Chapter 3b
Objects

Chapter 3: Forms of Modularity

Organize a system

in a
4)
Raises the linguistic
issue of “state”
- \
According to the o According to the of
that live in the system information that flow in the system

| /

Raises the linguistic issue of

“delayed evaluation”
2~ Y

Objects: Here's What we Want

-
Not a mathematical

function anymore!

y)

> (withdraw 25)

75

> (withdraw 25)

50

> (withdraw 60)
"Insufficient Funds”
> (withdraw 15)

35
- “§;77/

It seems to

“remember” stuff.
_ J

time-varying "local state"

Two New Special Forms

/Change the binding of an |

/ existing variable

(set! <name> <new-value>)

/\

[any expression

P / [value of the entire begin]
“One after the other”

becomes meaningful

J (begin <expl> <expZ> ... <expk>)

From now on, we leave the realm of (pure)
and move on to

4

First Solution

Global variable j

(define 100)

(define (withdraw amount)
(1f (>= balance amount)

((balance (- balance amount))

balance)
"Insufficient Funds"))

(There is no “protection”

N~

Having multiple accounts is
problematic

\

Second Solution

% Iocalj
(define new-withdraw

(let ((100))
(Lambda (amount)
(1f (>= balance amount)
(begin (set! balance (- balance amount))
balance)

"Insufficient Funds"))))

[but still only 1 &

90

> (set! balance 30000)
® set!: cannot set variable before its definition: balance

Third Solution

Z parametrized]

(define ()
(Lambda (amount)
(1f (>= balance amount)

(begin (set! balance (- balance amount))

balance)
"Insufficient funds")))

class account { objects

.)
A class is a generator of

J

1nt balance ‘/4ﬁiL

(balance) {
this.balance = balance };
1nt withdraw(Camount) {
this.balance = balance - amount;
return this.balance }

> (define wl (
> (define w2 (

100))
100))

> (wl 50)
0 N\

~
> 70 make-withdraw

> (w2 70) returns a lambdal

30 N Y

> (w2 40)

"Insufficient funds"

> (wl 40)
10 -

_

w1 and w2 are
independent “objects”

J

The Full Example (cf. 3rd solution)

(define (balance)
(define (withdraw amount)
(1f (>= balance amount)

(begin (set! balance (- balance amount))

balance)
"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)
(define (m)

(cond ((eg? m "withdraw) withdraw)

((eg? m 'deposit) deposit)

(else (error "Unknown request"

m))))
)

N

This lambda “contains” the balance
variable and 2 lambdas

~

S

> (define

-

make-account
returns a lambdal

\

J

(

> ((acc "withdraw) 50)

50

> ((acc "withdraw) 60)
"Insufficient funds"

> ((acc 'deposit) 40)

90

> ((acc "withdraw) 60)

30
> (define

100))

(

The Cost of Introducing Assignment

(define (make-simplified-withdraw balance)

(define (make-decrementer balance)
(Lambda (amount)
(- balance amount)))

Compare these two under the

substitution model of evaluation
_ J

((make-decrementer 25) 20)

= ((lambda (Camount)
(- 25 amount)) 20)

- (- 25 20)

= 5

(Llambda (amount)

(set! balance (- balance amount))

balance))

((make-simplified-withdraw 25) 20)

= ((lambda (amount)

(set! balance (- 25 amount))

25) 20)

» (set! balance (- 25 20))

25

= 25

—

b

substitution model doesn't

_

This is plain wrong. The

work anymore!

\

J

Functional vs. Imperative Programming

N\ N\ \

Every expression has a value. Identifiers |dentifiers correspond to a place that can contain a
always have the same value value. Statements can change that value.

T Scheme is NOT a FPL!]

Imperative Programming)

The trouble here is that substitution is based ultimately on the
notion that the symbols in our language are essentially names for
values. But as soon as we introduce and the idea that the
value of a variable can change, a variable can no longer be simply a
name. Now a variable somehow refers to where a value
can be stored, and the value stored at this place can change.

|0

Subtleties of Imperative Programming

[Functional variant | In imperative programming, we can no
longer think of a function as a mathematical
(define (n) . . .
(define (iter product counter) function: is not always true.

