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Overview

@ Event-driven Programming Model
@ Event-driven Programming Techniques

@ Event-driven Architectures
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Call versus Event
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@ Programming without a call stack
@ Much more flexible interactions

@ But... free synchronization & context are gone
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Event Queue
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Event-driven Model

Event Queue
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Event Loop

while (true) {
Event e = eventQueue.next();
switch (e.type) {

Eve ts

}...
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Event-driven Model

Event Queue
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Event Loop
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EvemL handlers

vold onKeyPressed(KeyEvent e) {
// process the event
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Examples

@ GUI Frameworks (e.g. Java AWT)
@ Highly interactive applications (e.g. games)
@ Operating Systems

@ Discrete Event Modelling (e.g. simulations)
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Event-loop Concurrency
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Event-loop Concurrency
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Event-loop Concurrency

@ No locks, no deadlocks

@ No shared state, no race conditions



Event-driven
Programming
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Return values

DeliveryService CustomerService
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void processDelivery(Order o) {
// request customer’s address
Address a = customerService.requestAddress(o.customerId));
courier.shipToRequest(o, a);

}
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Callbacks

@ Dealing with asynchronous ‘return values’

DeliveryService

|
I requestAddress |
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replyAddress ;
shipToRequest |

CustomerService
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void processDelivery(Order o) {
// store order to retrieve it later
orders.add(o);
// request customer’s address
customerService.receive(
new RequestAddress(o.orderId, o.customerld));
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Callbacks

@ Dealing with asynchronous ‘return values’

void processDelivery(Order o) {
// store order to retrieve it later
DeliveryService orders.add(o);
| | // request customer’s address
1 I customerService.receive(

I requestAddress _| new RequestAddress(o.orderId, o.customerId));
|
| ’ ;
I N
: replyAddress ; void replyAddress(AddressReply reply) {
shipToRequest // retrieve order again
! TR Order o = orders.get(reply.orderld);

Address a = reply.address;
courier.receive(new ShipToRequest(o, a));

}
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Issues with Callbacks

@ Fragmented Code

DeliveryService CustomerService

@ Callback is out of context: J_reauestAddross !
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@ what is its originating call?

replyAddress l
@ what was the state (e.g. Vo oo addtess . B
e |

local variables) when call !

|
was made?
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Futures

@ Placeholders for asynchronous return values

@ Typically synchronize when used

DeliveryService CustomerService
|

' void processDelivery(Order o) {
addressFuture = customerService.receive(
new RequestAddress(o.customerld));
// do things that don’t require address

I
f := requestAddress |
—
f.resolve(address) I Address adr = (Address) addressFuture. 3
|
I

§ courier.receive(new ShipToRequest(o, adr));

o }

shipToRequest

tgeﬂ)c;;ll
|
|
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DeliveryService

- |
I f := requestAddress
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Asynchronous Futures

@ Subscription of listeners that are executed

when return value is available

:‘ f.resolve(address)

CustomerService

shipToRequest

void processDelivery(Order o) {
addressFuture = customerService.receive(

new RequestAddress(o.customerId));
addressFuture.addListener(new FuturelListener() {

void (Result r) {
Address adr = (Address) r;

courier.receive(new ShipToRequest(o, adr));
Iy
3
¥
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Event-driven
Architecture
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Event-driven Architecture

@ A program is composed of services

® Services communicate via channels
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Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Controller

15
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Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model

Votes

no 44
abstain 15

15
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Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model Views
3
Votes 15
no 44 |
abstain 15

O 33 67100
15
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Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model \ATVES
subscribe §*8
Votes / 15
no 44 '

abstain 15 \
mﬂ

O 33 67100
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Channels

@ Point-to-point: fixed endpoints
@ Publish-subscribe: very loose coupling

@ Example: Model-View-Conftroller

Model \AT=1'Y/S

45
30
15

Votes

no 44
abstain 15

publish events

O 33 67100
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Composing Services

@ Service Repository
@ Topic hierarchy:

@ Wildcard subscriptions

® Additional level of
abstraction

publish msubscribe

16
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EDA: Benefits

@ Services are highly reusable

@ Highly reconfigurable (e.g. upgrades)

subscribe

Replacement

synchronize

retire
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EDA: Benefits

@ Unit Testing: testing services in isolation

Clienf

., | Provider
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— Service

VIOCK Up
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Provides test data Verifies outgoing events
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EDA: Benefits

@ Temporal decoupling:
@ services cannot block one another

@ more responsive applications

19
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EDA: Benefits

@ Adaptor services easily intfroduced:
@ logging events
@ authenticating events
& matching events fo an updated interface

- gt

- _ g — | service B
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EDA: Drawbacks

@ Loose coupling: implicit control flow
@ makes source code harder to understand

@ less compile-time checks, unit testing even
more critical

@ tool support required for easy
visualization and composition validation

ral
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EDA: Drawbacks

@ Temporal decoupling: non-determinism
@ Events may arrive in arbitrary order

@ make as little assumptions as possible on
ordering

22
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Failure Handling

= synchronization (e.qg. 2PC protocol)
@ strong guarantees but...
@ Kills asynchrony in the system

o synchronization (e.g. compensating
actions)

@ works entirely asynchronously but...

@ system (temporarily) in inconsistent state

23
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Conclusions

@ Event-driven programming = programming
without a call stack

@ With flexibility comes more responsibility:
return values, local state, ordering, ...

@ EDA: emphasis on loose coupling
@ Services easily reused

@ Concurrency becomes manageable

24
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