
Leuven, 14 oktober 2004

Strong Code Mobility

Leuven, 14 oktober 2004 2

Why Code Mobility?

 Relocation of services is necessary in
environments where the context frequently changes

 Users moving about geographically
 Collaborating service components need to migrate

independently
 Migration must be seamless

Leuven, 14 oktober 2004 3

Work Package on Code Mobility

 Strong Mobility
 Progressive Mobility
 Smart Mobility

Proof-of-concept high-level virtual machine

supporting strong code mobility

Java Virtual Machine

High-level programs

ChitChat VM

Leuven, 14 oktober 2004 4

Strong Mobility: Approach
Proof-of-concept high-level virtual machine

supporting strong code mobility

Java Virtual Machine

High-level programs

ChitChat VM

Java Virtual Machine

High-level programs

ChitChat VM

interpreted by

make run-time state explicit
in Java objects

serialize state to bytestream
send stream through Java I/O sockets

restore state

resume execution

Leuven, 14 oktober 2004 5

Types of Mobility

Full Mobility

Strong Mobility

Semi Strong Mobility

Weak Mobility

Resources
Context

Control
Context

Data
Context

Java Applets

Most Middleware Solutions

Threads ‘become’ java.io.Serializable

Process Migration (for e.g. load-balancing)

Leuven, 14 oktober 2004 6

should be executed
at the remote location…

Why Strong Code Mobility?

public void m() {

 Object x = ...;

 o.n(this);

 // perform some computation with x

}

public void n(Object obj) {

 // ...

 move(obj, someLocation);

}

public void m() {

 Object x = ...;

 o.n(this, x);

 // code hereafter never executed!

}

public void afterMove(Object x) {

 // perform some computation with x

}

public void n(Object obj,

 Object x) {

 // ...

 move(obj, someLocation);

 obj.afterMove(x);

}

Semi strong mobility
is far less expressive…

In an AmI environment, you
cannot anticipate every move!

Leuven, 14 oktober 2004 7

Why not just use ‘Java’?

 No provisions for mobility
 Middleware/language extensions

 interfere with standard Java semantics
 often give up JVM compatibility

 Technical problems with recursive transmission of
classes

 A Virtual Machine can abstract from the underlying
host system

Leuven, 14 oktober 2004 8

Move Considered Harmful

 Imagine combinations of…
 regular control flow (if, while, …)
 late binding polymorphism
 meta-programming, reflection, aspects
 move

 Which objects will be residing where?
Conjecture: move is the ‘goto’ of mobility

move(obj,134.184.43.120)
move(doc,thePrinter)

goto 0xff408a7e
goto labelWanted: Structured Mobility

We need abstractions to control the “loci of objects”

Leuven, 14 oktober 2004 9

ChitChat: Structured Mobility

 Model based on active objects
 New kind of method ‘modifier’: move
 Move methods ‘pull’ objects from one VM to

another:

move

o.m()

movemove

Leuven, 14 oktober 2004 10

Demo: Chat Client Application

 Simple client-server architecture
 Server automatically relocated to host of ‘most

popular’ client

client
client

client

server

sendMsg(“Hello World”)

Leuven, 14 oktober 2004 11

Demo: Chat Client Application

move method used by clients
to pull the server towards them

a chatServer is an active object…

…with a reference to
its connected clients

weak mobility: client code can be
downloaded by a remote machine

active object chatServer {
 Object[] clients;
 int occupancy, maxClients, max;

 public chatServer(channel, maxClients) {
 clients = new Object[maxClients];
 occupancy = max = 0;
 this.maxClients = maxClients;
 this.register(channel);
 }

 public move void come(nam) {
 System.out.println(“arrived at client ”+nam);
 }

 public Object registerClient(nam) {
 download new chatClient(nam);
 }
}

Leuven, 14 oktober 2004 12

clients have a dynamic
relation with the server

active object chatClient extends chatServer {
 String nam; int count;

 public chatClient(nam) {
 this.nam = nam; count = 0;
 super {
 if (occupancy == maxClients)
 error("Sorry, channel is full");
 else
 clients[++occupancy] = this;
 }
 }

 public void receiveMsg(from, msg) {
 System.out.println(from+”:”+msg);
 }

 ...
}

Demo: Chat Client Application

if I am the most active client,
pull the server towards me

broadcast the message to
all other clients

 public void sendMsg(msg) {
 if (++count > super.max) {
 super.come(nam);
 super.max = count;
 }
 super {
 for (int i=0, i < occupancy, i++)
 clients[i].receiveMsg(nam, msg);
 }
 }