(1f (> counter n)

product ﬁ Referential Transparency j

(1ter (* counter product)

. 1 1))AC+ counter 1)))) / Imperative variant]
1ter A

def1
[Order is not relevant] C 21;:ecgpmduct 1) "

-
4 F.CcounJ.c:r 1)) The order becomes crucial: harder
(define (iter) to reason about!

(1f (> counter n) R Y,
product

. (begin (set! product (* counter product))
[Even worse In concurrent programs |: (set! counter (+ counter 1))

(iter))))

~

(1ter)))
| |

The Environment Model of Evaluation

An improved mental model to explain Scheme’s behaviour

4)

4 . ™
A frame has a pointer to its 1 3 A fraf”;)? 'j.a table
enclosing environment % ot bindings
~ y: | 5

\

N
The global environment only

has 1 frame
__ J

[shadowing

An environment is a

list of frames
_ J

A variable is no longer a name for a value, but a place in which values
can be “stored”. The

is the value given by the binding of the variable in the
environment that contains a binding for that variable.
12

of the

Evaluation Rules: Version 2

To evaluate an expression w.r.t. an environment:

4 . . N
was: identifiers evaluate to

the value of their binding)

. evaluate to numbers Y
. evaluate to their value in the

- evaluate all the subexpressions in the combination in the
environment
- apply the procedure that is the value of the leftmost expression
(= the operator) to the arguments that are the values of the
other expressions (= the operands)
* some expressions (e.g. define) have a specialized evaluation rule.
These are called

|3

Procedure Creation ERYVPORTAN

(define square

C (x) (* x x)))

lobal environment :E::>, .
[’ . - other variables

square:

[a procedure object %
parameters:x

body: (* X Xx)

procedure object = (lambda, env)

| 4

Procedure Application ERVVPORTANT

square 5

[global environment %

other variables

[new environment j
square:

|

parameters:x CF X x)
body: (* x x)

|5

Evaluation Rules: Version 2 (ctd)

* A to a set of arguments by

, binding the formal parameters of the procedure to
the arguments of the call, and then the of the
procedure in the context of the constructed. The new
frame has as its the environment part of the

procedure object that is applied.
* A by evaluating a lambda expression

relative to a given environment. I'he resulting procedure object is
a consisting of the of the lambda expression and a
pointer to the in which the procedure

* Evaluating the expression in some
environment locates the binding of the variable in the |
environment and that binding to indicate the ﬁ“YJE\qum

new value. 6

Example from Chapter 1: Creation

> (define (square x) (* x x))
> (define (sum-of-squares x y)
(+ (square x) (square y)))

> (define (f a)

(sum-of-squares (+ a 1) (* a 2)))

_

global
environment

J

sum-of-squares:

square:

f:

pars:a
body: (sum-of-squares
(+ a 1)
(* a 2))

|7

pars:x
body: (* x x)

\ c.f. Substitution Model]

pars:x,y
body: (+ (square x)
(square y))

Example from Chapter 1: Application

> (f 5)

4)

global
environment

_

sum-of-squares:
square:
f:

a5

(sum-of-squares

EI g %g) (+ (square x)

/ (square y))
p

each call creates a new

environment!
\ Y, |8

Objects with Local State (1/4)

(define (make-withdraw balance)
(Lambda (amount)
(1f (>= balance amount)

(begin (set! balance (- balance amount)) [global A
balance) ;
y nvironment
"Insufficient funds"))) /4y'e Y,

pars:balance
body: (lambda (amount)
(1f (>= balance amount)
(begin (set! balance (- balance amount))
balance)
"Insufficient funds")))

19

Objects with Local State(2/4)

(define wl (make-withdraw 100))

make-withdraw:
wl:

pars:amount
body:(if...)

100

\

_

does not extend
global env

\

J

20

pars:balance

body:

(Lambda (amount)
(1f (>= balance amount
(begin (set! balanc
balance)
"Insufficient funds

Objects with Local State(3/4)

(wl 50)

make-withdraw:
wl:

pars:amount
body:(1f...)

21

100

/

garbage collected
after the call!

~

/

(1f (>= balance amount)
(begin (set! balance

)

(_

balance amount))

balance)

Objects with Local State(4/4)

(define w2 (make-withdraw 100))

W2 :
wl:
T
i wl and w2 are / /%—|

pars:amount

. independent objects) body: (if...)

