
An Exploratory Study Into the Prevalence of

Botched Code Integrations

Ward Muylaert
wmuylaer@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel

Coen De Roover
cderoove@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel

Abstract

When integrating code, semantic conflicts may oc-
cur. We look into how often these conflicts occur
and what it takes to fix them. We find that con-
flicts occur often and take a non-trivial amount of
work to fix.

1 Introduction

Software projects are often managed in version con-
trol systems (VCS) like Git or SVN. Version con-
trol systems aid in managing different versions of
a project. VCS provide a history of the versions
building upon one another. VCS also enable the
use of so called branches. In a branch, work can
be performed independently of other changes. For
example, to work on a particular feature or bug fix.
Different branches may be merged together again at
some point in time to combine the different changes
that were made.

Merging does not always have successful results.
Three different types of conflicts are often con-
sidered [5]. A textual conflict occurs when two dif-
ferent branches contain changes to the same line
of code. The merging tool does not know which
version to prefer. A syntactic conflict occurs when
the result of a merge is no longer syntactically cor-
rect. For example, two branches each surround a
statement with an if statement. The resulting pro-
gram has two if statements, but only one closing
curly bracket. A semantic conflict may occur when
the merged program is syntactically correct, but no
longer behaves as intended. This could be static,
for example due to the disappearing of a variable

in one branch that is still used in another branch.
Alternatively, the program may run without errors,
but the conflict may be unexpected or unintended
behaviour. This conflict would not be found un-
til the code was run, during a test or, worse, in
production.

While these conflicts are well defined, there is
little information as to how often they occur. Pre-
vious work [2] looked at nine open source pro-
jects using Git. The 3,562 merge commits spread
across these projects were investigated. This study
showed about one in six merge commits leads to
a textual conflict. Of those nine open source pro-
jects, three were investigated further for build and
test failures. For these three, build failures were
found in 0.1%, 4%, and 10% of merge commits.
Test failures were found in 4%, 28%, and 3% of
merge commits. This study is a start, but could do
with being looked at on a larger scale.

In this presentation, we look at projects on a lar-
ger scale. Using information from GitHub, a source
code repository host, enables the analysis of a large
amount of software projects. This information is
combined with Travis CI, a continuous integration
service. Travis CI can be coupled for free with
open source projects on GitHub. For every com-
mit pushed to a project on GitHub, Travis CI will
build the program, run the test suite, and report
the results back to the developers of the project.
Travis CI makes these results publicly available as
well.

Using this combined information, we look into
the following research questions:

1. How often does code integration lead to se-
mantic conflicts?

1



2. How much effort is needed to fix semantic con-
flicts after code integration?

3. How long does it take to fix semantic conflicts
after code integration?

2 Dataset

As a basis for our dataset, we consider projects
on GitHub. GitHub is a source code repository
host. Open source projects can be hosted on Git-
Hub for free. Many projects do: in 2013, GitHub
was the host to ten million source code repositor-
ies.1 A large amount of projects are publicly avail-
able to everyone. GHTorrent [3] attempts to bring
this information to researchers. GHTorrent uses
the GitHub API to create an offline mirror of data
on GitHub. GHTorrent uses this data to create a
MySQL database, making it easily queriable. The
GHTorrent MySQL dump currently contains over
400 million commits.
Travis CI is a continuous delivery service. Travis

CI provides free continuous delivery for open source
projects on GitHub. The results of the builds and
tests Travis CI performs are publicly available for
these projects. TravisTorrent [1] is an attempt for
Travis CI similar to what GHTorrent is for GitHub.
We were intent on using TravisTorrent, but en-
countered some trouble working with TravisTorrent
as provided. The data from Travis CI we are inter-
ested in does not yet, at the time of writing, seem
to be a part of TravisTorrent. Instead, we created
our own local dataset by calling the API provided
by Travis CI. The information gathered is stored in
a MySQL database to combine the Travis CI data
with the data of the GHTorrent database. We mir-
ror three of the entities available through the Travis
CI API: repositories, commits, and builds. Com-
bined these provide information about the success
or failure of the builds and tests run on a commit.
It also connects the data to the data in GHTorrent.
To select projects, we started out with the pro-

jects as defined by TravisTorrent [1]. Project selec-
tion for TravisTorrent was done by considering pro-
jects in Ruby or Java with the following criteria [4]:
projects must have forks, received a commit in the
last six months, received at least one pull request,
and have more than 50 stars on GitHub. Going

1https://github.com/blog/1724-10-million-repositories.

by these criteria, TravisTorrent had collected 1300
projects. We collected information on these 1300
projects through the Travis CI API. Some projects
were no longer available (e.g., due to removal by
the authors). This left us with 1248 projects and
1.1 million builds spanning those projects.
We then used the information in GHTorrent to

find merge commits. A merge commit is a commit
with more than one parent commit. We further
filter out projects that have less than 50 builds of
merge commits. This leaves us with 584 projects.
Of these, the quartiles of the amount of builds of
merge commits per project are 75, 114, and 217.5.

