syntax 28 0 (0%)

Semantics 62 149 (22.1%)

Theorems 140 296 (43.9%)

Total 230 445 (66.0%)

Table 1: Lines of Coq code for the F× meta-theory mechanization.

of Coq code for the three different parts of the formalization discussed above,
divided in binder-related “boilerplate” and the other “useful” code. The table
clearly shows that the boilerplate constitutes about two thirds of the formaliza-
tion. The boilerplate lemmas in particular, while individually fairly short, make
up the bulk of the boilerplate and close to half of the whole formalization.

Of course, very similar variable binder boilerplate arises in the formalization
of other languages, where it requires a similar unnecessarily large development
effort. For instance, Rossberg et al. [30] report that 400 out of 500 lemmas of their
mechanization in the locally-nameless style [6] were tedious boilerplate lemmas.

Fortunately there is much regularity to the boilerplate: it follows the structure
of the language’s abstract syntax and its scoping rules. Many earlier works have
already exploited this fact in order to automatically generate or generically define
part of the boilerplate for simple languages.

2.5 Our Solution: Needle and Knot

The aim of this work is to considerably extend the support for binder boilerplate
in language mechanizations on two accounts. Firstly, we go beyond simple single
variable binders and tackle complex binding structures, like the nested pattern
matches of F×, recursively and sequentially scoped binders, mutually recursive
binders, heterogeneous binders, . . . Secondly, we cover a larger extent of the
boilerplate than earlier works, specifically catering to contexts, context lookups
and well-scopedness relations.

Our approach consists of a specification language, called Knot, that allows
concise and natural specifications of abstract syntax of programming languages
and provides rich binding structure. We provide generic definitions and lem-
mas for the variable binding boilerplate that apply to every well-formed Knot
specification. Finally, we complement the generic approach with a code gener-
ator, called Needle, that specializes the generic definitions and allows manual
customization and extension.

We follow two important principles: Firstly, even though in its most general
form, syntax with binders has a monadic structure [3,4,5], Knot restricts itself
to free monadic structures. This allows us to define substitution and all related
boilerplate generically and encompasses the vast majority of languages.

6

Labels

S, T Sort label α, β, γ Namespace label
K Constructor label x, y, z Meta-variable
E Env label f Function label
s, t Sort field

Declarations and definitions

spec ::= decl Specification
decl ::= namedecl | sortdecl | fundecl | envdecl Declaration
namedecl ::= namespaceα : S Namespace

sortdecl ::= sortS := ctordecl Sort

ctordecl ::= K (x@α) | K (x : α) ([bs]s : S) Ctor decl.

bs ::= bsi Binding spec.
bsi ::= x | fs Bind. spec. item

fundecl ::= fun f : S → [α] := funclause Function
funclause ::= K xs→ bs Function clause

envdecl ::= envE := envclause Environment

envclause ::= α 7→ S Env. clause

Fig. 2: The Syntax of Knot

Secondly, we hide as much as possible the underlying concrete representa-
tion of de Bruijn indices as natural numbers. Instead we provide an easy-to-use
interface that admits only sensible operations and prevents proofs from going
astray. In particular we rule out comparisons using inequalities and decrements,
and any reasoning using properties of these operations.

3 The Knot Specification Language

This section introduces Knot, our language for specifying the abstract syntax
of programming languages and associated variable binder information. The ad-
vantage of specifying programming languages in Knot is straightforward: the
variable binder boilerplate comes for free for any well-formed Knot specification.

The syntax of Knot allows programming languages to be expressed in terms
of different syntactic sorts, term constructors for these sorts and binding speci-
fications for these term constructors. The latter specify the number of variables
that are bound by the term constructors as well as their scoping rules.

3.1 Knot Syntax

Figure 2 shows the grammar of Knot. A Knot specification spec of a language
consists of variable namespace declarations namedecl , syntactic sort declarations
sortdecl , function declarations fundecl and environment declarations envdecl .

7

A namespace declaration introduces a new namespace α and associates it
with a particular sort S. This expresses that variables of namespace α can be
substituted for terms of sort S. It is possible to associate multiple namespaces
with a single sort.

A declaration of S comes with two kinds of constructor declarations ctordecl .
Variable constructors K (x@α) hold a variable reference in the namespace α.
These are the only constructors where variables can appear free. Regular con-
structors K (x : α) (s : S) contain named variable bindings (x : α) and named
subterms (s : S). Meta-variables x and field names s scope over the constructor
declaration. For the sake of presentation we assume that the variable bindings
precede subterms. The distinction between variable and regular constructors
follows straightforwardly from our free-monadic view on syntax. This rules out
languages for normal forms, but as they require custom behavior (renormaliza-
tion) during substitution [31,39] their substitution-related boilerplate cannot be
defined generically anyway.

Each subterm s is preceded by a binding specification bs that stipulates
which variable bindings are brought in scope of s. The binding specification
consists of a list of items bsi . An item is either a meta-variable x that refers to
a singleton variable binding of the constructor or the invocation of a function
f , that computes which variables in siblings or the same subterm are brought
in scope of s. Functions serve in particular to specify multi-binders in binding
specifications. In regular programming languages the binding specifications will
often be empty and can be omitted.

Functions are defined by function declarations fundecl . The type signature
f : S → [α] denotes that function f operates on terms of sort S and yields
variables in namespaces α. The function itself is defined by exhaustive case
analysis on a term of sort S. A crucial property of Knot is the enforcement of
lexical scoping: shifting and substituting variables does not change the scoping
of bound variables. To achieve this, functions cannot be defined for sorts that
have variable constructors.

Environments E represent a list of variables that are in scope and associate
them with additional data such as typing information. To this end, an environ-
ment declaration envdecl consists of clauses α 7→ S that stipulate that variables
in namespace α are associated to terms of sorts S.

3.2 Examples

Several examples of rich binder forms now illustrate Knot’s expressive power.
Figure 3 (top) shows the Knot specification of F×. We start with the declaration
of two namespaces: Tyv for type variables and Tmv for term variables, which
is followed by the declarations of F×’s three sorts: types, patterns and terms.
For readability we omit empty binding specifications. The Knot specification
contains only four non-empty binding specifications: universal quantification for
types and type abstraction for terms bind exactly one type variable, the lambda
abstraction for terms binds exactly one term variable and the pattern match
binds bind p variables in t2 where bind is a function defined on patterns.

8

namespace Tyv : Ty
namespace Tmv : Term

sort Ty :=
| TVar (X @Tyv) | TProd (T1 T2 : Ty)
| TArr (T1 T2 : Ty) | TAll (X : Tyv) ([X]T : Ty)

sort Term := Var (x@Tmv)
| App (t1 t2 : Term) | Abs (x : Tmv) (T : Ty) ([x]t : Term)
| TApp (t : Term) (T : Ty) | TAbs (X : Tyv) ([X]t1 : Term)
| Prod (t1 t2 : Term) | Case (t1 : Term) (p : Pat) ([bind p]t2 : Term)

sort Pat := PVar (x : Tmv) | PProd (p1 p2 : Pat)
fun bind : Pat → [Tmv] :=
| PVar x → x | PProd p1 p2 → bind p1, bind p2

env Env :=
| (x : Tmv) 7→ (T : Ty) | (X : Tyv) 7→ % nothing associated

namespace Tmv : Term

sort Ty := Top | Arr (T1 T2 : Ty)
sort Term := Var (x@Tmv)
| App (t1 t2 : Term) | Abs (x : Tmv) (T : Ty) ([x]t : Term)
| Let ([bind ds]ds : Decls) ([bind ds]t : Term)

sort Decls := Nil | Cons (x : Tmv) (t : Term) (ds : Decls)
fun bind : Decls → [Tmv] :=
| Nil → [] | Cons x t ds → x , bind ds

env Env := (x : Tmv) 7→ (T : Ty)

Fig. 3: Example specifications of F× and λletrec

Figure 3 (bottom) shows the specification of a simply-typed lambda calculus
with recursive let definitions as they are found in the Haskell programming lan-
guage. The auxiliary function bind collects the variables bound by a declaration
list ds. In the term constructor Let we specify that the variables of ds are not
only bound in the body t but also recursively in ds itself.

