LEUVEN v,/ eigtined "5

Z]
”lfvcgne"?’ IN HET CENTRUM VAN DE KENNIS
Leuven, 14 oktober 2004

'l
Why Code Mobility?

m Relocation of services is necessary in
environments where the context frequently changes

m Users moving about geographically

m Collaborating service components need to migrate
iIndependently

m Migration must be seamless

Leuven, 14 oktober 2004 2

Work Package on Code Mobillity™

m Strong Mobility
m Progressive Mobillity
m Smart Mobility

Proof-of-concept high-level virtual machine

supporting strong code mobility

ChitChat VM

Java Virtual Machine

Leuven, 14 oktober 2004 3

Strong Mobility: Approach |

Proof-of-concept high-level virtual machine

supporting strong code mobility

linterpreted by Iresume execution

ChitChat VM ChitChat VM
make run-time state explicit ‘ at
in Java objects restore state

Java Virtual Machine - Java Virtual Machine

serialize state to bytestream
send stream through Java I/O sockets

Leuven, 14 oktober 2004 4

'
Types of Mobility

Data Control Resources

Context Context Context

Weak Mobility ® ® ®
Semi Strong Mobility Vv ® ®
Strong Mobility V4 V4 ®
Full Mobility V4 V4 V4

Java Applets
Most Middleware Solutions

Threads ‘become’ java.io.Serializable

Process Migration (for e.g. load-balancing)

Leuven, 14 oktober 2004

F GCLAMS
Why Strong Code Mobility*?

Semi strong mobility
is far less expressive...

In an Aml environment, you
cannot anticipate every mo%a_L

should be executed

public void m() { at the remote location... | public void n(Object obj,
Object x = ...; Object x) {
o.n(this, x); //
// code hereafter never executed! (obj, someLocation);
} obj.afterMove (x) ;
public void afterMove (Object x) { }

// perform some computation with x

}
Leuven, 14 oktober 2004

' \QJ/av(\ﬁ

Why not just use ‘Java’?

m No provisions for mobility

m Middleware/language extensions
interfere with standard Java semantics
often give up JVM compatibility

m [echnical problems with recursive transmission of
classes

m A Virtual Machine can abstract from the underlying
host system

Leuven, 14 oktober 2004

By < A
I . @UM &QJ
Move Considered Harmful |

m Imagine combinations of...
= regular control flow (if, while, ...)
= late binding polymorphism
= meta-programming, reflection, aspects

m \Which objects will be residing where?

Conjecture: move is the ‘goto’ of mobility

move (obj,134.184.43.120) goto 0xff408a7e
move (doc, th Wanted: Structured Mobility

We need abstractions to control the “loci of objects”

Leuven, 14 oktober 2004 8

' ChitChat: Structured Mobility

m Model based on active objects
m New kind of method ‘modifier’: move

m Move methods ‘pull’ objects from one VM to
another:

Leuven, 14 oktober 2004 9

Demo: Chat Client Application

m Simple client-server architecture

m Server automatically relocated to host of ‘most
popular’ client

server
7
7
7 "
7
Ve
sendMsg (“Hello World”)
client client
client

Leuven, 14 oktober 2004 10

F DA
Demo: Chat Client Application: 20 T

[active object }:hatServer { a chatServer is an active object...
Object|] clients; ——
int occupancy, maxClients, max;

public chatServer (channel, maxClients) ({
clients = new Object[maxClients];

occupancy = max = 0; ...with a reference to
this.maxClients = maxClients; . .

its connected clients

this.register (channel) ;

}

public move wvoid come (nam) {
System.out.println (“arrived at client ”“+nam);

}

move method used by clients

public Object registerClient (nam) { to pull the server towards them
(download new chatClient (nam) ;)
}

} weak mobility: client code can be
downloaded by a remote machine

Leuven, 14 oktober 2004 11

F CDAMS
Demo: Chat Client Application

active object chatClientchatServer {
String nam; int count;

clients have a dynamic

public chatClient (nam) { relation with the server
this.nam = nam; count = 0;
super {
if (occupancy == maxClients)
error ("Sorry, channel is full");
else
clients[++occupancy] = this;
} } public void sendMsg (msg) {
if (++count > super.max) ({
public void receiveMsa(from. msa) { (super.come(nam)ﬂ

System.out| if | am the most active client, | SUPer-max = count;

pull the server towards me [..oo-
for (int i=0, i < occupancy, i++1

}

} o clients[i] .receiveMsg (nam, msg)
broadcast the message to }

all other clients }

Leuven, 14 oktober 2004 12

