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Overview

• AmbientTalk: OO DSL for 
mobile ad hoc networks

• Pure event-driven con-
currency model (actors 
[Agha86])

• How to do a safe linguistic 
symbiosis between actors 
and threads?
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Actors vs. Threads
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actor: {
  def obj := object: {
    def m() { ... }
  }

  def button := Button.new(“Click Me”);
  button.addActionListener(object: {
    def actionPerformed(actionEvent) {
      obj.m();
    }
  })

  obj.m();
}
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Event Loop Concurrency

• Events are executed serially

• Event notification is strictly asynchronous

• Event loops should have no shared state
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Event Event Queue

Event Loop Event Handler



Event loop concurrency
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Actor

Message queue Event loop

Based on E programming language [Miller05]
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Event loop concurrency
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Actor

Message queue Event loop

‘local’ object ‘remote’ object

Actors cannot cause deadlock

No race conditions on objects
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AmbientTalk/Java

• AmbientTalk is implemented in Java

• Data mapping: cfr. JRuby, Jython, JScheme, 
LuaJava, JPiccola, ...

• Tight integration at the syntactic level
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Based on Inter-language Reflection [Gybels et al 05]

def Button := jlobby.java.awt.Button;
def button := Button.new(“Click Me”);
button.addActionListener(object: {
  def actionPerformed(actionEvent) { ... }
});
button.setVisible(true);



Actor/Thread Mapping
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Actor/Thread Mapping
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Actors as Threads
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def obj := object: { ... };

aJavaCollection.add(obj);

synchronizedCol

add(obj)
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Threads as Actors
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def ambientTalkTest := object: {
  def countTestCases() { ... }
  def run(result) { ... }
}

interface junit.framework.Test {
  public int countTestCases();
  public void run(TestResult r);
}



Threads as Actors
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def ambientTalkTest := object: {
  def countTestCases() { ... }
  def run(result) { ... }
}

TestSuite suite = new TestSuite();
ATObject atUnitTest = /* load ambienttalk test */;
suite.addTest((Test) wrap(atUnitTest, Test.class));
suite.addTest(aJavaUnitTest);
junit.textuit.TestRunner.run(suite);

interface junit.framework.Test {
  public int countTestCases();
  public void run(TestResult r);
}
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suite

Threads as Actors

10



Actor

ambientTalkTest

suite

Threads as Actors

10

run(result)
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11

ActionListener l = ...;
l.actionPerformed(actionEvent);

def button := Button.new(“Click Me”);
button.addActionListener(object: {
  def actionPerformed(actionEvent) {
    ...
  }
});



Actor

buttonListener

button

Threads as Actors

11

ActionListener l = ...;
l.actionPerformed(actionEvent);

def button := Button.new(“Click Me”);
button.addActionListener(object: {
  def actionPerformed(actionEvent) {
    ...
  }
});



Actor

buttonListener

button

Threads as Actors

11

actionPerformed(ae)

ActionListener l = ...;
l.actionPerformed(actionEvent);

def button := Button.new(“Click Me”);
button.addActionListener(object: {
  def actionPerformed(actionEvent) {
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wrapper

interface I extends java.util.EventListener {
  public void event(...);
}



Summary
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unitTest.run(reporter)



Summary
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listener.actionPerformed(ae)



Experience

• AmbientTalk using Java: AWT and Swing for 
GUI construction

• Java using AmbientTalk: JEdit plugin for 
collaborative text editing

• Self/Squeak’s Morphic UI framework in 
AmbientTalk
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Conclusions

• AmbientTalk: object-oriented (distributed) 
event-driven programming

• Symbiotic Thread/Actor mapping:

• AmbientTalk invocations proceed immediately

• Automatic synchronization of Java invocations

• Support for Java “event notifications” (listeners)
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http://prog.vub.ac.be/amop
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