Figure 4 (top) shows the specification of a lambda calculus with first-order
dependent types as presented by Aspinall and Hofmann [26]. In this language
terms and types are mutually recursive and have distinct namespaces. Type
variables can be declared in the context with a specific kind K but are never
bound in the syntax.

The calculus presented in Figure 4 (top) uses telescopic abstractions. Tele-
scopes were invented to model dependently typed systems [10]. They are lists of
of variables together with their types x1 : T1, . . . , xn : Tn where each variable
scopes over types that appear later in the list.

In the abstract syntax of telescopes the sequential scoping is captured in the
binding specification of the recursive position of the TCons constructor. In the

9

namespace Tyv : Ty
namespace Tmv : Term

sort Kind := Star | KPi (x : Tmv) (T : Ty) ([x]K : Kind)
sort Ty := TVar (X @Tyv)
| TApp (T : Ty) (t : Term) | TPi (x : Tmv) (T1 : Ty) ([x]T2 : Ty)

sort Term := Var (x@Tmv)
| App (t1 t2 : Term) | Abs (x : Tmv) (T : Ty) ([x]t : Term)

env Env := (X : Tyv) 7→ (K : Kind) | (x : Tmv) 7→ (T : Ty)

namespace Tmv : Term

sort Term := Var (x@Tmv)
| App (t : Term) (ts : Terms) | Abs (d : Tele) ([bind d]t : Term)
| Pi (d : Tele) ([bind d]t : Term)

sort Terms := Nil | Cons (t : Term) (ts : Terms)
sort Tele := TNil | TCons (x : Tmv) (T : Term) ([x]d : Tele)

fun bind : Tele → [Tmv] := | TNil → [] | TCons x T d → x , bind d
env Env := etm : (x : Tmv) 7→ (T : Term)

Fig. 4: Example specifications of λLF and λtele

lambda abstraction case Abs and the dependent function type constructor Pi
the variables of a telescope are bound simultaneously in the body.

3.3 Well-Formed Knot Specifications

In this section we generally define well-formedness of specifications that in par-
ticular ensures that meta-variables and field names in binding specifications are
always bound and that binding specifications are well-typed. To do so we make
use of several kinds of global information. The global environment V contains
the mapping from namespaces to the associated sort. The function environment
Φ contains the type signatures for all functions f : S → α.

The global function depsOf maps sort S to the set of namespaces α that S
depends on. For example, in F× terms depend on both type and term variables,
but types only depend on type variables. depsOf is the least function that fulfill
two conditions:

1. For each variable constructor (K : α→ S): α ∈ depsOf S ,
2. and for each regular constructor (K : α T → S): depsOf Ti ⊆ depsOf S (∀i).

The function depsOf induces a subordination relation on sorts similar to sub-
ordination in Twelf [22,37]. We will use depsOf in the definition of syntactic
operations to avoid recursing into subterms in which no variables of interest are
to be found and for subordination based strengthening lemmas.

10

V ::= α : S Var. assoc.

Φ ::= f : S → [α] Function env.

L ::= x : α, s : S Local env.

` spec V = α : T `S ctordecl

` namespace α : T sort S := ctordecl
WfSpec

`S ctordecl

α : S ∈ V
`S K (x@α)

WfVar
∀j.(x : α, t : T) ` bsj : depsOf Tj

`S K (x : α) ([bs]t : T)
WfReg

L ` bs : α

∀j.L ` bsij : α

L ` bsi : α
WfBs

L ` bsi : α

(x : β) ∈ L
β ∈ α

L ` x : α
WfSng

(s : S) ∈ L β ⊆ α
f : S → [β] ∈ Φ
L ` f s : α

WfCall

Fig. 5: Well-formed specifications

Figure 5 defines the well-formedness relation ` spec for Knot specifications.
The single rule WfSpec expresses that a specification is well-formed if each
of the constructor declarations inside the sort declarations is and the meta-
environment V contains exactly the declared namespaces.

The auxiliary well-sorting relation `S ctordecl denotes that constructor dec-
laration ctordecl has sort S. There are two rules for this relation, one for each
constructor form. Rule WfVar requires that the associated sort of the variable
namespace matches the sort of the constructor. Rule WfReg handles regular
constructors. It builds a constructor-local meta-environment L for meta-variables
with their namespace x : α and fields with their sorts s : S . The binding specifi-
cations of all fields and all functions defined on S are checked against L.

The relation L ` bs : α in Figure 5 denotes that binding specification bs
is typed heterogeneously with elements from namespaces α. By rule WfBs a
binding specification is well-typed if each of its items is well-typed.

Rule WfSng regulates the well-typing of a singleton variable binding. It
is well-typed if the namespace β of the binding is among the namespaces α.
Correspondingly the rule WfCall states that a function call f s is well-typed
if the namespace set β of the function is a subset of α.

In addition to the explicitly formulated well-formedness requirements of Fig-
ure 5, we also require a number of simple consistency properties:

1. Constructor names are not repeated for different constructor declarations.
2. Field names are not repeated in a constructor declaration.
3. For each namespace α there is a unique variable constructor declaration K α.
4. Function declarations are exhaustive and not overlapping.

11

n,m ::= 0 | S n de Bruijn index
u, v, w ::= K n | K u Sort term
Γ,∆ ::= [] | Γ .α u Environment term

Fig. 6: Grammars of raw de Bruijn terms

5. There is at most one environment clause per namespace.

The first two requirements avoid ambiguity and follow good practice. The
third requirement expresses that every variable belongs to one sort and there
is only one way, i.e., one term constructor, to inject it in that sort. The fourth
requirement ensures that functions are total. Finally, the last requirement avoids
ambiguity by associating variables from a namespace with only one kind of data.

4 Knot Semantics

The previous section has introduced the Knot specification language for ab-
stract syntax. This section generically defines the semantics of the language in
terms of a de Bruijn representation, declare the abstract syntax that is valid with
respect to the specification and define the semantics of binding specifications.
We assume a given well-formed specification spec in the rest of this section.

4.1 Term semantics

We assume that information about constructors is available in a global environ-
ment. We use (K : α→ S) for looking up the type of a variable constructor and
(K : α→ T → S) for retrieving the fields types of regular constructors.

Figure 13 contains a term grammar for raw terms of sorts and environments.
A sort term consists of either a constructor applied to a de Bruijn index or a
term constructor applied to other sort terms. An environment term is either
and empty environment or the cons of an environment and a list of associated
sort terms. The cons is additionally tagged with a namespace α. Appendix A
defines a straightforward well-sortedness judgement ` u : S for raw sort terms
and ` Γ : E for raw environment terms. See also the well-scopedness relation in
Figure 8 that refines well-sortedness.

4.2 Binding specification semantics

The binding specification [bs] t for a particular subterm t of a given term con-
structor K defines the variables that are brought into scope in t . For example the
binding specification of the pattern-matching case of F× in Figure 3 states that
the pattern variables are bound in the body by means of a function bind that
collects these variables. We need to define an interpretation of binding specifi-
cations and functions that we can use in the definitions of boilerplate functions.