22

(define (sgrt x) el
(define (good-enough? guess) I nte rn a I D eﬁ n It I O n S
(< (abs (- (square guess) x)) 0.001))
(define (improve guess)
(average guess (/ X guess)))
(define (sgrt-iter guess)
(1f (good-enough? guess)

guess not shown for conciseness)
(sgrt-iter (1mprove guess))))
(sgrt-iter 1.0)) (sgrt 2)

e

X: 2
oc good-enough? .
hars:x improve:
body : sqrt-iter:

(define good-enough?...)

(define improve...)

Ceartoiter 1.0y guess: | 1

(sgrt-iter 1.0) guess. 1

pars:guess

(sqrt-iter ﬁod-enough? % body: (< (abs...)...)

Environment Model Advantages

The environment model that make local
procedure definitions a useful technique for modularizing programes:

* The with names

external to the enclosing procedure, because the local procedure
names will be bound in the frame that the procedure creates
when it is run, rather than being bound in the global environment.

* The
, simply by using parameter names as free variables. This

is because the body of the local procedure is evaluated in an
environment that is linked to the evaluation environment for the

enclosing procedure.

24

Adding Another Dimension

data procedures
primitive X X
combinations X X
abstraction X X

so far: constructors, selectors

-

now: mutators —

25

N

with mutable state.

~

Let’'s now investigate the interaction

J

Add Two Primitives
[Modify existing pairs ?

(set-car! <pair> <value>) (set-cdr! <pair> <value>)

(define x ‘((a b) c d)) X n= ! n
af 0[O

(define y “Ce) y—| e —

26

Example T

«—] Tl Hd]o
o] efO
y—e] -

(set-car! x y) k)

27

Example 2

3o

pEIne

— [
Ny = B By)

o] efO

Y — el -
M

(define z (cons y (cdr x)))

Z

28

Example 3

«—] Tl Hd]o
o] efO

y —[e] -
(set-cdr! x y) .! n.
ﬂ! ﬂ.

29

Case Study: Representing Queues

§ FIFO

Operation Resulting Queue

(define g (make-queue))

(1nsert-queue! g 'a) a
(1nsert-queue! g 'b) ab
(delete-queue! qg) b
(1nsert-queue! g 'c) b C

(1nsert-queue! g 'd) b c d
ﬁ rear)
[front

(delete-queue! q)

30

The Queue ADT

(

[selectors 1\ ,
(
[mutators 1\ (

(

2 constructor)
)

<queue>)
<queue>)
<queue> <i1tem>)

<queue>)

31

Representation & Implementation |

(define g (D)

a—[a] 6] - : 0
(

. . q 'c)
[represent as an ordinary Ilstf

(define (queue) (null? queue))
(define () "O)
(define (queue 1tem)
; scan until end of 1list and append new element insertion inefficient!
) f P

requires O(n) steps
for list of n items

\- J 32

Representation & Implementation ||

(define (set-front-ptr! queue item) (set-car! queue 1tem))
(define (set-rear-ptr! queue 1tem) (set-cdr! queue i1tem))
(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))

[represent as a pair of pointers ? G

front-ptr

rear-ptr

(define (gueue) (null? (front-ptr queue)))
(define () Ccons ") "O))
(define (queue)

(1f (empty-queue? queue)
(error "FRONT called with an empty queue"” queue)
(car (front-ptr queue))))

33

lmplementation (ctd.)

(define (queue 1tem) -41 0(1)]
(let ((new-pair (cons item "())))
(cond ((empty-queue? gueue)
(set-front-ptr! queue new-pair)
(set-rear-ptr! queue new-pair) 9
queue)
(else front-ptr
(set-cdr! (rear-ptr queue) new-pair)
(set-rear-ptr! queue new-pair)

queue))))

rear-ptr

(define (queue)
(cond ((empty-queue? gueue)
(error "DELETE! called with an empty queue"” queue))
(else
(set-front-ptr! queue (cdr (front-ptr queue)))

queue)))

34

Vectors in Scheme

(define (vector <<?) arrays j
(define (swap 1 3J)
(let ((temp (vector 1)))
(vector i (vector j))
(vector j temp)))
define (partition pivot 1 j
(D) C P & (make-vector dim [val])
(define (quicksort-main 1 r) (vector-ref v 1dx)
(if (<1 r) (vector-set! v idx val)
(begin
(1f (<<? (vector r)
(vector 1))
(swap 1 r))
(let ((m (partition (vector 1) (+ 1 1) r)))
(swap 1 m)

(quicksort-main 1 (- m 1))
(guicksort-main (+ m 1) r)))))
(guicksort-main @ (- (vector) 1)))

35

Vectors (ctd.)