3 Results

3.1 Frequency of Conflicts

To consider the failure of a commit, we look at the
state of the build as defined by Travis CI. Travis
CI associates a different state to a build depending
on how that build went. As such we can consider
the states representing failed builds and tests to
measure the proportion of conflicts.

With this information, we consider for each pro-
ject the proportion of merge commits which lead to
a state of failure. We find that for this the quart-
iles are at 6.7%, 15.3%, and 29.0%. In other words,
for half of the projects a conflict occurred in about
one in six merges. Worse, for one in four projects a
conflict occurred almost once every three merges.
In looking at these results, we also notice some

outliers. We filter out those projects causing the
outliers. The projects in question had conflicts in
over 62.6% of merge commits. These projects do
not seem to adhere to continuous delivery. After
filtering, 559 projects are left in the dataset.

3.2 Effort to Fix Conflicts

As a proxy for effort, we consider the amount of
builds it takes before tests pass again. We call this
the NBTF or Number of Builds To Fix. If the next
build after the failing merge commit passes all tests
successfully, NBTF is one. For every extra build
needed, NBTF also increases by one.
We find the quartiles at 2, 4, and 16. Half of the

failing merge commits take more than four builds
before all tests pass again.

2



We note that NBTF is but a proxy for effort.
A bug may be fixed in one small commit, but that
does not mean it could not have taken a lot of effort
to track down the cause of the bug. Conversely, a
bug may not be fixed until several commits later
due to a developer not strictly adhering to prin-
ciples of continuous delivery.

3.3 Time to Fix Conflicts

To consider how long it takes to fix a conflict, we
look at the time between the failing of the merge
commit and the first build, after that merge com-
mit, that passes all tests. We call this the TTF
or Time To Fix. It is the difference between the
timestamp of the failing build and the timestamp
of the first successful build following.
For half of failing merge commits, it takes more

than 12 hours before there is a successful build. Al-
most one in five failing merge commits take between
24 hours and 7 days to fix. Another 11% even take
between 7 and 30 days.
In this case it should be noted that the dataset

consists of open source projects. Many of these are
run by volunteers in their spare time. As such, it is
possible the volunteers in question simply did not
have the time any sooner. A fix taking seven days
may mean the developer simply did not have time
for 6 days and then briefly looked at things to fix
it.

4 Conclusion

We used data gathered from GitHub, a source code
repository host, and Travis CI, a continuous deliv-
ery service. By looking at the intersection between
them, we had information about projects and when
these projects passed their tests. We used those
projects with enough merge commits to look into
conflicts and their resolution. We found that

1. Conflicts after code integration happen often.
For half of the projects, the build did not suc-
ceed for one in six merge commits.

2. Multiple builds are needed to fix the majority
of botched code integrations.

3. The majority of botched code integrations are
fixed within a day.

References

[1] Moritz Beller, Georgios Gousios and Andy
Zaidman. Oops, My Tests Broke the Build:
An Analysis of Travis CI Builds with GitHub.
Tech. rep. PeerJ Preprints, 2016.

[2] Yuriy Brun et al. “Proactive Detection of Col-
laboration Conflicts”. In: Proceedings of the
19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of soft-
ware engineering (ESEC/FSE). 2011.

[3] Georgios Gousios. “The GHTorrent Dataset
and Tool Suite”. In: International Conference
on Mining Software Repositories (MSR). 2013.

[4] Eirini Kalliamvakou et al. “An in-depth study
of the promises and perils of mining GitHub”.
In: Empirical Software Engineering (2015).

[5] Tom Mens. “A State-of-the-Art Survey on
Software Merging”. In: IEEE Transactions on
Software Engineering (May 2002).

3


	Introduction
	Dataset
	Results
	Frequency of Conflicts
	Effort to Fix Conflicts
	Time to Fix Conflicts

	Conclusion

