© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven
Architectures

Tom Van Cutsem

Programming Vrije Universiteit
Technology Lab Brussel

© 2006 Tom Van Cutsem - Programming Technology Lab

Overview

@ Event-driven Programming Model
@ Event-driven Programming Techniques

@ Event-driven Architectures

© 2006 Tom Van Cutsem - Programming Technology Lab

Call versus Event

| |
|

I fire event |
TR e

|

1

l l
- |
I

|

fire event
return |~ return | |
. | | - 5y
' ' ' . lf|re event
|

@ Programming without a call stack
@ Much more flexible interactions

@ But... free synchronization & context are gone

Event-driven Model

N

e
2 MMNEO)X
@

Event-driven Model

Evenfs

N

1IL @ o=

Event-driven Model

Event Queue

_ @ ,

Eve ts

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

Event Queue

llll@, :

Event Loop

while (true) {
Event e = eventQueue.next();
switch (e.type) {

Eve ts

}...
¥

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

Event Queue

00T @ ol

Event Loop

Eve ts

EvemL handlers

vold onKeyPressed(KeyEvent e) {
// process the event

¥

© 2006 Tom Van Cutsem - Programming Technology Lab

Examples

@ GUI Frameworks (e.g. Java AWT)
@ Highly interactive applications (e.g. games)
@ Operating Systems

@ Discrete Event Modelling (e.g. simulations)

Event-loop Concurrency

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

S @
L

& € &
(\{

Event-loop Concurrency

Event-loop Concurrency

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

@ No locks, no deadlocks

@ No shared state, no race conditions

Event-driven
Programming

© 2006 Tom Van Cutsem - Programming Technology Lab

Return values

DeliveryService CustomerService

|
requestAddress I

shipToRequest

|
|
|

-
l |
| |
| |

void processDelivery(Order o) {
// request customer’s address
Address a = customerService.requestAddress(o.customerId));
courier.shipToRequest(o, a);

}

© 2006 Tom Van Cutsem - Programming Technology Lab

Callbacks

@ Dealing with asynchronous ‘return values’

DeliveryService

|
I requestAddress |

o

replyAddress ;
shipToRequest |

CustomerService

|
|‘
|
|
B
]

void processDelivery(Order o) {
// store order to retrieve it later
orders.add(o);
// request customer’s address
customerService.receive(
new RequestAddress(o.orderId, o.customerld));

© 2006 Tom Van Cutsem - Programming Technology Lab

Callbacks

@ Dealing with asynchronous ‘return values’

void processDelivery(Order o) {
// store order to retrieve it later
DeliveryService orders.add(o);
| | // request customer’s address
1 I customerService.receive(

I requestAddress _| new RequestAddress(o.orderId, o.customerId));
|
| ’ ;
I N
: replyAddress ; void replyAddress(AddressReply reply) {
shipToRequest // retrieve order again
! TR Order o = orders.get(reply.orderld);

Address a = reply.address;
courier.receive(new ShipToRequest(o, a));

}

© 2006 Tom Van Cutsem - Programming Technology Lab

Issues with Callbacks

@ Fragmented Code

DeliveryService CustomerService

@ Callback is out of context: J_reauestAddross !

- |
1

|
l requestAddress

R
|l
|
|

@ what is its originating call?

replyAddress l
@ what was the state (e.g. Vo oo addtess . B
e |

local variables) when call !

|
was made?

10

© 2006 Tom Van Cutsem - Programming Technology Lab

Futures

@ Placeholders for asynchronous return values

@ Typically synchronize when used

DeliveryService CustomerService
|

' void processDelivery(Order o) {
addressFuture = customerService.receive(
new RequestAddress(o.customerld));
// do things that don’t require address

I
f := requestAddress |
—
f.resolve(address) I Address adr = (Address) addressFuture. 3
|
I

§ courier.receive(new ShipToRequest(o, adr));

o }

shipToRequest

tgeﬂ)c;;ll
|
|

11

DeliveryService

- |
I f := requestAddress

© 2006 Tom Van Cutsem - Programming Technology Lab

Asynchronous Futures

@ Subscription of listeners that are executed

when return value is available

:‘ f.resolve(address)

CustomerService

shipToRequest

void processDelivery(Order o) {
addressFuture = customerService.receive(

new RequestAddress(o.customerId));
addressFuture.addListener(new FuturelListener() {

void (Result r) {
Address adr = (Address) r;

courier.receive(new ShipToRequest(o, adr));
Iy
3
¥

12

Event-driven
Architecture

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Architecture

@ A program is composed of services

® Services communicate via channels

checkout Sl orderPlaced S orderProcessed Stock
o | PINg o — | 3
lerene e e te wmw

orderProcessed orderPayed

o | PP

| Fp

14

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Controller

15

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model

Votes

no 44
abstain 15

15

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model Views
3
Votes 15
no 44 |
abstain 15

O 33 67100
15

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model \ATVES
subscribe §*8
Votes / 15
no 44 '

abstain 15 \
mﬂ

O 33 67100

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model \AT=1'Y/S

45
30
15

Votes

no 44
abstain 15

publish events

O 33 67100
15

© 2006 Tom Van Cutsem - Programming Technology Lab

Composing Services

@ Service Repository
@ Topic hierarchy:

@ Wildcard subscriptions

® Additional level of
abstraction

publish msubscribe

16

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

@ Services are highly reusable

@ Highly reconfigurable (e.g. upgrades)

subscribe

Replacement

synchronize

retire

17

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

@ Unit Testing: testing services in isolation

Clienf

., | Provider

\ |

— Service

VIOCK Up
- — |

- ws e

Provides test data Verifies outgoing events

18

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

@ Temporal decoupling:
@ services cannot block one another

@ more responsive applications

19

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

@ Adaptor services easily intfroduced:
@ logging events
@ authenticating events
& matching events fo an updated interface

- gt

- _ g — | service B

20

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Drawbacks

@ Loose coupling: implicit control flow
@ makes source code harder to understand

@ less compile-time checks, unit testing even
more critical

@ tool support required for easy
visualization and composition validation

ral

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Drawbacks

@ Temporal decoupling: non-determinism
@ Events may arrive in arbitrary order

@ make as little assumptions as possible on
ordering

22

© 2006 Tom Van Cutsem - Programming Technology Lab

Failure Handling

= synchronization (e.qg. 2PC protocol)
@ strong guarantees but...
@ Kills asynchrony in the system

o synchronization (e.g. compensating
actions)

@ works entirely asynchronously but...

@ system (temporarily) in inconsistent state

23

© 2006 Tom Van Cutsem - Programming Technology Lab

Conclusions

@ Event-driven programming = programming
without a call stack

@ With flexibility comes more responsibility:
return values, local state, ordering, ...

@ EDA: emphasis on loose coupling
@ Services easily reused

@ Concurrency becomes manageable

24

© 2006 Tom Van Cutsem - Programming Technology Lab

References

o 8 Enterprise Integration Patterns .8 ﬁ:ﬁ Th? Power of Events
- 3 [| Gregor Hohpe and Bobby Woolf tall David Luckham
- Addison-Wesley Addison-Wesley

Concurrency among Strangers

Miller, Tribble and Shapiro
In Symposium on Trustworthy global computing, LNCS Vol 3705, pp. 195-229, 2005

Programming without a call stack

Gregor Hohpe
Available online: www.enterpriseintegrationpatterns.com

Concurrent Object-oriented Programming

Gul Agha

In Communications of the ACM, Vol 33 (9), p. 125, 1990
25

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com