12

hvl , h, d ::= 0 | Sα h Heterogeneous var. list

J K :: bs → t 7→ u → h

J ε Kϑ = 0
J bs, xα Kϑ = J bs Kϑ + 1α
J bs, f ti Kϑ = J bs Kϑ + J f K(ϑ ti)

J K :: f → u → h

J f K(K u) = J bs i Kϑ
where f (K x t) = bs i ∈ spec

ϑ := t 7→ u

domain :: Γ → h domain [] = 0 domain (Γ .α u) = domain Γ + 1α

Fig. 7: Interpretation of binding specifications and functions

Figure 7 defines the interpretation J bs Kϑ of bs as a meta-level evaluation.
Interpretation is always performed in the context of a particular constructor K .
This is taken into account in the interpretation function: the parameter ϑ : t 7→ u
is a mapping from field labels to concrete subterms.

Traditionally, one would use a natural number to count the number of vari-
ables that are being bound. Instead, we use heterogeneous variable lists hvl – a
refinement of natural numbers – defined in Figure 7 for dealing with heteroge-
neous contexts: each successor Sα is tagged with a namespace α to keep track
of the number and order of variables of different namespaces. This allows us to
model languages with heterogeneous binders, i.e. that bind variables of different
namespaces at the same time, for which reordering the bindings is undesirable.

In case the binding specification item is a single-variable binding the result
is a one with the correct tag. In the interesting case of a function call f ti the
evaluation pattern matches on the corresponding subterm ϑ ti and interprets the
right-hand side of the appropriate function clause with respect to the new sub-
terms. Note that we have ruled out function definitions for variable constructors.
Thus, we do not need to handle that case here.

The hvls are term counterparts of environments from which the associated
information has been dropped. The function domain in Figure 7 makes this
precise by calculating the underlying hvl of an environment term. In the following
we will also use the extension of addition from natural numbers to hvl and
implicitly use its associativity property. We mirror the convention of extending
environments to the right at the level of hvl and will always add new variables
on the right-hand side of addition.

4.3 Well-scopedness

Part of the semantics is the well-scopedness of terms. It is current practice to
define well-scopedness with respect to a typing environment: a term is well-
scoped iff all of its free variables are bound in the environment. The environment
is extended when going under binders. For example, when going under the binder

13

h `α n

Sα h `α 0
WsZero

h `α n
Sα h `α S n

WsHom

α 6= β
h `α n

Sβ h `α n
WsHet

h ` u : S

h `α n
K : α→ S

K n : S
WsVar

K : x : α→ [bs]t : T → S ϑ = t 7→ u
h+ J bs i Kϑ ` ui : Ti (∀i)

h ` K u : S
WsCtor

h ` Γ : E

h ` [] : E
WsNil

E : α→ T h ` Γ
h + domain Γ ` ui : Ti (∀i)

h ` (Γ .α u) : E
WsCons

Fig. 8: Well-scopedness of terms

of a lambda abstraction with a type-signature the conventional rule is

Γ, x : τ ` e

Γ ` λ (x : τ).e

The rule follows the intention that the term variable should be of the given type.
In this regard well-scopedness is already a lightweight type-system. However, it is
problematic for Knot to establish this intention or in general establish what the
associated data in the environment should be. Furthermore, we allow the user
to define different environments with potentially incompatible associated data.
Hence, instead we define well-scopedness by using domains of environments. In
fact, this is all we need to establish well-scopedness.

Figure 8 defines the well-scopedness relation on de Bruijn indices as well as
sort and environment terms. The relation h `α n denotes that n is a well-scoped
de Bruijn index for namespace α with respect to the variables in h. This is a
refinement of n < h in which only the successors for namespace α in h are
taken into account. This is accomplished by rule WsHom which strips away one
successor in the homogeneous case and rule WsHet that simply skips successors
in the heterogeneous case. Rule WsZero forms the base case for n = 0 which
requires that h has a successor tagged with α.

Rule WsVar delegates well-scopedness of variable constructors to the well-
scopedness of the index in the appropriate namespace. In rule WsCtor the
heterogeneous variable list h is extended for each subterm ui with the result of
evaluating its binding specification bs i .

The relation h ` Γ defines the well-scopedness of environment terms with
respect to previously existing variables h. We will also write ` Γ as short-hand
for 0 ` Γ . Note in particular that rule WsCons extends h with the domain of
the existing bindings when checking the well-scopedness of associated data.

14

c ::= 0 | S c Cutoffs

weakenα :: c → h → c

weakenα c 0 = c
weakenα c (Sβ h) =

if α = β
then S (weakenα c h)
else weakenα c h

shiftN :: c → n → n

shiftN 0 n = S n
shiftN (S c) 0 = 0
shiftN (S c) (S n) = S (shiftN c n)

weaken :: u → h → u

weaken u 0 = u
weaken u (Sα h) =

shift?α 0 (weaken u h)

shiftα :: c → u → u

shiftα c (K n) =
if K : α→ S

then K (shiftN c n)
else K n

shiftα c (K u) =

K shift?α (weakenα c J bs Kϑ) u
where

K x ([bs] t : T) ∈ spec
ϑ = t 7→ u

shift?α :: c → u → u

shift?α c u =
if α ∈ depsOf u

then shiftα c u else u

Fig. 9: Shifting of terms

5 Infrastructure Operations

In this section we generically define common infrastructure operations generically
over all terms of a specifications. This includes shifting and substitution in sort
and environment terms and lookups in environments.

5.1 Shifting

Shifting adapts indices when a variable x is inserted into the context.

Γ,∆ ` e ; Γ, (x : τ), ∆ ` e

Indices in e for α-variables in Γ need to be incremented to account for the new
variable while indices for variables in ∆ remain unchanged. The shift function
is defined in Figure 9 implements this. It is parameterized over the namespace
α of variable x in which the shift is performed. It takes a cut-off parameter c
that is the number of α-variable bindings in ∆. In case of a variable constructor
K :α→ S the index is shifted using the shiftN function. For variable constructors
of other namespaces we keep the index unchanged. In the case of a regular
constructor we need to calculate the cut-offs for the recursive calls. This is done
by evaluating the binding specification bs and weakening the cut-off. Using the
calculated cut-offs, the shift?α function can proceed recursively on the subterms
that depend on the namespace α.

15

Instead of using the traditional arithmetical implementation

if n < c then n else n + 1

we use an equivalent recursive definition of shiftN that inserts the successor
constructor at the right place. This follows the inductive structure of ∆ which
facilitates inductive proofs on ∆.

Weakening Weakening is the transportation of a term e from a context Γ to a
bigger context Γ,∆ where variables are only added at the end.

Γ ` e ; Γ,∆ ` e

Figure 9 shows the implementation of weakenα that iterates the 1-place
shift?α function. Its second parameter h is the domain of ∆; the range of ∆
is not relevant for weakening.

5.2 Substitution

Next we define substitution of a single variable x for a term e in some other
term e ′ generically. In the literature, two commonly used variants can be found.

1. The first variant keeps the invariant that e and e ′ are in the same context
and immediately weakens e ′ when passing under a binder while traversing
e ′ to keep this invariant. It corresponds to the substition lemma

Γ,∆ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ,∆ ` {x 7→ e } e ′ : τ

2. The second variant keeps the invariant that t is in a weaker context than
s. It defers weakening until the variable positions are reached to keep the
invariant and performs shifting if the variable is substituted. It corresponds
to the substitution lemma

Γ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ,∆ ` [x 7→ e] e ′ : τ

Both variants were already present in de Bruijn’s seminal paper [9], but the
first variant has enjoyed more widespread use. However, we will use the second
variant because it has the following advantages:

1. It supports the more general case of languages with a dependent context:

Γ ` e : σ Γ, x : σ,∆ ` e ′ : τ

Γ, [x 7→ e] ∆ ` [x 7→ e] e ′ : [x 7→ e] τ

2. The parameter e is constant while recursing into e ′ and hence it can also be
moved outside of inductions on the structure of e. Proofs become slightly
simpler because we do not need to reason about any changes to s when going
under binders.