(define (quicksort vector <<7)

(define (shift-to-right 1 x)

(1f (<<? (vector 1) x)
(shift-to-right (+ 1 1) x)
1))
(define (shift-to-left j x)
(if (x<? x (vector j))
(shift-to-left (- 7 1) x)
7))

(define (partition pivot 1 j)
(let ((shifted-1 (shift-to-right 1 pivot))
(shifted-j (shift-to-left j pivot)))
(cond ((< shifted-1 shifted-7j)
(swap shifted-1 shifted-73)
(partition pivot shifted-1 (- shifted-j 1)))
((>= shifted-1 shifted-7j)
shifted-3))))
(define (guicksort-main 1 r)
ce)
(guicksort-main @ (- (vector) 1))) 36

Case Study: Constraint Programming

9C = 5(F-32)
bidirectional
. relationship
W N
2

T connectors

expresses a relation

-
constant

box

primitive
n constraints
- /
A

37

Case Study: Constraint Programming

(define (celsius-fahrenheit-converter c f)
(let (Cu (make-connector)) — N
(v (make-connector)) internal
(w (ma<e—connector))<<:: connectors
N Y
(x (make-connector))
(y (make-connector))) (define C (make-connector))
(multiplier c w u) (define F (make-connector))

(multiplier v x u) <<:[A (celsius-fahrenheit-converter C F)

rimitive
(adder v y f) P |
(constant 9 w) constraints
(constant 5 x)

V
(constant 32 y) C m1 4 ml al
10k)) * p p * + S F
m2 m2 al
W X y
9

J

38

Architecture

have a value. A connector is implemented as an
:its value, its informant (i.e. who set the value)
and its connected constraints. , all
connected constraints (except for the informant) are given a tick
so that they can recalculate themselves.

have a type (adder, multiplier,...) and a number of
connectors. They are also implemented as an
, they query two connectors having a value and
recalculate the value of the “third” connector.

39

[ADT&

Connectors (

<con>)

<con>)

-

_

4 ’\
user sets C's
value
_ \
N

F's value after
propagation

N

<con> <vadl> <informant>)

<con> <vdl> <retractor>)

<con> <new-constraint>)

40

turn on
“tracing”

\

J

-

> (probe "Celsius temp" ()
> (probe "Fahrenheit temp" F)

> (set-value! C 25 'user)
Probe: Celsius temp = 25

Probe: Fahrenheit temp = 77

done
> (get-value F)
/7

> (set-value! F 212 'user)
Error! Contradiction (77 212)

J

> (forget-value! C 'user)
Probe: Celsius temp = ?
Probe: Fahrenheit temp =
done

?

> (set-value! F 212 'user)
Probe: Fahrenheit temp = 212

Probe: Celsius temp = 100
done

Procedural layer atop OOP layer

(define (connector)
(connector 'has-value?))

(define (connector)
(connector 'value))

(define (connector new-value informant)
((connector 'set-value!) new-value informant))

(define (connector retractor)
((connector 'forget) retractor))

(define (connector new-constraint)
((connector 'connect) new-constraint))

4]

Giving all Constraints a “tick”

(define (constraint)
(constraint 'I-have-a-value))
(define (constraint)
(constraint 'I-lost-my-value))
ticks given by connectorj

constraints

(workhorse that gives it
(define (exception list)

(define (loop 1items)
(cond ((null? i1tems) 'done)
((eg? (car 1items) exception) (loop (cdr 1items)))
(else ((car 1tems))

(Loop (cdr 1tems)))))
(Loop l1ist))

42

An Adder Constraint

(define (al aZ2 sum)

(define (process-new-value) - ~
(cond (Eang (hﬁs—\l/alue? al) Chas-value? a2)) recalculate “the
set-vaLue: Sum : "
(+ (get-value al) (get-value a2)) ‘5(///f;‘ third one Y,
D)

((and (Chas-value? al) (has-value? sum))
(set-value! a?

