org.semanticweb.owlapi.model
Interface OWLSameIndividualAxiom
- All Superinterfaces:
- java.lang.Comparable<OWLObject>, OWLAxiom, OWLIndividualAxiom, OWLLogicalAxiom, OWLNaryAxiom, OWLNaryIndividualAxiom, OWLObject, OWLSubClassOfAxiomSetShortCut
- All Known Implementing Classes:
- OWLSameIndividualAxiomImpl
public interface OWLSameIndividualAxiom
- extends OWLNaryIndividualAxiom
Author: Matthew Horridge
The University Of Manchester
Bio-Health Informatics Group
Date: 24-Oct-2006
Represents an SameIndividual axiom in the OWL 2 Specification.
Methods inherited from interface org.semanticweb.owlapi.model.OWLAxiom |
accept, accept, equalsIgnoreAnnotations, getAnnotatedAxiom, getAnnotations, getAnnotations, getAxiomType, getNNF, isAnnotated, isLogicalAxiom, isOfType, isOfType |
Methods inherited from interface org.semanticweb.owlapi.model.OWLObject |
accept, accept, getClassesInSignature, getDataPropertiesInSignature, getDatatypesInSignature, getIndividualsInSignature, getNestedClassExpressions, getObjectPropertiesInSignature, getSignature, isBottomEntity, isTopEntity |
Methods inherited from interface java.lang.Comparable |
compareTo |
getAxiomWithoutAnnotations
OWLSameIndividualAxiom getAxiomWithoutAnnotations()
- Description copied from interface:
OWLAxiom
- Gets an axiom that is structurally equivalent to this axiom without annotations. This essentially
returns a version of this axiom stripped of any annotations
- Specified by:
getAxiomWithoutAnnotations
in interface OWLAxiom
- Returns:
- The annotationless version of this axiom
containsAnonymousIndividuals
boolean containsAnonymousIndividuals()
- Determines whether this axiom contains anonymous individuals. Anonymous individuals are not allowed in
same individuals axioms.
- Returns:
true
if this axioms contains anonymous individual axioms
asPairwiseAxioms
java.util.Set<OWLSameIndividualAxiom> asPairwiseAxioms()
- Returns this axiom represented as set of
OWLSubClassOfAxiom
s.
- Specified by:
asPairwiseAxioms
in interface OWLNaryAxiom
- Returns:
- This axiom represented as a set of
OWLSubClassOfAxiom
s.