16

x ::= 0 | Sα x Trace

`α x

`α 0
WfTraceZero

`α n β ∈ depsOf α

`α S n
WfTraceSucc

weakenα :: x → h → x

weakenα c 0 = c
weakenα c (Sβ h) =

if β ∈ depsOf α
then Sβ (weakenα x h)
else weakenα x h

substα,N :: v → x → n → u

substα,N v 0 0 = v
substα,N v 0 (S n) = K n

where K : α→ T ∈ spec
substα,N v (Sα x) 0 = K 0

where K : α→ T ∈ spec
substα,N v (Sα x) (S n) =

weaken (substN v x n) 1α
substα,N v (Sβ x) n =

weaken (substN v x n) 1β

substα :: v → x → u → u

substα v x (K n) =
if K : α→ S

then substα,N v x n
else K n

substα v x (K u) =

K subst?α v (weakenα x J bs Kϑ) u
where

K x ([bs] t : T) ∈ spec
ϑ = t 7→ u

subst?α :: v → x → u → u

subst?α v x u =
if α ∈ depsOf u

then substα v x u
else u

Fig. 10: Substitution of terms

For the definition of substitution we again need to use a refinement of nat-
ural numbers, a different one from before: we need to keep track of variable
bindings of the namespaces to transport e into the context of e ′, i.e. those in
depsOf S where S is the sort of e. Figure 10 contains the refinement, which we
call ”traces”, a well-formedness condition that expresses the namespace restric-
tion and a weakenα function for traces.

Figure 10 also contains the definition of substitution. Like for shift we define
substitution by three functions. The function substα,N v x n defines the opera-
tion for namespace α on indices by recursing on x and case distinction on n. If
the index and the trace match then the result is the term v . If the index n is
strictly smaller or strictly larger than the trace x then substα,N constructs a term
using the variable constructor for α. In the recursive cases substα,N performs the
necessary shifts when coming out of the recursion in the same order in which the
binders have been crossed. This avoids the use of a multiplace weaken on terms.

The substitution substα traverses terms to the variable positions and weak-
ens the trace according to the binding specification. As previously discussed v

17

(n : u) ∈α Γ domain Γ ` ui (∀i)
(0 : weaken u 1α) ∈α (Γ .α u)

InHere

(n : u) ∈α Γ

(weakenα n 1β : weaken u 1β) ∈α (Γ .β v)
InThere

Fig. 11: Environment lookup

remains unchanged. The function subst?α only recurses into the term if it is
interesting to do so.

5.3 Environment lookups

The paramount infrastructure operation on environments is the lookup of vari-
ables and their associated data. Lookup is a partial function. For that reason we
define it as a relation (n : u) ∈α Γ that witnesses that looking up the index n
of namespace α in the environment term Γ is valid and that u is the associated
data. Figure 11 contains the definition.

Rule InHere forms the base case where n = 0. In this case the environ-
ment term needs to be a cons for namespace α. Note that well-scopedness of the
associated data is included as a premise. This reflects common practice of an-
notating variable cases with with well-scopedness conditions. By moving it into
the lookup itself we free the user from dealing with this obligation explicitly. We
need to weaken the result of the lookup to account for the binding.

Rule InThere encodes the case that the lookup is not the last cons of the
environment. The rule handles both the homogeneous α = β and the heteroge-
neous case α 6= β by means of weakening the index n. The associated data is
also shifted to account for the new β binding.

6 Infrastructure Lemmas

Programming language mechanizations typically rely on many boilerplate prop-
erties of the infrastructure operations that we introduced in the previous section.
To further reduce the hand-written boilerplate, we have set up the Knot speci-
fication language in such a way that it provides all the necessary information to
generically state and prove a wide range of these properties.4 Below we briefly
summarize the three different kinds of ubiquitous lemmas that we cover; Ap-
pendix B provides more detail. In general, it is quite challenging to tackle these
boilerplate lemmas generically because their exact statements, and in particular
which premises are needed, depend highly on the depsOf function and also on
the dependencies of the associated data in environments.

4 In fact, we provide more such lemmas than any other framework based on first-order
representations – see Section 9.

18

Interaction Lemmas Formalizations involve a number of interaction boilerplate
lemmas between shift , weaken and subst . These lemmas are for example needed
in weakening and substitution lemmas for typing relations. Two operation always
commute when they are operating on different variables and a shifting followed
by a substitution on the same variable cancel each other out:

substα v 0 α (shiftα 0 α u) = u.

Well-Scopedness The syntactic operations preserve well-scoping. This includes
shifting, weakening and substitution lemmas. If a sort does not depend on the
namespace of the substitute, we can formulate a strengthening lemma instead:

h + 1α ` u : S α /∈ depsOf S

h ` u : S

Environment Lookup Lemmas for shifting, weakening and strengthening for en-
vironment lookups form the variable cases for corresponding lemmas of typing
relations. These lemmas also explain how the associated data in the context is
changed. For operating somewhere deep in the context we use relation, like for

example Γ1
c

↪−−−→α Γ2 which denotes that Γ2 is the result after inserting a new
α variable at cutoff position c in Γ1. The shifting lemma for lookups is then

Γ1
c

↪−−−→α Γ2 (n : u) ∈α Γ1

(shiftN c n : shift?α c u) ∈α Γ2

7 Implementation

This section briefly describes our two implementations of Knot. The first is
a generic implementation that acts as a constructive proof of the boilerplate’s
existence for all well-formed specifications. The second, called Needle, is a code
generator that is better suited to practical mechanization.

7.1 The Generic Knot Implementation

We implemented the boilerplate functions generically for all well-formed Knot
specifications in about 4.3k lines of Coq by employing datatype-generic pro-
gramming techniques [8]. Following our free monad principle, we capture de
Bruijn terms in a free monadic structure that is parameterized by namespaces
and whose underlying functor covers the regular constructors of sorts. To model
the underlying functors we use the universe of finitary containers [1,13,15,20]
Finitary containers closely model our specification language: a set of shapes
(constructors) with a finite number of fields. We use an indexed [2] version to
model mutually recursive types and use a higher-order presentation to obtain
better induction principles for which we assume functional extensionality 5. We
implemented boilerplate operations and lemmas for this universe generically.

5 However, the code based on our generator Needle does not assume any axioms.

19

7.2 The Needle Code Generator

While the generic Coq definitions presented in the previous sections are sat-
isfactory from a theoretical point of view, they are less so from a pragmatic
perspective. The reason is that the generic code only covers the variable binder
boilerplate; the rest of a language’s formalization still needs to be developed
manually. Developing the latter part directly on the generic form is cumber-
some. Working with conversion functions is possible but often reveals too much
of the underlying generic representation. As observed by Lee et al. [19] this
happens in particular when working with generic predicates.

For this reason we also implemented a code generation tool, called Needle
that generates all the boilerplate in a language-specific non-generic form. Nee-
dle takes a Knot specification and generates Coq code: the inductive definitions
of a de Bruijn representation of the object language and the corresponding spe-
cialized boilerplate definitions, lemmas and proofs. Both proof terms and proof
scripts are generated. Needle is implemented in about 11k lines of Haskell.