(- (get-value sum) (get-value al))

D)
(Cand (has-value? a2) (has-value? sum)) (define (connector)
(set-value! al (connector 'has-value?))
(- (get-value sum) (get-value a2))
D)D) e
(define () o
(forget-value! sum me) N N
(forget-value! al me) — clear all
(forget-value! a2) ‘Lconnectors
(process-new-value)) /

(define (request)
(cond ((eg? request 'I-have-a-value)
(process-new-value))
((eq? request '"I-lost-my-value)
(process-forget-value))
(else
(error "Unknown request -- ADDER" request))))
(connect al me)

(connect a2 me)
(connect sum) (define (connector new-constraint)

) 43 (Cconnector 'connect) new-constraint))

An Multiplier Constraint

(define (ml mZ2 product)

(define (process-new-value)
(cond ((or (and (has-value? ml) (= (get-value ml) 0))
(and (Chas-value? m2) (= (get-value m2) 0)))

(set-value! product @ me)) ‘45/////

[

((and (has-value? ml) Chas-value? m2))
(set-value! product
(* (get-value ml) (get-value m2))
))
(Cand Chas-value? product) (has-value? ml))
(set-value! m2
(/ (get-value product) (get-value ml))
))
(Cand (has-value? product) (has-value? m2))
(set-value! ml
(/ (get-value product) (get-value m2))
D))
(define ()
(forget-value! product me)
(forget-value! ml me)
(forget-value! m2 me)
(process-new-value))
(define (request)
(cond ((eq? request 'I-have-a-value)
(process-new-value))
((eq? request 'I-lost-my-value)
(process-forget-value))
(else
(error "Unknown request -- MULTIPLIER" request))))
(connect ml me)
(connect mZ2 me)
(connect product me)

)

44

N

recalculate “the
third one”

~

J

Imitive Constraints

Pr

(define (value connector)
(define (me request) A
(error "Unknown request -- CONSTANT" request)) cannot Change d
(connect connector me) 1 constant)

(set-value! connector value me)

),

(define (

(define (print-probe value)

name connector)

(newline)

(displ
(displ
(displ

(displ

(define

(define

ay "Probe: ")
ay name)

ay 1" — ")

ay value))

f)
just printout the values of

the connected connector
_ J

(process-new-value)
(print-probe (get-value connector)))

(

(print-probe "7"))

(define

(request)

),

(cond ((eq? request 'I-have-a-value)
(process-new-value))

((eqg? request 'I-lost-my-value)
(process-forget-value))

),

(else

(error "Unknown request -- PROBE" request))))
(connect connector

),

45

Finally

(define (),
(let ((Cvalue #f) (1nformant #f) (constraints '()))
(define (set-my-value newval setter)

cel)
(define (retractor)
cel)
(define (connect new-constraint)
)

(define (request)
(cond ((eg? request "has-value?)
(1f informant #t #f))

(define (set-my-value newval setter)
(cond ((not (has-value? me))
(set! value newval)
(set! informant setter)
(setter

constraints))
((not (= value newval))
(error "Contradiction" (list value newval)))

(else '"ignored)))

((eg? request 'value) value) (define (| retractor)

((eqg? request 'set-value!) set-my-value) (1f (eq? retractor informant)

((eq? request 'forget) forget-my-value) (begin (set! informant #f)

((eg? request 'connect) connect) (retractor

(else (error "Unknown operation -- CONNECTOR" ,

request)))) constraints))
D) "1ghored))
(define (connect new-constraint)
(1f (not (memg new-constraint constraints))
(set! constraints
(define (constraint) (cons new-constraint constraints)))
(constraint 'I-have-a-value)) ; _ ?

(define (constraint) (if (has-value:)

(constraint 'I-lost-my-value))

(inform-about-value new-constraint))

46 "done)

Chapters 1-2-3

data procedures
primitive X X
combinations X X
abstraction X X

According to the

But this is not sufficient for organizing(that live in the system
“\A

large systems.VVe studied
ccording to the

that flow in the system

47

Chapter 3

