| ecture O

Prelude

Computational Processes

» Abstract beings that inhabit computers

» Manipulate data

» Directed by a program

D &

» Written in a programming language

The Tool of this Course: Scheme

» Dialect of Lisp (1958)
* Proposed in 1975

» Extremely powerful and elegant

» Standardised into R"Rs T

RS5Rs |

» Many implementations available

4 -
actual goal of this ” ” \ | use DrRacket
| course » Enables you to “go meta]

3

Scheme???

let balance = 100; (define balance 100)
function withdraw(Camount) { (define (withdraw amount)
1f (balance >= amount) { (1f (>= balance amount)
balance = balance - amount; ((balance (- balance amount))
return balance; balance)
} else { "Insufficient Funds"))
return "Insufficient funds"”;
1 (withdraw 25) ; output: 75
}

withdraw(25); // output: 75

Structure and Interpretation of Computer Programs -- JavaScript Adaptation

https://sicp.comp.nus.edu.sg/index.html

4

Racket

e https://racket-lang.org/
* |language and IDE

* Racket language very similar but not identical to
Scheme

* behave like Scheme: #lang rsrs

Multiple Variants!

* Check that you are enrolled in correct variant!
(5 credits vs. 6 credits)

» Multiple variants, but same course

* One course page on Canvas

| ecture 1: Fundamentals of
Higher Order Programming

1. Scheme S-expressions, Function definitions

2. Lexical scoping vs. dynamic scoping
3. lteration as optimised tail recursion
4. Higher-order procedures and anonymous lambdas.

| ecture 1: Fundamentals of
Higher Order Programming

ff [(a+—)+f(a+dx+d—x)+f(a+2dx+d—x)+]dx
; ;

(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sun f (+ a (/ dx 2.0)) add-dx b)

dx))

> (integral cube 0 1 0.01)
0.24998750000000042

Higher-Order Functions and Reuse

8

Lecture 2: Advanced Higher Order
Programming

1. Cons-cells, lists and nested lists.
2. List processing and Higher Order List Procedures

3. Symbols and Homoiconicity: Quoting Lists

4. Homoiconicity for Meta-programming
5. Case Study: Symbolic derivation

Lecture 2: Advanced Higher Order
Programming

i x k R
enumerate: filter: ’ map : accumulate:
‘tree leaves/ - odd? | - square) +, 0

I 5 I 5

i ﬁ i ﬁ

map : ’ filter: accumulate: \
fib . even? cons, ()

/ y) 5

A Siénal-Proceésigg Engineer’s View

| ecture 3: Fundamental Concepts of
State, Scoping and Evaluation Order

begin, set! and mutable state

Objects as closures
Environment diagrams, box-and-pointer diagrams

(Infinite) streams and lazy evaluation
delay and force

a0~

11

(define (sgrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (improve guess)
(average guess (/ x guess)))
(define (sgrt-iter guess)
(1f (good-enough? guess)
guess
(sgrt-iter (1mprove guess))))
(sgrt-iter 1.0))

e

X

oc good-enough?:
hars:x improve:
body: sgrt-iter:

(define good-enough?...)
(define improve...)
(define sqgrt-iter...)
(sgrt-iter 1.0)

pars .guess

2 pody: (< (abs..)-.

| ecture 4: Continuations and
current-continuations

1. Continuations

2. call-with-current-continuation
3. An implementation of

goto,

yield,

coroutines

exception handling

13

(define pl
(
(Lambda (1nput)

(define (loop)
(display "Tick 1 ")
(display 1input)
(newline)

(set! i1nput (
(loop))
(Lloop))))

p2 (+ 1nput 1)))

C pl @)

A

Initiate the
computation in the

(define pZ2
(
(Lambda (1nput)

(define (loop)
(display "Tick 2 ™)
(display 1input)
(newline)

(set! 1nput (
(loop))
(Lloop))))

(

p3 (+ 1npu

(define p3

(Lambda (input)
(define (loop)

(display "Tick 3 ")
(display 1input)
(newline)

(set! 1nput (
(loop))

pl (+ 1nput 1)))

(loop))))