Soundness We have not formally established that Needle always generates
type-correct code or that the proof scripts always succeed. Nevertheless, a num-
ber of important implementation choices bolster the confidence in Needle’s
correctness: Firstly, the generic-programming based implementation is evidence
for the existence of type-sound boilerplate definitions and proofs for for every
language specified with Knot.

Secondly, the generic implementation contains a small proof-term DSL fea-
turing only the basic properties of equality such as symmetry, reflexivity, transi-
tivity and congruence and additionally stability and associativity lemmas as ax-
ioms. The induction steps of proofs on the structure of terms or on the structure
of well-scopedness relation on terms in the generic implementation elaborate to
this DSL first and then adhere to its soundness lemma. Subsequently, we ported
the proof term elaboration to Needle. Hence, we have formally established the
correctness of elaboration functions but not their Haskell implementations.

Thirdly, lemmas for which we generate proof scripts follow the structure of
the generic proofs. In particular this includes all induction proofs on natural
number- or list-like data because these are less fragile than induction proofs on
terms. A companion library contains tactics specialized for each kind of lemma
that performs the same proof steps as the generic proof.

Finally and more pragmatically, we have implemented a test suite of Knot spec-
ifications for Needle that contains a number of languages with advanced bind-
ing constructs including languages with mutually recursive and heterogeneous
binders, recursive scoping and dependently-typed languages with interdependent
namespaces for which correct code is generated.

Nevertheless, the above does not rule out trivial points of failure like name
clashes between definitions in the code and the Coq standard library or software
bugs in the code generator. Fortunately, when the generated code is loaded in
Coq, Coq still performs a type soundness check to catch any issues. In short,
soundness never has to be taken at face value.

20

Specification Lemmas Total

Essential Boilerplate Knot Essential Terms Contexts Manual Knot

λ 44 39 42 43 0 23 149 83 (55.7%)

λ× 85 67 82 117 0 47 316 198 (62.7%)

F 54 102 53 60 127 111 454 118 (26.0%)

F× 91 149 93 140 138 158 676 269 (39.8%)

Fseq 103 164 99 137 153 174 731 247 (33.8%)

F<: 70 124 69 268 128 178 768 289 (37.6%)

F<:,× 114 163 112 402 139 243 1061 476 (44.9%)

F<:,rcd 214 234 199 646 161 292 1547 831 (53.7%)

λω 101 95 100 355 128 108 787 504 (64.0%)

Fω 124 106 123 415 129 108 882 591 (67.0%)

Table 2: Size statistics of the meta-theory mechanizations.

8 Case Studies

This sections demonstrates the benefits of the Knot approach with two case
studies. First, we compare fully manual versus Knot-based mechanizations of
type-safety proofs for 10 languages. Second, we compare Knot’s solution of the
POPLmark challenge against various existing ones.

8.1 Manual vs. Knot Mechanizations

We compare manual against Knot-based mechanization of type safety for 10
textbook calculi:

λ the simply-typed lambda calculus,
λ× the simply-typed lambda calculus with products,
F System F,
F× System F with products,
Fseq System F with sequential lets,
F<: System F<: as in the POPLmark challenge 1A + 2A,

F<:,× System F<: with binary products,
F<:,rcd System F<: with records as in the POPLmark challenge 1B + 2B,

λω the simply-typed lambda calculus with type-operators, and
Fω System F with type-operators.

For each language we have two Coq formalizations: one developed without
tool support and one that uses Needle’s generated code. Table 2 gives a detailed
overview of the code sizes (LoC) of the different parts of the formalization for
each language and the total and relative amount of boilerplate code.

21

The Specification column comprises the language specifications. For the man-
ual approach, it is split into an essential part and a boilerplate part. The former
comprises the abstract syntax declarations (including binding specifications), the
evaluation rules, typing contexts and typing rules and is also captured (slightly
more concisely) in the Knot specification. The latter consists of context lookups
for the variable typing rule as well as shifting and substitution operators, that
are necessary to define β-reduction and, if supported by the language, type ap-
plication; all of this boilerplate is generated by Needle and thus not counted
towards the Knot-based mechanization.

The essential meta-theoretical Lemmas for type-safety are weakening and
substitution lemmas for the typing relations, typing and value inversion as well as
progress and preservation and where applicable this includes: pattern-matching
definedness, reflexivity and transitivity of subtyping and the Church-Rosser
property for type reductions.

We separate the binder boilerplate in these formalizations into two classes:

1. Term-related boilerplate consists of interaction lemmas discussed in Section
6 and other interaction lemmas between shifting, weakening and the size
of terms. This is absent form the mechanizations of λ and λ× that do not
require them. In all other cases Needle derives the necessary lemmas. This
is about 140 lines of code for each language. The size depends mainly on the
number of namespaces, the number of syntactic sorts and the dependency
structure between them, which is roughly the same for these languages.

2. The boilerplate context lemmas consist of weakening, strengthening and sub-
stitution lemmas for term well-scopedness relations and for context lookups.
The size depends on the number of namespaces that are handled by the
context. In the cases where only single-variable binding is used we can skip
weakening and strengthening lemmas related to multi-binders.

Summary Table 2 clearly shows that Knot provides substantial savings in each
of the language formalizations, ranging up to 74% for System F. Note that
these formalizations of type safety use only a fraction of the lemmas generated by
Needle. For instance, none of the above formalization uses any of the interaction
lemmas for terms that are generated.

8.2 Comparison of Approaches

Because it is the most widely implemented benchmark for mechanizing metathe-
ory, we use parts 1A + 2A of the POPLmark challenge to compare our work
with that of others. These parts prove type-safety for System F<: with algorith-
mic subtyping. As they involve only single-variable bindings, they are manage-
able for most existing approaches (though they do not particularly put Knot’s
expressivity to the test). Figure 12 compares 9 different solutions:

– Charguéraud’s [11] developments use the LN representation and come with
proof automation for this representation.

22

Charguera
ud

Vouillo
n

Manual

GMeta
dB

GMeta
LN

LNGen
Twelf

AutoSubst
Knot

0

200

400

600 523 500 509

297
376 330

174 210 168

538
614

259

669

513
432 402

225
121

L
in

es
o
f

co
d
e Spec

Proof

Fig. 12: Sizes (in LoC) of POPLmark solutions

– Vouillon [38] presents a self-contained de Bruijn solution.
– Our manual version from Section 8.1.
– GMeta [19] is a datatype-generic library supporting both de Bruijn indices

and the LN representation.
– LNGen [7] is a code-generator that produces Coq code for the LN represen-

tation from an Ott specification.
– Autosubst [32] is a Coq tactic library for de Bruijn indices.
– Our Knot solution from Section 8.1.

The figure provides the size (in LoC) for each solution. The LoC counts,
generated by coqwc, are separated into proof scripts and other specification
lines, except for the Twelf solution were we made the distinction manually.
We excluded both library code and generated code The AutoSubst and Knot
formalizations are significantly smaller than the others due to the uniformity
of weakening and substitution lemmas. Knot’s biggest savings compared to
AutoSubst come from the generation of well-scopedness relations and the au-
tomation of well-scopedness proof obligations. In summary, the Knot solution
is by far the smallest solutions we are aware of.

9 Related Work

For lack of space we cover only work on specification languages for variable
binding, and systems and tools for reasoning about syntax with binders.

9.1 Specification Languages

The Ott tool [33] allows the definition of concrete programming language syn-
tax and inductive relations on terms. Its binding specifications have inspired
those of Knot. The main difference is that Knot allows heterogeneous binding
specification functions instead of being restricted to homogeneous ones. While
Ott generates datatype and function definitions for abstract syntax in multiple
proof assistants, support for lemmas is absent.

23

The Cαml tool [28] defines a specification language for abstract syntax with
binding specifications from which it generates OCaml definitions and substitu-
tions. A single abstraction construct allows atoms appearing in one subterm to
be bound in another. However this rules out nested abstractions and therefore
the telescopic lambdas of Figure 4 cannot be encoded directly in Cαml. We are
not aware of any work that uses Cαml for the purpose of mechanization.

Romeo [34] is a programming language that checks for safe handling of
variables in programs. Romeo’s specification language is based on the concept
of attribute grammars [17] with a single implicit inherited and synthesized at-
tribute. In this view, Knot also has a single implicit inherited attribute and
binding specification functions represent synthesized attributes. Moreover, we
allow multiple functions over the same sort. However, Romeo is a full-fledged
programming language while Knot only allows the definition of functions for
the purpose of binding specification. Romeo has a deduction system that rules
out unsafe usage of binders but is not targeting mechanizations of meta-theory.

Unbound [40] is a Haskell library for programming with abstract syntax. Its
specification language consists of a set of reusable type combinators that specify
variables, abstractions, recursive and sequential scoping. The library internally
uses a locally nameless approach to implement the binding boilerplate which is
hidden from the user. The library also has a combinator called Shift which allows
to skip enclosing abstractions. This form of non-linear scoping is not supported
by Knot. However, the objective of Unbound is to eliminate boilerplate in
meta-programs and not meta-theoretic reasoning.

9.2 Tools for First-Order Representations

Aydemir and Weirich [7] created LNGen, a tool that generates locally-nameless
Coq definitions from an Ott specification. It takes care of boilerplate syntax
operations, local closure predicates and lemmas. It supports multiple namespaces
but restricts itself to single-variable binders.

The DbGen tool [27] generates de Bruijn representations and boilerplate
code. It supports multiple namespaces, mutually recursive definitions and, to a
limited extent, multi-variable binders: one can specify that n variables are to
be bound in a field, with n either a natural number literal or a natural number
field of the constructor. It generates all basic interaction lemmas in Figure 14
but does not deal with well-scopedness or contexts.

GMeta [19] is a framework for first-order representations of variable binding
developed by Lee et al. It is implemented as a library in Coq that makes use
of datatype-generic programming concepts to implement syntactic operations
and well-scopedness predicates generically. GMeta allows multiple namespaces
but is restricted to the single-variable case. The system does not follow our free
monad principle to model namespaces explicitly but rather establishes the con-
nection at variable binding and reference positions by comparing the structure
representation of sorts for equality. This raises the question whether the universe
models syntax adequately when different sorts have the same structure.

24

GMeta contains a reusable library for contexts of one or two sorts. In the
case of two sorts, e.g. term and type variables, the binding of type variables
can be telescopic which is enough to address the POPLmark challenge. Hence,
GMeta captures the structure of terms generically, but not the structure of
contexts and the accompanying library implements only two instances, but ad-
mittedly the ones that are used the most.

AutoSubst [32] is a Coq library that derives boilerplate automatically by
reflection using Coq’s built-in tactics language. It supports variable binding an-
notations in the datatype declarations but is limited to single variable bindings
and directly recursive definitions. AutoSubst derives parallel substitution op-
erations which is particularly useful for proofs that rely on more machinery for
substitutions than type-safety proofs like logical relation proofs for normaliza-
tion, parametricity or full-abstraction. We do not support parallel substitutions
yet, but plan to do so in the future.

9.3 Languages for Mechanization

Several languages have direct support for variable binding. Logical frameworks
such as Abella [12], Hybrid [21], Twelf [22] and Beluga [24] are specifically de-
signed to reason about logics and programming languages. Their specialized
meta-logic encourages the use of higher-order abstract syntax (HOAS) to rep-
resent object-level variable binding with meta-variable bindings. The advantage
is that facts about substitution, α-equivalence and well-scoping are inherited
from the meta-language. These systems also allow the definition of higher-order
judgements get substitution lemmas for free if the object-language context ad-
mits exchange [29]. If it does not admit exchange the context can still be modeled
explicitly [18,23]. For the POPLmark challenge for instance this becomes nec-
essary to isolate a variable in the middle of the context for narrowing.

Despite the large benefits of these systems they are generally limited to single
variable binding and other constructs like patterns or recursive lets have to be
encoded by transforming the object language [29].

Nominal Isabelle [36] is an extension of the Isabelle/HOL framework with
support for nominal terms which provides α-equivalence for free. At the moment
the system is limited to single variable binding but support for richer binding
structure is planned [35].

10 Conclusion

This paper has presented a new approach to mechanizing meta-theory based on
Knot, a specification language for syntax with variable binding, and Needle, an
infrastructure code generator. Our work distinguishes itself from earlier work on
two accounts. Firstly, it covers a wider range of binding constructs featuring rich
binding forms and advanced scoping rules. Secondly, it covers a larger extent of
the boilerplate functions and lemmas needed for mechanizations. In future work
we want to include support for typing relations.

25

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: FOSSACS,
LNCS, vol. 2620, pp. 23–38. Springer (2003)

2. Altenkirch, T., Morris, P.: Indexed containers. In: LICS ’09. pp. 277–285 (2009)

3. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In:
Ong, L. (ed.) Foundations of Software Science and Computational Structures,
LNCS, vol. 6014. Springer (2010)

4. Altenkirch, T., Chapman, J., Uustalu, T.: Relative monads formalised. JFR 7(1)
(2014)

5. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: CSL, LNCS, vol. 1683. Springer (1999)

6. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
Formal Metatheory. In: POPL ’08. ACM (2008)

7. Aydemir, B., Weirich, S.: LNgen: Tool support for locally nameless representations.
Tech. rep., UPenn (2010)

8. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming. In:
Swierstra, S., Oliveira, J.N., Henriques, P.R. (eds.) Advanced Functional Program-
ming, LNCS, vol. 1608, pp. 28–115. Springer (1999)

9. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Mathematicae (Proceedings) 75(5) (1972)

10. de Bruijn, N.: Telescopic mappings in typed lambda calculus. Information and
Computation (1991)

11. Charguéraud, A.: http://www.chargueraud.org/softs/ln/, accessed: 2015-07-02

12. Gacek, A.: The Abella Interactive Theorem Prover. In: Automated Reasoning,
LNCS, vol. 5195. Springer (2008)

13. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors.
In: Berardi, S., Coppo, M., Damiani, F. (eds.) {TYPES} ’04, LNCS, vol. 3085, pp.
210–225. Springer (2004)

14. Goguen, H., McKinna, J.: Candidates for substitution. Tech. rep., University of
Edinburgh (1997)

15. Jaskelioff, M., Rypacek, O.: An investigation of the laws of traversals. In: MSFP
’12. pp. 40–49 (2012)

16. Keuchel, S., Jeuring, J.T.: Generic conversions of abstract syntax representations.
In: WGP ’12. ACM (2012)

17. Knuth, D.E.: Semantics of context-free languages. Mathematical systems theory
2(2), 127–145 (1968)

18. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard
ml. pp. 173–184. POPL ’07, ACM, New York, NY, USA (2007), http://doi.acm.
org/10.1145/1190216.1190245

19. Lee, G., Oliveira, B.C., Cho, S., Yi, K.: GMeta: A generic formal metatheory
framework for first-order representations. In: ESOP. Springer (2012)

20. Moggi, E., Bell, G., Jay, C.: Monads, shapely functors and traversals. ENTCS 29,
187–208 (1999), {CTCS} ’99

21. Momigliano, A., Martin, A.J., Felty, A.P.: Two-Level Hybrid: A System for Rea-
soning using Higher-Order Abstract Syntax. ENTCS (2008)