Coroutines y

| ecture 5: Semantics of
Higher-Order Languages

1. Concrete vs. Abstract Syntax

2. Meta circular interpretation

3. The analyzing interpreter (i.e. compiler)

4. CPS interpretation and semantics of
call-with-current-contitnuation

15

| ecture 5: Semantics of
Higher-Order Languages

(define (exp env)
(cond ((exp) exp)

q¢ exp) (exp env))
((exp) (text-of-quotation exp))
((exp) (eval-assignment exp env))
((exp) (eval-definition exp env))
CC exp) (exp env))
(C exp)

(make-procedure (lambda-parameters exp)
(Lambda-body exp)

env))
CC exp)
((begin-actions exp) env))
q¢ exp) ((exp) env))
(C exp)
Capply ((operator exp) env)
((operands exp) env)))

(else
16

| ecture 6: Variations
on the Semantics

1. Alazy evaluation version of Scheme +
thunkified interpreter

2. A nondeterministic version of Scheme +
continuation-based interpreter

17

| ecture 6: Variations
on the Semantics

(define (list-ref 1tems n)

. 2 Chapter 2 J

(define (map proc items)

)

(define (add-lists listl list2)
(cond ((null? 1listl) Llist2)
((null? 1list2) listl)
(else (cons (+ (car 1istl) (car 1list2))
(add-11ists (cdr 1istl) (cdr 1ist2))))))

(define ones (cons 1 ones))
(define integers (cons 1 (add-lists ones 1integers)))

. . x No special stream)
Haskellish semantics procedures needec

|18 _ J

| ecture 6: Variations
on the Semantics

"Difficult” People

Baker, Cooper, Fletcher, Miller, and Smith live on different floors of
an apartment house that contains only five floors. Baker does not
live on the top floor. Cooper does not live on the bottom floor.
Fletcher does not live on either the top or the bottom floor. Miller
lives on a higher floor than does Cooper. Smith does not live on a
floor adjacent to Fletcher's. Fletcher does not live on a floor
adjacent to Cooper's.Where does everyone live!?

19

(define (multiple-dwelling)

(let ((baker (Camb 1 2 3 4 5))
(cooper (amb 1 2 3 4 5))
(fletcher (amb 1 2 3 4 5))
(miller Camb 1 2 3 4 5))
(smith Camb 1 2 3 4 5)))

(require
(distinct? (list baker cooper fletcher miller smith)))
(require (not (= baker 5)))
(require (not (= cooper 1)))
(require (not (= fletcher 5)))
(require (not (= fletcher 1)))
(require (> miller cooper))
(require (not (= (abs (- smith fletcher)) 1)))
(require (not (= (abs (- fletcher cooper)) 1)))
(list (list 'baker baker)
list 'cooper cooper)
list 'fletcher fletcher)
1st 'miller miller)
list 'smith smith))))

f“\f“\lf\f'\

20

| ecture 7: Introduction to the
A-calculus

. A\-expressions and [3-reduction
. Computability in A-calculus:

a construction of functional programming languages
. Recursion and the Fixed-point Theorem.

21

Y

= AF. (Ax. (F (x X)) Ax. (F (x x)))

=g AF. (F (Ax. (F (x x)) Ax. (F (x x))))

=6 AF (F (F (\x. (F (x x)))) Ax. (F (x)

= AF.(F (F (F (Ax. (F (x x))))) Ax. (F (x x))))))
= AF.(F (F (F (F (Ax. (F (x x)) Ax. (F (x)))))))

(fac c3) = ((Y F) ¢3)
= (An. (if ... (F (Ax. (F (x x)) Ax. (F (x x)))) (dec n)) ...) c3)

=g (if ... (F (Ax. (F (x X)) Ax. (F (x x)))) c2) ...)
=g (if ... (An. (if ... (F (Ax. (F (x x)) Ax. (F (x x)))) (dec n)) ...) c2) ...)

= (if .. (if .. (F (A (F (<9) Ax. (F (x9))) €1) -.) €2) -.)
s Operational Interpretation of Y

Study Material

® |ecturel,?2, 3,5, 6:
Ch. 1—4 of Structure and Interpretation

of Computer Programs

Gerald Jay Sussman and Hal Abelson
Available online: https://mitpress.mit.edu/sites/
default/files/sicp/full-text/book/book.html

o | ectured4, /.
Slides + notes in classroom

23