22. Pfenning, F., Schrmann, C.: Twelf – A Meta-Logical Framework for Deductive
Systems. In: CADE-16. Springer (1999)

26

http://www.chargueraud.org/softs/ln/
http://doi.acm.org/10.1145/1190216.1190245
http://doi.acm.org/10.1145/1190216.1190245

23. Pientka, B., Dunfield, J.: Programming with Proofs and Explicit Contexts. pp.
163–173. PPDP ’08, ACM, New York, NY, USA (2008)

24. Pientka, B., Dunfield, J.: Beluga: A Framework for Programming and Reasoning
with Deductive Systems. In: IJCAR. Springer (2010)

25. Pierce, B.C.: Types and Programming Languages. MIT press (2002)

26. Pierce, B.C.: Advanced topics in types and programming languages. MIT press
(2005)

27. Polonowski, E.: Automatically generated infrastructure for de Bruijn syntaxes. In:
ITP, LNCS, vol. 7998. Springer (2013)

28. Pottier, F.: An overview of Cαml. ENTCS 148(2) (2006)

29. The Twelf Project: The Twelf Wiki. http://twelf.org/wiki, accessed: 2015-10-14

30. Rossberg, A., Russo, C.V., Dreyer, D.: F-ing Modules. In: TLDI ’10. ACM (2010)

31. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LSC 6(3-4) (1993)

32. Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de bruijn terms
and parallel substitutions. In: Zhang, X., Urban, C. (eds.) Interactive Theorem
Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-27,
2015. LNAI, Springer-Verlag (2015)

33. Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnǐsa, R.:
Ott: Effective tool support for the working semanticist. JFP 20 (1 2010)

34. Stansifer, P., Wand, M.: Romeo: A system for more flexible binding-safe program-
ming. In: Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming. pp. 53–65. ICFP ’14, ACM (2014)

35. Urban, C., Kaliszyk, C.: General Bindings and Alpha-Equivalence in Nominal Is-
abelle. In: ESOP. Springer (2011)

36. Urban, C., Tasson, C.: Nominal Techniques in Isabelle/HOL. In: CADE-20, LNCS,
vol. 3632. Springer (2005)

37. Virga, R.: Higher-order rewriting with dependent types. Ph.D. thesis, Carnegie
Mellon University Pittsburgh, PA (1999)

38. Vouillon, J.: A solution to the poplmark challenge based on de bruijn indices. JAR
49(3) (2012)

39. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: The propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES, LNCS, vol. 3085, pp. 355–377. Springer (2004)

40. Weirich, S., Yorgey, B.A., Sheard, T.: Binders unbound. In: ICFP ’11. ACM (2011)

41. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1) (1994)

27

http://twelf.org/wiki

` u : S K : α→ S

` K n : S
SortedVar

K : α→ T → S ` ui : T i (∀i)
` K u : S

SortedCtor

` Γ : E

` [] : E
SortedNil

E : α→ T ` ui : Ti (∀i) ` Γ : E

` (Γ .α u) : E
SortedCons

Fig. 13: Well-sortedness of raw de Bruijn terms

A Term Semantics

Figure 13 contains well-sortedness judgments for terms. Rule SortedVar states
that a constructor applied to a de Bruijn index is well-sorted with S if it was
declared as a variable constructor in the declaration of S . Rule SortedCtor
makes sure that for regular constructors the arity and sorts of subterms are
respected. Correspondingly, rule SortedCons ensures that the arity and sorts
of environment clauses are respected. Finally, rule SortedNil states that the
empty environment is always well-sorted.

B Infrastructure Lemmas

In this section we look at properties of the shift, substitution and lookup oper-
ators that are ubiquitous in mechanization.

B.1 Stability of binding specifications

A crucial property of Knot is the stability of binding specifications under syn-
tactic operations. This property enforces lexical scoping: shifting and substitut-
ing variables in does not change the scoping of bound variables.

We achieve this by ruling out functions over sorts with variables: function
evaluation can never reach variable cases and thus their results only depends on
the parts of the structure that are left unchanged by syntactic operations. This
includes, in particular the stability of bindspec functions.

Lemma 1. For all terms u of sort S and all f : S → α the following holds:

1. ∀β ∈ depsOf S , c.J f K(shiftβ c u) = J f K(u)
2. ∀β ∈ depsOf S , s, x .J f K(substβ s x u) = J f K(u)

Proof outline of Lemma 1. By induction over the structure of u and nested in-
duction over the right-hand side of f .

28

1. substα v 0 α (shiftα 0 α u) ≡ u

2. shiftα (weakenα cα 1β) (shiftβ 0β u) ≡
shiftβ 0β (shiftα cα u)

3. shiftα cα (substβ vβ 0β u) ≡
substβ (shift?α cα vβ) 0β (shiftα (weakenα cα 1β) u)

4. substβ vβ (weakenβ x 1α) (shiftα 0α u) ≡
shiftα 0α (substβ vβ xβ u)

5. substα vα xα (substβ vβ 0β u) ≡
substβ (subst?α vα xα vβ) 0β (substα vα (weakenα xα 1β) u)

6. weaken (shiftα cα t) h ≡
shiftα (weakenα cα h) (weaken t h)

7. weakenα (substβ vβ xβ t) h ≡
substβ vβ (weakenβ x h) (weaken t h)

Fig. 14: Interaction lemmas

B.2 Interaction lemmas

Formalizations involve a number of interaction boilerplate lemmas between syn-
tactic operations. Usually these are needed in substitution lemmas for the type
system if the type-system contains a syntactic operation, e.g. the type-application
case of System F. Figure 14 gives and overview of the interaction lemmas. These
are generalized to cover both the homogeneous α = β and heterogeneous case
α 6= β.

The intuition behind lemma (1) is the following: Suppose u is a term in
context Γ then shift transports the term to the context Γ, y with a fresh variable
at the end which is subsequently substituted. But since it is fresh for u the result
after substituting is u.

Γ
shift
// Γ, y

subst // Γ

The interaction lemmas (2)-(5) describe the commutation of two operations,
one that operates at the end of the context and one that operates in the middle.
Lemma (2) for instance denotes the commutation of two insertions which can be
represented as a commuting diagram on contexts:

Γ,∆
shiftβ

//

shiftα
��

Γ,∆, z

shiftα
��

Γ, y , ∆
shiftβ

// Γ, y , ∆, z

Proof outline. The versions of the lemmas in Figure 14 are the workhorse vari-
ants. However, for the induction to go through we need to prove stronger variants.

29

h1
c

↪−−−−→α h2

h
0

↪−−−−→α h + 1α

InsertHvlHere

h1
c

↪−−−−→α h2

h1 + 1β
weaken c 1β
↪−−−−→α h2 + 1β

InsertHvlThere

Fig. 15: Domain insertion

For lemma (1) for example we have to prove the lemma that corresponds to the
chain:

Γ,∆
shift
// Γ, y , ∆

subst // Γ,∆

The proof proceeds by induction on the structure of u and in the variable case
by a nested induction on the domain of ∆ using the stability of binding specs
and the associativity for weakening cut-offs and traces. The proofs for (2)-(5)
are similar where we need (2) for the variable cases of (3),(4) and we need (1),(4)
for the variable case of (5). Lemmas (6) and (7) are iterated versions of lemmas
(2) respectively (4).

B.3 Preservation of well-scopedness

Crucial properties about the well-scopedness relation are the preservation under
weakening, subordination based strengthening and substitution.

Weakening In Figure 15 we define an auxiliary relation h1
c

↪−−−→α h2 that we
use to express and prove weakening of well-scopedness. It consists of two rules.
Rule InsertHvlHere defines the base case where the variable is inserted at the
end of h. Rules InsertHvlThere covers the the cons case for a new β variable
in which case we have to weaken the cut-off to account for it.

To express things differently, the relation denotes that inserting an α variable
at cut-off position c in the domain h1 results in the domain h2. So the following
holds:

h1
c

↪−−−→α h2 ⇐⇒ ∃h, d .
h1 = h + d
∧ h2 = h + 1α + d
∧ c = weaken 0 d

In essence we dress up insertions as context (domain) morphisms [14]. This
brings the statement of the theorem into a proper shape for an induction. It is
also possible to work with the previously mentioned equalities directly or define a
remove function [38] but this entails rewrite reasoning when dealing with multi-
binders. We can hide the same reasoning in a derived rule for weakening domain

30

insertions which makes proof search simpler:

h1
c

↪−−−→α h2

h1 + d
weaken c d
↪−−−→α h2 + d

Lemma 2. Domain insertion preserves well-scopedness, i.e. the following deriva-
tion holds:

h1 ` u : S h1
c

↪−−−→α h2

h2 ` shift?α c u : S

Proof outline. By induction on the structure of the derivation of h1 ` u : S . The

variable case is proved by a nested induction on h1
c

↪−−−→α h2. The congruence
case uses the stability of bindspecs under shifting and the derived rule above.

Corollary 3. Weakening preserves well-scopedness, i.e. the following derivation
holds:

h ` u : S

h + d ` weaken u d : S

Strengthening Similar to domain insertion we model deletion as a relation
that we will use to prove subordination based strengthening and substitution
preservation for well-scopedness. The definition of deletion is given in Figure 16.
It forms the reverse of the insertion relation. A notable difference is that it keeps
track of a trace x instead of a cut-off and also of the base domain h. We can
now state the subordination based strengthening of a single binding:

Lemma 4.

h1 ` u : S h ` h1
x−−−⇀α h2 α /∈ depsOf S

h2 ` u : S

Proof outline. By induction on the structure of the derivation of h1 ` u : S . The

variable case is proved by a nested induction on h ` h1
c−−−⇀α h2. The regular

case is immediate.

Corollary 5.
h + 1α ` u : S α /∈ depsOf S

h ` u : S

Hvl refinement We often want to prove that the well-typing relation implies well-
formedness of the . In programming languages with multibinders this necessitates
to perform multiplace strengthening. Consider for example the typing rule of the
destructuring let of F×:

Γ,∆ ` e2 : T . . .

Γ ` lett p = e1 in e2 : T

31

h ` h1
x−−−−⇀α h2

h ` h + 1α
0−−−−⇀α h

RemoveHvlHere

h ` h1
x−−−−⇀α h2

h ` h1 + 1β
weaken x 1β−−−−⇀α h2 + 1β

RemoveHvlThere

Fig. 16: Domain deletion

` h : α

` 0 : α
RefZero

` h : α β ∈ α
` Sβ h : α

RefSucc

Fig. 17: Hvl refinement

We would like to derive Γ ` T from Γ,∆ ` T .
For strengthening multiple bindings we make use of refinements of hvl that

restricts the namespaces that can appear. Figure 17 defines the refinement and
Figure 18 contains derived rules for appending and subsumption. Using the re-
finement of hvls we get the following multiplace strengthening lemma:

Lemma 6.

h + d ` u : S ` d : α α ∩ depsOf S = ∅
h ` u : S

In Section 3.3 we defined typing rules for binding specifications. The typing
entails a refinement for the evaluation

Lemma 7. 1. Evaluation of binding specification respects refinement

L ` bs : α

` J bs Kϑ : α

2. Evaluation of functions respects refinement

f : S → [α] ∈ Φ ` u : S

` J f K(u) : α

Combining all the above definitions yields us the following lemma to strengthen
terms with the result of a function call. The detour over the refinement of hvls
saved us the hassle to prove this lemma by induction on the structure of f for
every sort S that fulfills the side condition α ∩ depsOf S = ∅.

32

` h : α ` h1 : α ` h2 : α

` h1 + h2 : α
RefAppend

` h : α α ⊆ β
` h : β

RefSub

Fig. 18: Derived rules for hvl refinement

Corollary 8.

h + J f K(t) ` u : S f : T → [α] ∈ Φ α ∩ depsOf S = ∅
h ` u : S

Substitution We reuse the definition of domain deletion to prove the following
lemma that states that well-scoped substitution in namespace α preserves well-
scopedness. We define this lemma only for sorts T such that α ∈ depsOf T to
avoid having both a strengthening and a substitution lemma for sort T .

Lemma 9.
h ` v : S S = sortOf α h + 1α ` u : T

h ` substα v 0 u : T

Proof outline. We prove a stronger statement that works in a deeper context,
for which we reuse the definition of domain deletion from Figure 16. The lemma
then becomes

h ` v : S S = sortOf α h1 ` u : T h ` h1
x−−−⇀α h2

h2 ` substα v x u : T

The lemma proceeds by induction on the derivation of h1 ` u :T . In the variable

we perform a nested induction on h ` h1
x−−−⇀α h2. In the case of a regular

constructor we can use the strengthening lemma 4 for subterms for fields t : T
for which α /∈ depsOf T . In the other cases the goal is immediate from the
induction hypothesis. Note that the term v remains in the base domain h.

B.4 Lookup weakening

In Section B.3 we defined domain insertion and generically proved that well-
scopedness is preserved. We can define a similar relation for environments that
can be used to prove weakening lemmas for other relations, e.g. typing relations.
Furthermore, we can prove the weakening of lookups generically which forms the
variable case for typing relations.

Figure 19 contains the definition of the insertion relation for environments
which is a refinement of domain insertion from Figure 15. Rule InsertEnvHere

33

Γ1
c

↪−−−−→α Γ2 E : α→ S ` u : S

Γ
0

↪−−−−→α Γ .α u

InsertEnvHere

Γ1
c

↪−−−−→α Γ2 E : β → S ` v : S

Γ1 .α v
weakenα c 1β

↪−−−−→α Γ2 .α weaken v 1α

InsertEnvThere

Fig. 19: Environment insertion

handles the base case that the environment term is extended with a new α
binding and associated data for α. Rule InsertEnvThere handles the cons
case for a new β binding. We need to take care special care to weaken the
associated data of the β binding to account for the new α variable.

The following lemma witnesses that an environment insertion indeed entails
an insertion in their respective domains.

Lemma 10.

Γ1
c

↪−−−→α Γ2

domain Γ1
c

↪−−−→α domain Γ2

With the previous definition we can now prove a homogeneous shifting lemma
for lookups in which the shifting and the lookup are performed in the same
namespace α.

Lemma 11.

Γ1
c

↪−−−→α Γ2 (n : u) ∈β Γ1

(shift?N c n : shift?α c u) ∈β Γ2

Proof outline. The proof proceeds by induction on the derivation of Γ1
c

↪−−−→α

Γ2. In the base case InsertEnvHere the result immediately follows by applying
the InThere rule from Figure 11. In the cons case InsertEnvThere we need to
distinguish between α = β and α 6= β and the last rule in the derivation of
(n : u) ∈α Γ1. In all cases we need to commute the two shifts on the associated
data by using the second interaction lemma from Figure 14. In the interesting
cases InHere we need to shift the well-scopedness annotation. We get the domain
insertion from lemma 10 and can apply lemma 2.

34

	Needle & Knot: Binder boilerplate tied up

